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Abstract. This paper presents a stabilized Galerkin technique
for approximating linear contraction semi-groups of classC0

in a Hilbert space. The main result of this paper is that this
technique yields optimal error estimates in the graph norm.
The key idea is twofold, first it consists in introducing an ap-
proximation space that is broken up into resolved scales and
subgrid scales so that the generator of the semi-group satisfies
a uniform inf-sup condition with respect to this decompos-
ition. Second, the Galerkin approximation is slightly modified
by introducing an artificial diffusion acting only on the sub-
grid scales.
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1 Introduction

The objective of the present work is to propose a framework
to stabilize Galerkin approximations of time dependent lin-
ear problems that do not possess a coercivity property (for
instance, linear hyperbolic equations).

More precisely, we consider a separable Hilbert spaceL
andA : D(A)⊂ L −→ L the generator of a contraction semi-
group of classC0 in L. Hereafter, we are concerned with
the following linear problem: Forf ∈ C1([0,+∞[; L) and
u0 ∈ D(A),Find u ∈ C1([0,+∞[; L)∩C0([0,+∞[; D(A)) s.t.

u|t=0= u0,
du
dt + Au= f, (1)

The main goal of the present paper is to present a stabi-
lized Galerkin technique for approximating (1). The main
feature of the proposed technique is that it yields opti-
mal convergence estimates in the graph norm. This result

∗ This research is partly supported by ASCI, CNRS-UPR 9029, Orsay,
France

seems to be new. To the author’s knowledge, the exist-
ing stabilization methods cannot be easily extended to time
dependent problems (Streamline Upwind Petrov Galerkin,
see e.g. Brooks-Hughes [4], or Galerkin Least Square, see
e.g. Hughes et al. [9], or residual Free Bubbles, see e.g.
Brezzi et al. [2]) without the framework of the discontin-
uous Galerkin technique (see e.g. Lesaint-Raviart [12] and
Johnson-Pitkäranta [11]).

2 The model problem

Given the Hille-Yosida theorem (see Brezis [1, p. 110] or
Yosida [14, p. 248]), sinceA is the generator of a contraction
semi-group,A is necessarily monotone:

∀v ∈ D(A), (Av, v)L ≥ 0, (2)

andA is maximal

∀ f ∈ L, ∃v ∈ D(A), v+ Av= f. (3)

Having in mind a Galerkin approximation of the evolu-
tion equation in (1) we want to introduce a bilinear form
a(u, v) = (Au, v)L . To this end, we setV = D(A) and we
equip V with the graph norm:‖v‖V = (‖v‖2L +‖Av‖2L)1/2.
Since the graph ofA is closed,V is a Banach space. Fur-
thermore, it is clear that equipped with the inner product
(u, v)L + (Au, Av)L , V is a Hilbert space. SinceD(A)= V
is dense inL, we are in the following classical situation
V ⊂ L ≡ L ′ ⊂ V ′. Hencea : V× L −→ R, as defined above,
is a continuous bilinear form. Furthermore, we introduce the
semi-norm|v|V = ‖Av‖L . From this definition we deduce

∀u ∈ V, sup
v∈L

a(u, v)

‖v‖L
= |u|V . (4)

This tautology will play a key role hereafter.
The problem (1) can be recast into the following equiva-

lent form: For f ∈ C1([0,+∞[; L) and u0 ∈ V, find u in
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C1([0,+∞[; L)∩C0([0,+∞[;V) so that{
(u(0), v)= (u0, v), ∀v ∈ L( du

dt , v
)

L
+a(u, v)= ( f, v)L , ∀v ∈ L, ∀t ≥ 0. (5)

Formally, by usingu as a test function in the equation
above and by integrating with respect to time, we obtain that
‖u(t)‖L is bounded. Furthermore, by deriving the quation
with respect to time and by usingut as a test function we ob-
tain that, providedu0 ∈ V, theL-norm of the time derivative,
‖ut(t)‖L , is bounded. As result

|u(t)|V = sup
v∈L

a(u, v)

‖v‖L
≤ ‖ut‖L +‖ f ‖L‖u(t)‖L

≤ c(t,u0, f, ft ).

