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Abstract. This paper presents a stabilized Galerkin techniqguseems to be new. To the author's knowledge, the exist-
for approximating linear contraction semi-groups of cl@8s  ing stabilization methods cannot be easily extended to time
in a Hilbert space. The main result of this paper is that thislependent problems (Streamline Upwind Petrov Galerkin,
technique yields optimal error estimates in the graph nornsee e.g. Brooks-Hughes [4], or Galerkin Least Square, see
The key idea is twofold, first it consists in introducing an ap-e.g. Hughes et al. [9], or residual Free Bubbles, see e.g.
proximation space that is broken up into resolved scales ari8irezzi et al. [2]) without the framework of the discontin-
subgrid scales so that the generator of the semi-group satisfiseus Galerkin technique (see e.g. Lesaint-Raviart [12] and
a uniform inf-sup condition with respect to this decompos-Johnson-Pitkaranta [11]).

ition. Second, the Galerkin approximation is slightly modified

by introducing an artificial diffusion acting only on the sub-

grid scales. 2 The model problem

Key words: Finite Elements — Galerkin methods — Stabiliza-

; ; ; ; . - i the Hille-Yosida theorem (see Brezis[1, p.110] or
tion — Linear hyperbolic equations — Semi-groups — Subgri ven . X .
modeling — Artificial viscosity — Multi-scale methods (gos'da [14, p. 248]), sincé is the generator of a contraction
semi-group A is necessarily monotone:

Vv e D(A), (Av, v)L >0, 2

1 Introduction andA is maximal

The objective of the present work is to propose a framework

to stabilize Galerkin approximations of time dependent linVfel, Jve DA, vt Av=f. ®3)
ear problems that do not possess a coercivity property (for o ) ] o
instance, linear hyperbolic equations). Having in mind a Galerkin approximation of the evolu-

More precisely, we consider a separable Hilbert sgace tion equation in (1) we want to introduce a bilinear form
andA: D(A) C L —> L the generator of a contraction semi- &(U, v) = (Au, v),. To this end, we seV = D(A) and we
group of classC® in L. Hereafter, we are concerned with €quipV with the graph norm{jv|ly = (lvlI2 + | Av[|2)2.
the following linear problem: Forf € ([0, +o0[; L) and Since the graph ofA is closed,V is a Banach space. Fur-

Uo € D(A), thermore, it is clear that equipped with the inner product
(u, v)L + (Au, Av)_, V is a Hilbert space. SincB(A) =V
Findu € C1([0, +-o0[; L) N C°([0, +o0[; D(A)) s.t. is dense inL, we are in the following classical situation
Ujt—o = U, VcL=L cV'.Hencea:V xL— R, as defined above,
% +Au=f, (1) is a continuous bilinear form. Furthermore, we introduce the

semi-normjv|y = || Av||.. From this definition we deduce
The main goal of the present paper is to present a stabi-
lized Galerkin technique for approximating (1). The mainvu cV sup
feature of the proposed technique is that it yields opti- ’ vel |IvllL
mal convergence estimates in the graph norm. This result

This tautology will play a key role hereafter.

* This research is partly supported by ASCI, CNRS-UPR 9029, Orsay, 1N€ problem (1) can be recast into the fOllOV_\Iihg eqUiva'
France lent form: For f € C1([0, +o00[; L) andug € V, find u in

a(u, v) _

[uly. (4)
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CL([0, +oo[; L) N ([0, +o0[; V) so that This hypothesis is the keystone of the theory to be developed
hereafter. Whert; = 0, this inequality is the discrete coun-
(u(0), v) = (g, v), VYvel terpart of the tautology (4). Since the algorithm that we shall
(%7 ”)L +aUu,v)=(f,u)., Ywvel, vt=>0. (5) propose preserves the contraction property of the semi-group

at the discrete level, the-norm of the approximate solution

. L . up(t) will always be bounded in time. Hence, we shall weaken
Formally, by usingu as a test function in the equation 44) by allowingc; not to be zero in (7)

above and by integrating with respect to time, we obtain tha Furthermore. we assume thég;  Xp,, and there is a lin-

lu®Ii. is bounded. Furthermore, by deriving the quation,, projection operatoPy : X, —> Xy that is stable with
with respect to time and by using as a test function we ob- respect to thé. -norm:

tain that, providedip € V, the L-norm of the time derivative,

[14¢®]1. 1s bonded. As result 3c>0, Y(H,h), Vine Xn  [|PuvnlL <Clunlle.  (8)
a(u,
u(t)|v = sup |T ”U) < Nuellie + 1l lu® i For further references, we denote
velk VllL
<c(t, uo, f, fr). X! = (1— Py)Xn,

