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Abstract 

High order numerical quadratures for approximating layer potentials over curved domains in R 3 are given. More generally, 
these numerical quadratures are shown to be useful for evaluating surface integral involving kernels which are pseudo- 
homogeneous of degree - 1. A numerical application is presented. 

1. Introduction 

A large class of linear physical problems can be solved by means of boundary integral equations. Stokes 
flows, potential flows, the Helmholtz problem, and linear elasticity problems are examples in this list. Usually 
the mathematical problem consists of finding a scalar- or vector-valued function s, which is solution to a 
first-kind or second-kind Fredholm equation involving a.e. x on the boundary of the physical domain /2 (e.g. 
see [5,6] for a review on this technique). Let K ( x ,  y)  be the scalar- or matrix-valued kernel of the physical 
problem. Then, whatever method is chosen for solving the boundary integral equation, the domain boundary is 
usually represented by a regular atlas (Fi,~Ji)iEl, and one is always obliged to evaluate the influence of the 
panel s e t  ( l ' i ) iE I on a finite set of points ( x j ) t 6 j .  That is to say, the following integrals have to be evaluated: 

K ( x ,  y )  . s ( y )  do'y :=/C [ s, x, i]. 

Fi 

(1.1) 

If the degree of approximation of s is high and if the panels Fi are curved, ( 1.1 ) must be numerically evaluated 
(see [4] for an example of such a numerical evaluation). 

The objective of this paper is to present numerical quadratures which are suitable for approximating surface 
integrals of type ( 1.1 ). Emphasis is put on kernels which are pseudo-homogeneous of degree - 1. An application 
of the technique presented here is shown at the end of the paper. 

2. Regularity hypotheses 

It is assumed that a.O is piecewise C k and ~ is locally on one side of its boundary. The panels Fi may be 
curved at will; it is only assumed that they are defined by regular mappings ~Pi : S , F i ,  where S is the 
reference simplex in R2. Such an atlas may be provided by a standard CAD system. Let Ji be the Jacobian 
determinant of ~'i and denote by hi the diameter of Fi, then we have the following classical bounds [4,5]: 

ch i+2 (2.1) I~p, Ij, o~.~--~ ch~, and I Ji I j.oo,s--~< .-i • 

0045-7825/94/$07.00 (~) 1994 Elsevier Science B.V. All rights reserved 
SSDI 0045-7825 (93) E0206-N 



258 J.-L. Guermond/Comput. Methods Appl. Mech. Engrg. 116 (1994)257-263 

K(x, .) is assumed to be pseudo-homogeneous of degree - 1  according to the definition as follows. Consider 
x E ~3, introduce the polar coordinates (r,O) for y in IR 3 - {x} so that r :=11 Y - x [I, and 0 := (y - x)/r. 
K(x, .) is pseudo-homogeneous of degree - I  at x up to order k, if there is an open neighbourhood U of  x so 
that for all y in U ~ 0 . (2-  {x}, rK(x,r,O) is differentiable with respect to the polar variables up to order k, 
and the derivatives in question are bounded. 

Consider x on 3.0 and Fi a panel. Even though K(x, .) is locally integrable on 0/2 - {x}, K(x,y) may not 
be bounded when y approaches x. Hence, any numerical approximation o f / C [ s , x , i ]  must take into account 
this possible singular behavior. In order to tackle this difficulty, ~3 is divided into three domains. The point x 
is said to belong to the near field of  Fi if x E int (F~). If x is at a distance from F i which is equivalent to 
hi := diam ( F i ) ,  i.e. a]1 i ~ dist(x, Fi) <~ bhi, where a and b are positive constants which are yet to be specified, 
then x is said to belong to the intermediate field of  Fi. If  the distance from Fi tO X is larger than bit i, x is said 
to be in the far field of  Fi. 

3. Near  field 

Consider x ~ i n t (F i ) ,  define 3: := ~ i -~(x) ,  and introduce the polar coordinates (?, t ))  in the reference 

simplex. Let S'~, $2, and S'3 be the three vertices of  S, and definer)k, (k = 1,2, 3), as the angles between the 
axis 3:3:~ and axes 3:Sk, (k = 1 ,2 ,3) .  Divide S into 3 sectors Sk3:Sk+~, where S'4 = S~. Then, (1.1) can be cast 
into the form: 