That is to say, if the initial data is bounded inV (i.e. in the
Graph norm), thenu(t) is bounded in the graph norm for all
times. The ultimate goal of the present paper is to present
a Galerkin method that reproduces this property.

The key idea of the present work is twofold, first it con-
sists in introducing an approximation space that is broken up
into resolved scales and subgrid scales so that the bilinear
form a satisfies a discrete counterpart of the inf-sup condition
(4) with respect to this decomposition. Second, the Galerkin
approximation is slightly modified by introducing an artificial
diffusion that is restricted to the subgrid scales. The present
work follows an idea that is, to some extent, similar to the
spectral viscosity method proposed by Tadmor [13].

3 The discrete approximation

3.1 The discrete setting

We introduce a sequence of finite dimensional subspaces of
V, say(XH)0<H≤1, where the indexH denotes a positive pa-
rameter tending to zero.

The spaceXH is assumed to have the following approxi-
mation property: there areW, a dense subspace ofV, a linear
operatorIH ∈L(W, XH ) andk> 0, c> 0 so that

∀v ∈W, ‖v− IHv‖L +H‖v− IHv‖V ≤ cHk+1‖v‖W. (6)

From now on,c denotes a generic constant that does not de-
pend onH and the value of which may change on different
occurrences.

In general (4) has no uniform discrete counterpart. That is
to say, in general there isc(H ) so that

∀uH ∈ XH , sup
vH∈XH

a(uH, vH )/‖vH‖L ≥ c(H )|uH |V,

but eitherc(H ) is zero or depends on the meshsizeH . The
solution that we propose to cure to this problem consists in
enlarging the test space. Hence, we introduce a new sequence
of finite dimensional subspaces ofV, say(Xh)0≤h≤1, so that
there areca > 0 andcδ ≥ 0, independent of(H,h) so that

∀vh ∈ Xh, sup
φh∈Xh

a(vH , φh)

‖φh‖L
≥ ca|vH |V−cδ‖vh‖L . (7)

This hypothesis is the keystone of the theory to be developed
hereafter. Whencδ = 0, this inequality is the discrete coun-
terpart of the tautology (4). Since the algorithm that we shall
propose preserves the contraction property of the semi-group
at the discrete level, theL-norm of the approximate solution
uh(t)will always be bounded in time. Hence, we shall weaken
(4) by allowingcδ not to be zero in (7).

Furthermore, we assume thatXH ⊂ Xh, and there is a lin-
ear projection operatorPH : Xh −→ XH that is stable with
respect to theL-norm:

∃c> 0, ∀(H,h), ∀vh ∈ Xh ‖PHvh‖L ≤ c‖vh‖L . (8)

For further references, we denote

XH
h = (1− PH)Xh,

and for allvh in Xh we setvH = PHvh andvH
h = vh−vH ; that

is to say,

Xh = XH ⊕ XH
h .

Hereafter the two parametersH and h are assumed to be
equivalent:

c1H ≤ h≤ c2H. (9)

This hypothesis amounts to saying thatXH and Xh have
about the same interpolation properties, i.e.Xh is not signifi-
cantly larger thanXH , but Xh is large enough for (7) to be
satisfied uniformly.

SinceXh is a finite dimensional normed space, we shall
use an inverse inequality. For this purpose, we set

λ(H )−1= sup
vh∈Xh

|vh|V
‖vh‖L

. (10)

In the case of a finite element approximation,λ(H) is propor-
tional to the meshsizeH if the mesh is quasi-uniform (see e.g.
Girault–Raviart [6, p. 103]).

3.2 The artificial viscosity

Looking back at (7), we see that the subgrid scales (i.e. the
spaceXH

h ) have been introduced to help control the graph
norm of the resolved scales (i.e. the elements ofXH ). The
question we are left with now is: how can we control the
subgrid scales? The answer we propose is: control the graph
norm of the subgrid scales by means of an artificial diffu-
sion mechanism. Note that by grossly diffusing the subgrid
scales we shall not spoil the accuracy of the Galerkin method,
since by addingXH

h to XH we did not improve signifi-
cantly the approximation property ofXH (see the equivalence
inequality (9)).