That is to say, if the initial data is boundedVh(i.e. in the and for allv,, in X, we setvy = Pyp, andvhH = v —vp; that
Graph norm), thenm(t) is bounded in the graph norm for all is to say,
times. The ultimate goal of the present paper is to present
a Galerkin method that reproduces this property. Xn = Xu @ X

The key idea of the present work is twofold, first it con-
sists in introducing an approximation space that is broken uplereafter the two parametet$ and h are assumed to be
into resolved scales and subgrid scales so that the bilinegguivalent:
form a satisfies a discrete counterpart of the inf-sup condition
(4) with respect to this decomposition. Second, the GalerkifiH =h =< czH. 9)
approximation is slightly modified by introducing an artificial __ . i
diffusion that is restricted to the subgrid scales. The preserdthis hypothesis amounts to saying thét and Xy, have
work follows an idea that is, to some extent, similar to thedbout the same interpolation properties, Xg.is not signifi-

spectral viscosity method proposed by Tadmor [13]. cantly larger tharXy, but X is large enough for (7) to be
satisfied uniformly.

Since X, is a finite dimensional normed space, we shall

3 The discrete approximation use an inverse inequality. For this purpose, we set
3.1 The discrete setting A(H) 1= sup [ohlv ) (10)
vheXn lunllL

We introduce a sequence of finite dimensional subspaces
V, say(Xn)o<H<1, Where the indedd denotes a positive pa-
rameter tending to zero.

The spaceXy is assumed to have the following approxi-
mation property: there aM, a dense subspace¢f a linear
operatorly € L(W, Xy) andk > 0,c > 0 so that 3.2 The artificial viscosity

Prg the case of a finite element approximatiat) is propor-
tional to the meshsizH if the mesh is quasi-uniform (see e.g.
Girault-Raviart [6, p. 103]).

k+1
VoeW, fv—InvlL+Hlv=Tuvlv < cH" ullw.  (6) Looking back at (7), we see that the subgrid scales (i.e. the

. spaceX{') have been introduced to help control the graph
From now onc denotes a generic constant that does not d&;rm of the resolved scales (i.e. the elementXql). The

pend onH and the value of which may change on differentgestion we are left with now is: how can we control the
occurrences. . . .subgrid scales? The answer we propose is: control the graph

In general (4) has no uniform discrete counterpart. Thatigorm of the subgrid scales by means of an artificial diffu-
to say, in general there & H) so that sion mechanism. Note that by grossly diffusing the subgrid
scales we shall not spoil the accuracy of the Galerkin method,
since by addingX{! to Xy we did not improve signifi-
cantly the approximation property & (see the equivalence
but eitherc(H) is zero or depends on the meshsizeThe  inequality (9)). _ . y
solution that we propose to cure to this problem consists in More precisely, we define a bilinear for, : Xi' x
enlarging the test space. Hence, we introduce a new sequeng —> R that satisfies the following continuity and coer-
of finite dimensional subspaces ¢ say (Xn)o<h<1, SO that ~ Civity properties: There are a semi-noii, andcg > 0 so
there aree, > 0 andc; > 0, independent ofH, h) so that that

Yuy € Xp,  sup a(un, ve)/llvklie = c(H)[unlv,
VHEXH

H H H2
a(vH, ¢n) bh(Uh » Up ) > )»(H)|Uh |bv
Yop € X, SUp — > caluplv — CsllonllL. 7

ol gl = vl Sl Dy B ) < can (I [t (11)
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where the semi-norm |, is such that there are two constants4 The error analysis
Ce1 > 0 andce > 0 so that for albf! in X{! we have
4.1 Preliminaries

Cerlvh v < [vp'lb < Caah(H) ™l lIL, 12 _ . .
toh Y n h it (12) In the following we shall need the following stability result.