3 

l~[s,x,i] = E 
k=l 

~ '  ~))PK(x, P, t)) • gi(~, t)) Ji(P, O) d? dr), 
, 1  

t~, 0 

(3.1) 

where 04 := 01 +2zr,  ?(t)) is the distance from 3: to OSalong the direction t), and Ji is the Jacobian determinant 
of  ~/'i; s o ffi has been replaced by gi for short. Note that since K(x, .) is pseudo-homogeneous of  degree - 1 ,  
the term PK(x, P,t)) in (3.1) is controlled as long as P/r is smooth and bounded from above. Introduce the 
new variable (I  E [0, 1 ] so that d(i  = d~/~(0)" it is reasonable to think that the integral with respect to ~:l can 
be approximated by using a Gaussian quadrature. As a result, the measure d0 is replaced by ~(t))dO, where 
P(t)) m a y h a v e  large variations if 3: is close to the boundary S"~S"k+l. Denote by ..¢j, the orthogonal projection of 
3: onto S~Sk+t and let h, = [~k - 3:[. Let ~', be the angle (3:3:l,Sk+lSk), then ~(t)) = hk/s in( t )  - &k); that is 

to say, the measure which is adapted to the situation is h ~ d 0 / s i n ( 0 -  &k). Hence, in each sector S~3:S"~+I we 
introduce the new variable so2 E [ - 1, + 1 ] so that ds¢2 = 2 d0 /A ,  sin(t) - &k) where 

Ak := In [tan ((0k+, -- & k ) / 2 ) / t a n  ((t)k - & , ) /2 ) ]  . 

Then, each integral in (3.1) can be approximated by using the tensor product of  Gauss-Legendre quadratures 
on the rectangle (sc~,~r2) C [0, 1] × [ - 1 ,  +1 ]. Let L and N be the number of  quadrature points in directions 
~~ and ~:2, respectively, we have 

3 7~k Ak L t IC[s,x,i] ~ Z T ~"~wznw,tetnK(x, Pt,,On) "gi(Ptn,O,)Ji(Ptn,O,), 
k=l n=l I=l 

(3.2) 

where wit, w2,, are the weights of  the quadratures, and we have set ?t,, := ?t(tg,,). 
Let A := maxk=l.2,3{Ak} and assume gi is a polynomial of  degree p ~< min(2L - 1 ,2N - 1), then we have 

the following error estimate: 

THEOREM 3.1. If N is great enough, there are positive constants c, c ~, and y > A/2  so that the quadrature 
error in the near field is bounded from above by 

c7~{ z-'+~ II gi II~.,/~÷c'h(zX/2Y) 2u II ~i I1,,.o~.~'. (3.3) 
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PROOE We give a sketch of the proof; for technical details the reader is referred to [3]. Since (3.2) is the 
tensor product of two one-dimensional quadratures, the quadrature error can be bounded from above by 

I ] .__. hk z sup (Elk(~l))  + sup (E2k((2)) , 
k=l L (IE]0'I[ ~ E l - l , l [  

where Elk and E2k are the elementary quadrature errors. A bound on Elk((1) is given by the classical theory 
of Gaussian quadratures (see Ref. [1, p. 344] ); that is to say, there are two constants c and Y > (A/2)  such 
that 

Elk(~l) ~< C(A/2T) TM II Ji II0.oJI Si ]lp,oo,s"t[ PK(x,¢~(~,~)) 112N, 

The key point here is that due to pseudo-homogeneity [I eK(x, ¢i (e, #))ll2N, oo,? is bounded from above by c/hl. 
A bound on E2k is given by the Bramble Hilbert lemma together with various forms of HiSlder inequality 

p 2L-j 

E2k( 2) Iz0,s, cjt leg(x,~bi(e,O)) Ii,oo.zl 12L-j-t,oo,Se, 
j=0 I=0 

where So is the segment P E]0, hk/sin(0 -- c~k)[. The desired result is obtained by using pseudo-homogeneity 
which yields 

I rK(x,{Pi(e,#)) &l -I. 

Note that error estimate (3.3) is consistent with that of Johnson and Scott's Lemma 3.1, p. 1365 [4]. The 
present approach, though, emphasizes the polar coordinates' role. 

Assume the quadrature error must be of O(h k) so that it is of the same order as that induced by the 
approximation, by some particular scheme, of the solution to the boundary integral equation referred to in the 
introduction. Then, integers L and N must be chosen so that 

L = m a x { ( p + l ) / 2 , ( k + p - 1 ) / 2 }  and N = m a x { ( p + l ) / 2 , ( k - 1 ) l n ( 1 / h ) / l n ( 2 T / A ) } .  

If h is small enough the ratio of N/L behaves like In( I /h ) ;  that is to say, more quadrature points must be put 
in the azimuthal direction than in the radial direction. This fact has been well observed on numerical tests (cf. 
[2]) .  