More precisely, we define a bilinear formbh : XH
h ×

XH
h −→ R that satisfies the following continuity and coer-

civity properties: There are a semi-norm| · |b andcB > 0 so
that{

bh(v
H
h , v

H
h ) ≥ λ(H )|vH

h |2b,
bh(v

H
h , w

H
h ) ≤ cBλ(H )|vH

h |b |wH
h |b, (11)
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where the semi-norm| · |b is such that there are two constants
ce1 > 0 andce2 > 0 so that for allvH

h in XH
h we have

ce1|vH
h |V ≤ |vH

h |b ≤ ce2λ(H )
−1‖vH

h ‖L , (12)

The simplest choice forbh is

bh(v
H
h , w

H
h )= λ(H )(A vH

h , A wH
h )L ,

but other choices are possible. For instance, assume thatX
is a dense subpace ofV with continuous embedding. As-
sume that there is a symmetric positive bilinear form(·, ·)X on
X× X so that the semi-norm| · |X associated with this form
satisfies:

ce1|vH
h |V ≤ |vH

h |X ≤ ce2λ(H )
−1‖vH

h ‖L

for all vH
h in XH

h . This hypothesis means thatX andV are as-
sociated with differential operators of the same order. Then,
by assumingXh ⊂ X, one can set

bh(v
H
h , w

H
h )= λ(H )(vH

h , w
H
h )X.

We can illustrate these definitions on the scalar transport
equationdu/dt+β·∇ u= f inΩ. With suitable assumptions
on the vector fieldβ, we have

Au= β·∇ u,

L = L2(Ω),

V = {v ∈ L2(Ω) | β·∇ v ∈ L2(Ω), v|Γ− = 0},
where Γ − is the inflow boundary. By assumingXh ⊂
H1(Ω)⊂ V, the following two definitions are possible forbh:

bh(v
H
h , w

H
h )=

{
λ(H )

∫
Ω
(β·∇ vH

h )(β·∇ wH
h ),

λ(H )
∫
Ω
(∇vH

h ) · (∇wH
h ). (13)

The second model may be helpful in practice for two reasons:
First, it may help damping cross-wind oscillations when ap-
proximating very stiff problems; second, if in practiceβ is
time-dependent (though the present theory assumesβ to be
time-independent), this model is time-independent (hence the
assembling of the matrix is done only once).

3.3 The discrete problem

For the sake of simplicity we assume thatu0 is in W,
and we approximate the initial data byIHu0. The discrete
problem we consider hereafter consists in findinguh in
C1([0,+∞[; Xh) so that

uh|t=0= IHu0,(
duh
dt , vh

)
L
+a(uh, vh)+bh(uH

h , v
H
h )

= ( f, vh), ∀vh ∈ Xh. (14)

The discrete problem (14) has clearly a unique solution
since it is a system of linear ODE’s.

4 The error analysis

4.1 Preliminaries

In the following we shall need the following stability result.
Lemma 1. There iscb > 0 so that

∀vH
h ∈ XH

h , sup
wh∈Xh

bh(v
H
h , w

H
h )

‖wh‖L
≤ cb|vH

h |b. (15)

Proof. The stability hypothesis (8) onPH together with the
inverse stability property (12) yields

bh(v
H
h , w

H
h ) ≤ cBλ(H )|vH

h |b|wH
h |b,

≤ cBce2|vH
h |b‖wH

h ‖L ,

≤ cBce2|vH
h |b‖(1− PH)wh‖L ,

≤ cBce2‖1− PH‖|vH
h |b‖wh‖L .

The desired result follows readily. �
Let T be a strictly positive real number. We shall make use

of the following version of the Gronwall lemma, the proof of
which is left to the reader.
Lemma 2. Let φ be in W1,1((0, T);R) (the derivative be-
ing understood in the usual distribution sense) andψ be in
L1((0, T);R) so thatφ≥ 0,ψ ≥ 0. Assume there area, b≥ 0
two real numbers so thatφ(1)(t)+ψ ≤ aφ1/2+b, then

‖φ‖L∞(0,T )+‖ψ‖L1(0,T ) ≤ e

(
a2

4
T2+bT+φ(0)

)
.