The simplest choice fdy, is Lemma 1. There iscy, > 0 so that

H H
b, wi) = A(H) (A v, Awlh),, Vit € X1, BaCu s W) o, (15)
wheXp ”wh”L
but other choices are possible. For instance, assumeXthat
is a dense subpace ®f with continuous embedding. As- Proof. The stability hypothesis (8) oRy together with the
sume that there is a symmetric positive bilinear fgrm)x on  inverse stability property (12) yields
X x X so that the semi-norm |x associated with this form

i H . H H H
satisfies: bn(vy,', wiy) < cgA(H) vy, lblwy, lbs
H H
< CBCe2|Vy, Ipllwy IIL,

Cet|vft v < |l Ix < cer(H) i |1 < caCe2| v Ioll (1 — Pr)wnllL

for all vf! in X{1. This hypothesis means th¥tandV are as- < cgCeall 1 — Pull[vg) [ollwnllL.
sociated with differential operators of the same order. Then . .

Let T be a strictly positive real number. We shall make use
br(vf!, wil) = A(H) !, wihHx. of the following version of the Gronwall lemma, the proof of

which is left to the reader.

We can illustrate these definitions on the scalar transpottemma 2. Let ¢ be in W-1((0, T); R) (the derivative be-
equationdu/dt+4 8V u= f in £2. With suitable assumptions ing understood in the usual distribution sense) andbe in
on the vector fielg8, we have L1((0, T); R) so thatp > 0, y > 0. Assume there a@ b > 0

two real numbers so that® (t) + v < agp'/2+b, then
Au=gVu,

a2
L=L%), IpllLoeoT) + 1V llL1oT) < e<2T2+bT+¢(°)> :
V={vel?f)|BVvelL3R), yp- =0}

where I'" is the inflow boundary. By assuming, C _
H(£2) c V, the following two definitions are possible foy: 4.2 The main convergence result

. A(H) [ (BY o) (BY wi), The main convergencg rgsult of this section is .
bn (v, wy) = AH) [ (Vo) - (V) Theorem 1. Assumau is in W2>°([0, T]; W), then the dis-
@ WVn ) (VWh). (13)  crete solutiorun of (14) satisfies
The second model may be helpful in practice for two reasons: T 1/2

First, it may help damping cross-wind oscillations when ap-

proximating very stiff problems; second, if in practigeis U= UnllLeeqoryn) + /a(u — Un, U—Un)
time-dependent (though the present theory assysesbe 0

time-independent), this model is time-independent (hence the < HK/2, (16)
assembling of the matrix is done only once).

T 172
3.3 The discrete problem 1 / lu—ul2 | <cH* (17)
T J— 9
0

For the sake of simplicity we assume thag is in W,

and we approximate the initial data Byup. The discrete where constants; andc, can be bounded from above as fol-
problem we consider hereafter consists in findimg in  lows

CL([0, +o00[; Xp) so that

H 12
Unjt=o = lnUo, G= C[H +T[ +1+TH ullwzee o, 73:w)

A(H)

(%’ vh)L +a(un, vh) +bn(uf!, v
= (f,vn), Vun € Xh. (14) 2_C[

H
m + 1+ Ti| “u”WZ.OO([O’T];W).

The discrete problem (14) has clearly a unique solutioProof. To simplify the notation, let us sefn(t) = u(t) —
since it is a system of linear ODE'’s. lqu(t), and en(t) = Iqu(t) — un(t). Note that we havel —
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Un = nh + &,. From the definition ofy, (t) we deduce that for As a result we have
all j 10,1, 2},
1 K
' ' e, Lo, 11;L) < CH* X+ DllUllwzco o, T1:w)-
I oy + H I e qo i) & L@ T WESS (0 TIW)
k+1 _ L
< cH™ |ullwz.o (10, 77:w)- To obtain a bound oey,, we uses, as a test function in

The equation that controks, is obtained by subtracting (18). Let us introduce the symmetric partaof

(14) from (5) where the test functions spAp: 1
as(X, y) = é(a(x, y) +agy, X)).