4. Far field 

Assume now that x is in the far field of/"i.  The integral in (1.1) is approximated by means of a quadrature 
rule that is exact on S for polynomials of degree t >t p. In other words, an approximation of K~ [s, x, i] is given 
by: 

Q(t) 

/C[s, x, i] ~ Z wfarK(x' ¢i(YCq) )" Si(YCq)Ji(YCq), (4.1) 
q=l 

where Wrq ar and .~q are the weights and the quadrature points of the quadrature rule in question. An evaluation 
of the quadrature error is given by: 

THEOREM 4.1. Let a = I (resp. a = 2) if K(x,  .) is a single (resp. double) layer kernel; then, if hi is small 
enough, there is y > 1 so that for q E [ 1, c~ ] the quadrature error, Et, satisfies: 

Et <~ ct l2-a(Tb) p - t - l - a  11 Si Iip.j. (4.2) 
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PROOE From the Bramble Hilbert lemma we infer that 

E, <~ c [ K(x ,~ i )  " siJi Jt+l,q.S"' 

Using the fact that gg is a polynomial of  degree p, where p ~< t, and applying various forms of  H61der inequality 
yields: 

p t+  I - - j  

E, <<. ~a [ gi Ij, q'~ Z cj, I K(x ,~ i )  It.oo,s~ Ji [,+,_j_,.~'~, 
j--O I--O 

where cjt are positive constants which do not depend on i. Furthermore, it can be shown that if K(x,  .) is a 
single or double layer type kernel and if hi is small enough there exists a constant Yt /> 1, independent of  i, so 
that: 

I K(x,~,i) [i.oo,s~< c(ytb)t+a. 

As a result, we have 

p t+  1 - j  
-I-a~t+l-j+2 

Et <~ Z [ si [j.q.'~ ~ Cjl(-hiTtb) h i 
j=o t---o 

Setting y := inf{yt} and using the equivalence of norms in finite dimensional, normed vector spaces, we obtain 
the desired result. [] 

Assume as in the previous section that the quadrature error must be of  O ( h  k) so that it is of  the same order 
as that induced by the approximation of the solution to ( I .1 )  by some particular scheme. Then, the integer t 
and the far field constant b must be chosen so that: 

{ 2 ) I n ( I / h )  } 
t = s u p  p , p -  l - c e + ( k + o ~ -  In(yb)  ' (4.3) 

The constant b must be chosen great enough so that yb > 1. Numerical tests performed on the simple and 
double layer potentials of  the Laplace equation have shown that for 0 ~< p ~ 4, an optimal choice for b may 
be 0.2 ~< b ~< 0.4 (see numerical tests below and [2] ). 

5. Intermediate field 

When x is in the intermediate field of  Fi, S is divided into N 2 simplexes which are geometrically similar to 
S. On each sub-simplex one uses a quadrature rule which is of  the same type as that which has been used in 
the far field. More precisely, let ~n be the unique linear mapping which maps Sn into S" and which Jacobian 
determinant is positive. Let t be an integer, yet to be specified, so that p ~< t. Consider on S a quadrature 
rule (wqinter,~fq)l<~q<~a(t) which is assumed to be exact for polynomials of  degree less than or equal to t. This 

quadrature rule is applied on each elementary simplex Sn as follows: 

N z Q(t)  I i n t e r  ^ n  ^ ^ n  ^ n  
IC[s,x,i] .~ ~ ~ ~ w q  K(x,~bi(xq)).  s i ( X q ) J i ( x q ) ,  

n=l q=l 

(5.1) 

^" := ~n(-~q) for short. where we have set Xq 

THEOREM 5.1. Assume x is in the intermediate field and K is a single or double layer type kernel. There is 
a constant ~ >>. 1 so that, if-hi is small enough, the quadrature error is bounded by." 

ch2i-~(~aN,) p-'-l-'~ II gi Ilp,q.~', (5.2) 



J.-L. Guermond/Comput. Methods Appl. Mech. Engrg. 116 (1994) 257-263 261 

where Nt := N t+3/t+l-p+a. 

P R O O E  Divide the error into N 2 terms, one for each sub-simplex; then, proceed as in the far field. [] 

Assume that the quadrature error must be of O(hk),  and that N is chosen so that Nt f la  is greater than a 
specified constant CN. Then, the integer t must be chosen so that: 

{ / t = s u p  p , p -  1 - o t + ( k  + a - 2 )  ln(CN----~ " (5.3) 

We have yet to specify N and the intermediate field constant a. Note that 

( CN ~ t+I-P+a/t+3 
N = \ ~ - ~ ]  (5.4) 

Furthermore, x belongs to a finite set of control or quadrature points. Let Qlp be the set in question. The 
intermediate field constant can be chosen so that: 

~" dist (x,~ [ ' i) } 
a = i n f l .  • x E Qip - Fi,  i E l . (5.5) 

Note that the present scheme is of interest only if we can be sure that N is bounded as h converges to zero. For 
this matter we have to verify that a does not converge to zero as h decreases to zero. Actually, it can be shown 
that, provided a quasi-uniformity hypothesis on the atlas (Fi,~i)iEi iS satisfied, a is bounded below when h 
converges to zero [3]. 