4.2 The main convergence result

The main convergence result of this section is
Theorem 1. Assumeu is in W2,∞([0, T];W), then the dis-
crete solutionuh of (14) satisfies

‖u−uh‖L∞([0,T];L)+
 T∫

0

a(u−uh,u−uh)

1/2

≤ c1Hk+1/2, (16)

 1

T

T∫
0

‖u−uh‖2V
1/2

≤ c2Hk, (17)

where constantsc1 andc2 can be bounded from above as fol-
lows

c1 ≤ c

[
H+T

[
H

λ(H )
+1+T

]]1/2

‖u‖W2,∞([0,T];W),

c2 ≤ c

[
H

λ(H )
+1+T

]
‖u‖W2,∞([0,T];W).

Proof. To simplify the notation, let us setηh(t) = u(t)−
IH u(t), and eh(t) = IHu(t)−uh(t). Note that we haveu−
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uh = ηh+eh. From the definition ofηh(t) we deduce that for
all j ∈ {0,1,2},
‖η( j)

h ‖L∞([0,T];H )+H‖η( j)
h ‖L∞([0,T];V )

≤ cHk+1‖u‖W2,∞([0,T];W).

The equation that controlseh is obtained by subtracting
(14) from (5) where the test functions spanXh:

∀vh ∈ Xh,(
deh

dt
, vh

)
L

+a(eh, vh)−bh(u
H
h , v

H
h )

=
(

dηh

dt
, vh

)
L

−a(ηh, vh).

SinceXH is invariant by the projectionPH and PH is linear,
we infer

uH
h = uh− PHuh

= uh− IHu− PH(uh− IHu)

=−eh+ PHeh

=−eH
h .

As a result, the equation that controlseh can be recast into the
form: for all vh in Xh,(

deh

dt
, vh

)
L
+a(eh, vh)+bh(e

H
h , v

H
h )=

−
(

dηh

dt
, vh

)
L

−a(ηh, vh). (18)

Furthermore,deh/dt = e(1)h is controlled by: for allvh in Xh,

(e(2)h , vh)L +a(e(1)h , vh)+bh(e
(1)H
h , vH

h )=
− (η(2)h , vh)L −a(η(1)h , vh). (19)

Let us derive some bounds on the initial data. It is clear
that eh(0)= 0; furthermore, by using (18) att = 0, we infer
‖e(1)h (0)‖L ≤ ‖η(1)h (0)‖L +‖ηh(0)‖V . As a result, we have the
following error estimates att = 0{‖eh(0)‖L = 0,

‖e(1)h (0)‖L ≤ cHk‖u‖W2,∞([0,T];W).

Now, we seek a bound on‖e(1)h ‖L∞([0,T];L). We takee(1)h as
test function in (19). Owing to the coercivity property ofbh,
we obtain:

1

2

d

dt
‖e(1)h ‖2L +a(e(1)h ,e

(1)
h )+λ(H )‖eH(1)

h ‖2b
≤ (‖η(2)h ‖L +|η(1)h |V )‖e(1)h ‖L .

Since the bilinear forma is positive, we have

d

dt
‖e(1)h ‖2L ≤ 2(‖η(2)h ‖L +|η(1)h |V)‖e(1)h ‖L .

By using Lemma 2, we infer

‖e(1)h ‖2L∞([0,T];L) ≤ c(‖e(1)h (0)‖2L +T2‖ηh‖2W2,∞([0,T];V)).

As a result we have

‖e(1)h ‖L∞([0,T];L) ≤ cHk(1+T)‖u‖W2,∞([0,T];W).

To obtain a bound oneh, we useeh as a test function in
(18). Let us introduce the symmetric part ofa:

as(x, y)= 1

2
(a(x, y)+a(y, x)).