Yuh € Xh,
dey H H . : : " :
TR +a(en, vn) —bn(uy’, vy) Sinceas is symmetric and positive, we infer
L
dnn 1d
( dt ’ vh>L —aGm, vn). >t llenll? + as(en, en) +A(H)|1ef 12
SinceXy is invariant by the projectio®y and Py is linear, < I L llenlle +acen, nn) — 2as(en, 7n),
we infer < I L lenlle + lenlvlimnll
UE‘ = Un — Pyup + yas(€n, €n) + C,as(7h, Mh),
=Up— lgu— Py(uh— ) . .
where we have used the inequalit
= —€n+ Puen qualtty
_ _H
=& 2as(X, Y) < yas(X, X) +as(y, Y)/¥,
As a result, the equation that contrejscan be recast into the
form: for all v, in X, which is valid for any positive constamt. Hereafter,y de-

g notes a generic constant that can be chosen as small as needed
dén H . Hy _ andc, is a constant that depends pnThe value ofy andc,
< dt’ vh) L (e, vn) +bn (&, ) = may change on different occurrences. By choosirg 1/2,

we obtain
- (% Uh) —a(1nn, vh). (18)
L

dt d
@ grllenlIE +as(en, @) +21.(H) eI

Furthermorede,/dt = g” is controlled by: for alv, in Xp,

1
<2lenlllini I

@2, vn)L +acEy, vn) +b(e ", vi) = +c(enlv Il + Inliv i) (20)
— 2, v —am?, vn). (19)

Note that the ternfe,|v ||7n |1 in the right-hand side of (20) is
Let us derive some bounds on the initial data. It is cleahot controlled yet; it is the most critical one in this error an-
thaten(O) 0; furthermore, by using (18) at=0, we infer  alysis. It is at this point that the inf-sup inequality (7) plays its
EROIES ||ng)(0)||L+||nh(0)||V As a result, we have the role.
following error estimates dt= 0

a(eu, ¢n)
len (Ol =0, Calenlv < sup = 4 GsllenllL,
@ g K dnexn  lonllL
< o0 . .
ley” (Ol < cH ullwz qo,73:w) - sup — (&, ¢n) —a(el, ¢n) — bn(ell, off)
Now, we seek a bound dfe\” ||~ o.15:L)- We takee" as " gneXn lénllc
test fun(_:tion in (19). Owing to the coercivity property lnf, (n(l) on) — a(n, én)
we obtain: + sup +CsllenllL,
PhEXn llénllL
Eaneﬁbuﬁa(e;” ) +a(H) e 13 <l Il + 16 v+ I Il =+ nnlv

2 1 1
< U@+ P led

Since the bilinear forma is positive, we have

+Colef! b+ csllenllL,

IIL.
1
<c(leP L + 1€ 1o+ lenll + Il + [nlv).

By using the bound already obtained " ||, together with

&) £ ® ©)
” IE = 200m5" I+ I ) lleR” the triangular inequality, we infer

By using Lemma 2, we infer H
lenlv < lenlv + 1€, v,

1
el 1oy < CIE O + T2l R o)) < o1& I+ llenllL + L+ TYH¥Ullwz o Tw)-
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Coming back to (20), we have

%uanﬁ +ag(en, &)+ 2(H) e |12
< 2llenll i I+ CH2 Ul o 1w,
+¢ [lef I+ llenllc
+(@+ T H Ul wzso o Tw | Il
<cllenlle Ul + i)
+C A+ TH* UG 2o 0. 10w)

+yA(H) el 24 c, A(H) " mn 2.

By choosingy = 1, we obtain

d
gellenl +asen. en) +ACH) el I
< cllenlie H* ™ ullwzes o 1wy
+CL+AH)TH + T H UG 2o 0 10w

Owing to Lemma 2, we infer
T

Jenlf o + [ (Baten. )+ A D)
0

< c[ e @I + T?H* Ul oy

FTA+ () H AT HX U2 |

< CT[1+A(H) T H+TTH* M UIE oo (01w
which yields

lu—unlle oLy < H Y2,

where

_ 1/2
c1 < c[H+TA+2H) H+T)]"2 ullwzs o 1w)-

X
Now we derive an error estimate in the graph norm. By "

using the bound already obtained jex|v, we have
T T

[ 1t <c [[ie i+ heni?