6. A numer ica l  appl icat ion  

The quadrature formulae above have been used for approximating the solution to the following boundary 
integral equation: 

1 f a 1 1 f 1 
u ( x )  - - -  l u ( y )  - do'~ . . . .  J g ( y )  do-v. (6.1) 

27r J Ony Ix Yl " 27r ~ • 
O0 O.O 

The unknown function u ( x )  may be interpreted as the trace on 012 of the solution to an exterior Neumam 
problem for the Laplace equation. The reader is referred to e.g. [5] or [6] for further details on the mathematical 
aspect of this problem. This equation is the model equation for external potential flows in aerodynamics. 

The solution to (6.1) is approximated by means of a discontinuous Galerkin method [2]. The numerical 
method of solution has been tested on an ellipsoid of semi-axes al = 0.5, a2 = 0.25, and a3 = 0.25. For this 
class of domain, the analytical solution to (6.1) is known. The atlas (Fi,~li)iE I has been provided by a CAD 
system. Three series of tests have been performed for three different mesh sizes h corresponding to three types 
of discretization of 0/2. The first atlas is composed of 76 panels (h ~-. 1/5), the second one is composed of 304 
panels (h ~ 1/10), and the last one is composed of 684 panels (h ~ 1/15). In Fig. 1 is plotted the base-10 
logarithm of the error [lu -unt ,  llL2(oa), for the three values of h defined above, as a function of the polynomial 
degree of the approximation p. The computations were made in single precision on an Alliant FX80. It may 
verified that the error is O ( h  v+l) .  This suggests, and it has been verified in practice, that for a fixed precision 
one minimizes the computational cost as one works with a "coarse" panelling and a "high" polynomial degree 
of approximation. Coarseness of the panelling is understood in the sense that 0/2 is approximated by a "small" 
number of curved panels whose degree of approximation is at least larger than that chosen for approximating 
the solution, that is p. The panelling coarseness is bounded below by regularity criteria, namely, the panels 
must not be too far from flat panels. 

To fully illustrate the present method, it has been applied on an industrial case. In Fig. 2 is shown the 
pressure coefficient distribution on a test submarine. The surface consists of 824 curved elements directly 
obtained from a CAD representation of 0/2. No symmetry was assumed. The computation was made with a 
linear approximation of the potential, p = 1. The 2472 x 2472 order influence matrix takes some thirty minutes 
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0 S.O0 

P o l y n o m i a l  d e g r e e  p 
4.00 

Fig. 1. (left) L2(a/2) error as a function of h and p; (right) example of atlas generated by a CAD system (304 panels). 
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Fig. 2. Pressure coefficient distribution on a test submarine. 

of  CPU time to construct on an Alliant FX80 computer; using an LU method resident on the computer, the 
system is solved in a few seconds. 

7. Conclusions 

A definition of  pseudo-homogeneity that emphasizes the role of  polar coordinates has been given. Numerical 
quadratures for approximating integrals of  type (1.1) over curved domains in ~3 along with estimates on the 
quadrature errors have been presented in Eqs. (3.2) ,  (4.1) ,  and (5.1) .  The error estimate (3.3) is consistent 
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with that obtained by Johnson and Scott [4] by a different approach. The numerical quadratures are suitable 
whenever the kernel of  the physical problem, which is considered, is pseudo-homogeneous of  degree - 1 .  The 
simple layer potentials of  Laplace and Helmholtz equations along with that of  the Stokes flow problem and 
the linear elasticity problem are pseudo-homogeneous of  degree - 1. The same conclusion holds for the double 
layer potentials of  Laplace and Helmholtz equations. The numerical quadrature presented here may be useful 
when an approximation of  the solution to integral equation of  type (6.1) is sought. No approximation of  the 
surface 0 0  is needed. The present approach only requires that 0 0  is defined by a regular chart of  the form 
(Fi,~Pi)iEi which may be provided by a standard CAD system. 

An important problem that has yet to be addressed consists of  defining an algorithm that would automatically 
refine a "coarse" chart of  the form (_F'i, ~bi)iEi or automatically control the local degree of  approximation p in 
order to attain a fixed precision. Such a strategy would take full advantage of  the present method. 
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