Sinceas is symmetric and positive, we infer

1

2

d

dt
‖eh‖2L +as(eh,eh)+λ(H )‖eH

h ‖2b
≤ ‖η(1)h ‖L‖eh‖L +a(eh, ηh)−2as(eh, ηh),

≤ ‖η(1)h ‖L‖eh‖L +|eh|V‖ηh‖L

+γas(eh,eh)+cγas(ηh, ηh),

where we have used the inequality

2as(x, y)≤ γas(x, x)+as(y, y)/γ,

which is valid for any positive constantγ . Hereafter,γ de-
notes a generic constant that can be chosen as small as needed
andcγ is a constant that depends onγ . The value ofγ andcγ
may change on different occurrences. By choosingγ = 1/2,
we obtain

d

dt
‖eh‖2L +as(eh,eh)+2λ(H )‖eH

h ‖2b
≤ 2‖eh‖L‖η(1)h ‖L

+c(|eh|V‖ηh‖L +‖ηh‖V‖ηh‖L). (20)

Note that the term|eh|V‖ηh‖L in the right-hand side of (20) is
not controlled yet; it is the most critical one in this error an-
alysis. It is at this point that the inf-sup inequality (7) plays its
role.

ca|eH |V ≤ sup
φh∈Xh

a(eH, φh)

‖φh‖L
+cδ‖eh‖L ,

≤ sup
φh∈Xh

−(e(1)h , φh)−a(eH
h , φh)−bh(eH

h , φ
H
h )

‖φh‖L

+ sup
φh∈Xh

−(η(1)h , φh)−a(ηh, φh)

‖φh‖L
+cδ‖eh‖L ,

≤ ‖e(1)h ‖L +|eH
h |V +‖η(1)h ‖L +|ηh|V

+cb|eH
h |b+cδ‖eh‖L ,

≤ c(‖e(1)h ‖L +|eH
h |b+‖eh‖L +‖η(1)h ‖L +|ηh|V).

By using the bound already obtained on‖e(1)h ‖L together with
the triangular inequality, we infer

|eh|V ≤ |eH |V +|eH
h |V,

≤ c(|eH
h |b+‖eh‖L + (1+T)Hk‖u‖W2,∞([0,T];W)).
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Coming back to (20), we have

d

dt
‖eh‖2L +as(eh,eh)+2λ(H )‖eH

h ‖2b
≤ 2‖eh‖L‖η(1)h ‖L +cH2k+1‖u‖2W2,∞([0,T];W)

+c′
[|eH

h |b+‖eh‖L

+(1+T)Hk‖u‖W2,∞([0,T];W)

] ‖ηh‖L ,

≤ c‖eh‖L(‖ηh‖L +‖η(1)h ‖L)

+c′(1+T)H2k+1‖u‖2W2,∞([0,T];W)

+γλ(H )|eH
h |2b+cγ λ(H )

−1‖ηh‖2L .
By choosingγ = 1, we obtain

d

dt
‖eh‖2L +as(eh,eh)+λ(H )‖eH

h ‖2b
≤ c‖eh‖L Hk+1‖u‖W2,∞([0,T];W)

+c′(1+λ(H )−1H+T)H2k+1‖u‖2W2,∞([0,T];W)
.

Owing to Lemma 2, we infer

‖eh‖2L∞([0,T];L)+
T∫

0

(as(eh,eh)+λ(H )‖eH
h ‖2b)

≤ c
[
‖eh(0)‖2L +T2H2k+2‖u‖2W2,∞([0,T];W)

+T(1+λ(H )−1H+T)H2k+1‖u‖2W2,∞([0,T];W)

]
≤ cT

[
1+λ(H )−1H+T

]
H2k+1‖u‖2W2,∞([0,T];W)

,

which yields

‖u−uh‖L∞([0,T];L) ≤ c1Hk+1/2,

where

c1 ≤ c
[
H+T(1+λ(H )−1H+T)

]1/2 ‖u‖W2,∞([0,T];W).

Now we derive an error estimate in the graph norm. By
using the bound already obtained on|eh|V , we have

T∫
0

|eh|2V ≤ c

T∫
0

[
|eH

h |2b+‖eh‖2L

+ (1+T)2H2k‖u‖2W2,∞([0,T];W)

]
,

[4pt] ≤ cTH2k
[
H(λ(H )−1+T)(1+λ(H )−1H+T)

+(1+T)2
] ‖u‖2W2,∞([0,T];W)

,

≤ cTH2k
[
λ(H )−2H2+ (1+T)2

] ‖u‖2W2,∞([0,T];W)
.