0 0

+ @ T2HHUIZ 2 oy, |
[4pt] < cTH*[HA(H) "+ T)@A+A(H)"H+T)
FA D] Ul 200 013w

< CTH*[A(H) H2+ L+ D] Ul 200 011w

As aresult,

1/2

1 T
?/|U—Uh|\2/ < cHK,
0

where

H
C < [— +1+T} lullwz.c0 o, T1:w)

A(H)
The final estimate in the graph norm is obtained by combining
this bound and that in thie-norm. O

Note that for finite elements(H) ~ H. Hence, for finite
elements, the bound (17) is optimal in the graph norm. The
estimate (16) is identical to the one that could be obtained
by applying the counterpart of the discontinuous Galerkin
method to the present problem (see Johnson-Pitkaranta [11]).

Note also that for large tim&, ¢; = ¢(T) andc; =
O(T); that is, in the most unfavourable case, the error grows
linearly with respect td'.

5 Numerical implementation
5.1 The finite element framework

To illustrate the possibilities of the present method, we apply
it to a 2D advection model problem:

Wypvu="1, inge
Ujt=o0 = Uo, (22)

whereg : 2 c R? — R? is a smooth vector field satisfying
reasonable assumptions so tAat(-) is the generator of &°
contraction semi-group.

Let 7y be a quasi-uniform triangulation &2 composed
of simplexes. We usB; finite elements. The resolved scales
spaceXy is defined by

Xy = {vh € C°(2) | vnik € P1(K), VK € Tiy}

To defineX{!, we proceed locally as follows. We partition

each simpleX into 3 subsimplexes by inserting a node at the

barycenter oK. We defineyx as being the Lagrange basis

function of degree 1 associated with the barycentéf ¢éee

Fig. 1), and we set

h = ® spany).
KeTH

It is clear thatXy ﬂxﬁ =@ and the decompositioXy =
Xu @ X[ is L2 stable.

The bilinear form associated with the artificial viscosity is
defined by

bn(vp, wi) = ) mes{K)l/vaU,'j Vuw!.

KeTh K

e P; Nodes

+ P; Node on
sub-simplexes

Fig. 1. Representation of the subgrid spa¥f': a node is inserted at the
barycenter of simpleX andK is divided into 3P; subsimplexes
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Let us introduce the semi-noriw|y s = |8V vljo. It is . X S5
shown in Guermond [7, 8] that the following results hold: ava AVA
Theorem 2. If 8 is piecewise constant on each simpléxf ‘ AR
Th, there iscg > 0 independent oH, so that 24V YAYAVAVAN /,,’/ I

JoBV U _ g 8

inf (22) ek

=G
UHEXH yhexy |UHILplIVRII0
For a general vector field we have R

Theorem 3. If g is in C1($2)?, there arecs > 0 andc; > 0, Vay y
both independent dfl, so that for alluy € X4, AN /

(B up)n '
sup LBV e~ Gollunlo (23) e
mexe Tonllo

5.2 Time stepping O O | O G
The approximate solution is approximated in time by mean ‘
of a fully implicit time stepping strategy based on the second ‘ ‘

order, three level, backward differentiation formula
3u(t) — 4u(tk) +u(tk-1)
26t

The time stept is chosen small enough so that the time erro
is much smaller than the space error.

+O(5t?). AN R R

|

!

ou
(il =
at( )

5.3 Algebraic elimination of the subgrid d.o.f.

At each time step, the following linear system has to be solve

A B UH Fu

c o/ \ul) \#H
whereUy andUf! are the nodal values af; anduf;'. Note
that the matrixD is diagonal since the subgrid base functiong

have disjoint supports. As a resudb, is easily invertible. In
practice we eliminate the subgrid unknowns as follows.

(A—BDC) Uy =Fy—BDHN.

As a result, the dimension of the linear system to be solved I§
equal to dingXy). The sparsity of8D 1€ being exactly the |
same as that oft, the assembling oft — 8D 1C does not
pose more problems than that af The subgrid unknowns
are subsequently given by

Ul =07 1(F —cupy).

J.-L. Guermond

5.4 Model problem 1
The first problem we consider is

Ujt—0 = COY8rX) cog2ry),
My =0  in£2=]0,17
periodic boundary conditions.

(top centrg isovalues ofP; interpolate of solution, fottom centrg stabi-
lized approximate solutionp6tton) Galerkin solution

This problem falls within the general framework of contrac-
tion semi-groups with

L=L%%),
V ={ve L) | dwe LAR), vxo = vjx=t),
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e AAAVAVAVavaie
AVAVAVAVAVAV,y, 4%)
RO
AR

smaller than that introduced by the space approximation, we
have usedt = 103, Tests performed with smaller time steps
e have confirmed this choice. The total time of integration is
T =5; that is to say, the solution has crosgedive times.
Note that this test is quite demanding since for each wave-
length in thex direction there are only 5 to B, nodes; that
isAx/H ~5o0r6.

On Fig. 2, we have plotted the isovalues of the solution at
time T = 5: (top centre) the isovalues of tifg interpolate of
] the solution; (bottom centre) approximate solution obtained
by means of the subgrid stabilized Galerkin technique; (bot-
tom) isovalues of the Galerkin solution. Except for an overall
small phase error, the main feature of the stabilized solution
are very well preserved 8t = 5. It is clear that the Galerkin
solution has lost all the features of the exact solution.
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5.5 Model problem 2

The last problem we consider is the rotating cone in the disk:
Q2={(xy) eR?| /x2+y? <1},

' Ujt=o = eXp(—r —r0|*/(0.2)?),

B+pvu=0, ing,

whereB(x, y) =2 x (=Y, X), I = /Xx2+y2, andrg = (0.5,

0). The solution to this problem consists in a smooth cone ro-
tating about the origin at constant rotation speed. The period
of the solution is 1. This problem falls within t@° contrac-

tion semi-groups framework developed above with

A=BV(),
L = L%(),
V={vel?)|BVvelL?).

Owing to Theorem 3, the discrete inf-sup condition (7) is sat-
isfied withc; # 0.

The same time stepping as in the preceding test is used
with 8t = 1073, In Fig. 3, we have plotted th@; mesh that
we used in the computation (top) together with the isovalues
of the solution afl = 5: P; interpolate of the exact solution
(top centre), stabilized solution (bottom centre), Galerkin so-
lution (bottom). This figure shows clearly that the Galerkin
technique does not control the graph norm of the solution for
it generates very small scales throughout the domain as time
evolves. As expected, the stabilized technique preserves the
coherence of the cone in time.

6 Concluding remarks

Fig. 3. Cone problem. Solution af =5: (top) P17 mesh of domain, top

centrg ‘isovalues (_)ﬂPl interpolate of soluti(_)nx(ottom centrg stabilized A stabilized Galerkin approximation of linear contraction

approximate solution bpttom) Galerkin solution semi-groups of clas€® has been proposed. The main re-

sult of this paper is that the proposed technique yields an

andA = d4. By settingB8 = (1, 0), Theorem 2 ensures that the optimal approximation in the graph norm. The convergence

discrete inf-sup condition (7) is satisfied with= 0. proofs given in the present paper assume that the grid is quasi-
We have performed the numerical tests on a quasi-uniforraniform since uniform inverse inequalities have been used.

triangulation composed of 932 simplexés$ ¢ 1/20, 507P;  This hypothesis can be weakened by using the local meshsize

nodes). The mesh is shown in Fig. 2 (top). To guaranty thah the definition of the artificial diffusion bilinear forin, and

the error induced by the time stepping strategy is significantlpy proceeding as in Guermond [8].
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Though the importance of bubble functions for stabilizing 4.
PDE'’s has been recognized for some time (see the paper on
multiscale phenomena by [10], the method of the Residual- >
Free Bubbles by [2, 3, 5]), the importance of the inequality (7) ¢
together with the role of bubble functions to prove (7) seems

to be new, up to the author’s knowledge.

The generalization of the present technique to non-linear 7:

conservation laws is being investigated.
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