As a result, 1

T

T∫
0

|u−uh|2V
1/2

≤ c2Hk,

where

c2 ≤
[

H

λ(H )
+1+T

]
‖u‖W2,∞([0,T];W),

The final estimate in the graph norm is obtained by combining
this bound and that in theL-norm. �

Note that for finite elementsλ(H )∼ H . Hence, for finite
elements, the bound (17) is optimal in the graph norm. The
estimate (16) is identical to the one that could be obtained
by applying the counterpart of the discontinuous Galerkin
method to the present problem (see Johnson-Pitkäranta [11]).

Note also that for large timeT, c1 = O(T) and c2 =
O(T ); that is, in the most unfavourable case, the error grows
linearly with respect toT.

5 Numerical implementation

5.1 The finite element framework

To illustrate the possibilities of the present method, we apply
it to a 2D advection model problem:{

du
dt +β·∇ u= f, in Ω

u|t=0= u0, (21)

whereβ :Ω ⊂R2 −→ R2 is a smooth vector field satisfying
reasonable assumptions so thatβ·∇(·) is the generator of aC0

contraction semi-group.
Let TH be a quasi-uniform triangulation ofΩ composed

of simplexes. We useP1 finite elements. The resolved scales
spaceXH is defined by

XH = {vh ∈ C0(Ω) | vh|K ∈ P1(K ), ∀K ∈ TH }
To defineXH

h , we proceed locally as follows. We partition
each simplexK into 3 subsimplexes by inserting a node at the
barycenter ofK . We defineψK as being the Lagrange basis
function of degree 1 associated with the barycenter ofK (see
Fig. 1), and we set

XH
h = ⊕

K∈TH

span(ψK ).

It is clear thatXH ∩ XH
h = ∅ and the decompositionXh =

XH ⊕ XH
h is L2 stable.

The bilinear form associated with the artificial viscosity is
defined by

bh(v
H
h , w

H
h )=

∑
K∈TH

mes(K )1/2
∫
K

∇vH
h ·∇wH

h .

P1 Nodes

P1 Node on
sub−simplexes

Fig. 1. Representation of the subgrid spaceXH
h : a node is inserted at the

barycenter of simplexK and K is divided into 3P1 subsimplexes
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Let us introduce the semi-norm|v|1,β = ‖β·∇ v‖0. It is
shown in Guermond [7, 8] that the following results hold:
Theorem 2. If β is piecewise constant on each simplexK of
TH, there iscβ > 0 independent ofH, so that

inf
uH∈XH

sup
vh∈Xh

∫
Ω
(β·∇ uH)vh

|uH |1,β‖vh‖0 ≥ cβ. (22)

For a general vector fieldβ we have
Theorem 3. If β is in C1(Ω)2, there arecβ > 0 andcδ ≥ 0,
both independent ofH, so that for alluH ∈ XH,

sup
vh∈Xh

∫
Ω
(β·∇ uH)vh

‖vh‖0 ≥ cβ|uH |1,β−cδ‖uH‖0. (23)

5.2 Time stepping

The approximate solution is approximated in time by means
of a fully implicit time stepping strategy based on the second
order, three level, backward differentiation formula

∂u

∂t
(tk+1)= 3u(tk+1)−4u(tk)+u(tk−1)

2δt
+O(δt2).

The time stepδt is chosen small enough so that the time error
is much smaller than the space error.

5.3 Algebraic elimination of the subgrid d.o.f.

At each time step, the following linear system has to be solved(
A B

C D

)
·
(

UH

UH
h

)
=
(

FH

F H
h

)

whereUH andUH
h are the nodal values ofuH anduH

h . Note
that the matrixD is diagonal since the subgrid base functions
have disjoint supports. As a result,D is easily invertible. In
practice we eliminate the subgrid unknowns as follows.

(A−BD−1C) ·UH = FH −BD−1F H
h .

As a result, the dimension of the linear system to be solved is
equal to dim(XH). The sparsity ofBD−1C being exactly the
same as that ofA, the assembling ofA−BD−1C does not
pose more problems than that ofA. The subgrid unknowns
are subsequently given by

UH
h =D−1(F H

h −CUH).

5.4 Model problem 1

The first problem we consider is
u|t=0= cos(8πx) cos(2πy),
∂u
∂t + ∂u

∂x = 0, in Ω =]0,1[2,
periodic boundary conditions.

Fig. 2. Problem 1. Solution atT = 5: (top) P1 mesh of domainΩ =]0, 1[2,
(top centre) isovalues ofP1 interpolate of solution, (bottom centre) stabi-
lized approximate solution, (bottom) Galerkin solution

This problem falls within the general framework of contrac-
tion semi-groups with

L = L2(Ω),

V = {v ∈ L2(Ω) | ∂xv ∈ L2(Ω), v|x=0 = v|x=1},
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Fig. 3. Cone problem. Solution atT = 5: (top) P1 mesh of domain, (top
centre) isovalues ofP1 interpolate of solution, (bottom centre) stabilized
approximate solution, (bottom) Galerkin solution

andA= ∂x. By settingβ = (1,0), Theorem 2 ensures that the
discrete inf-sup condition (7) is satisfied withcδ = 0.

We have performed the numerical tests on a quasi-uniform
triangulation composed of 932 simplexes (H ∼ 1/20, 507P1
nodes). The mesh is shown in Fig. 2 (top). To guaranty that
the error induced by the time stepping strategy is significantly

smaller than that introduced by the space approximation, we
have usedδt = 10−3. Tests performed with smaller time steps
have confirmed this choice. The total time of integration is
T = 5; that is to say, the solution has crossedΩ five times.
Note that this test is quite demanding since for each wave-
length in thex direction there are only 5 to 6P1 nodes; that
is λx/H ≈ 5 or 6.

On Fig. 2, we have plotted the isovalues of the solution at
time T = 5: (top centre) the isovalues of theP1 interpolate of
the solution; (bottom centre) approximate solution obtained
by means of the subgrid stabilized Galerkin technique; (bot-
tom) isovalues of the Galerkin solution. Except for an overall
small phase error, the main feature of the stabilized solution
are very well preserved atT = 5. It is clear that the Galerkin
solution has lost all the features of the exact solution.

5.5 Model problem 2

The last problem we consider is the rotating cone in the disk:
Ω = {(x, y) ∈ R2 | √x2+ y2< 1},{

u|t=0= exp(−|r − r0|2/(0.2)2),
∂u
∂t +β·∇ u= 0, in Ω,

whereβ(x, y)= 2π× (−y, x), r =√x2+ y2, andr0 = (0.5,
0). The solution to this problem consists in a smooth cone ro-
tating about the origin at constant rotation speed. The period
of the solution is 1. This problem falls within theC0 contrac-
tion semi-groups framework developed above with

A= β·∇(·),
L = L2(Ω),

V = {v ∈ L2(Ω) | β·∇ v ∈ L2(Ω)}.
Owing to Theorem 3, the discrete inf-sup condition (7) is sat-
isfied withcδ 6= 0.

The same time stepping as in the preceding test is used
with δt = 10−3. In Fig. 3, we have plotted theP1 mesh that
we used in the computation (top) together with the isovalues
of the solution atT = 5: P1 interpolate of the exact solution
(top centre), stabilized solution (bottom centre), Galerkin so-
lution (bottom). This figure shows clearly that the Galerkin
technique does not control the graph norm of the solution for
it generates very small scales throughout the domain as time
evolves. As expected, the stabilized technique preserves the
coherence of the cone in time.

6 Concluding remarks

A stabilized Galerkin approximation of linear contraction
semi-groups of classC0 has been proposed. The main re-
sult of this paper is that the proposed technique yields an
optimal approximation in the graph norm. The convergence
proofs given in the present paper assume that the grid is quasi-
uniform since uniform inverse inequalities have been used.
This hypothesis can be weakened by using the local meshsize
in the definition of the artificial diffusion bilinear formbh and
by proceeding as in Guermond [8].
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Though the importance of bubble functions for stabilizing
PDE’s has been recognized for some time (see the paper on
multiscale phenomena by [10], the method of the Residual-
Free Bubbles by [2, 3, 5]), the importance of the inequality (7)
together with the role of bubble functions to prove (7) seems
to be new, up to the author’s knowledge.

The generalization of the present technique to non-linear
conservation laws is being investigated.
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