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This article presents a stabilized Galerkin technique for approximating linear contraction semi-groups of class
C0 in a Hilbert space. The main result of this article is that this technique yields an optimal approximation
estimate in the graph norm. The key idea is two-fold. First, it consists in introducing an approximation
space that is broken up into resolved scales and subgrid scales, so that the bilinear form associated with
the generator of the semi-group satisfies a uniform inf-sup condition with respect to this decomposition.
Second, the Galerkin approximation is slightly modified by introducing an artificial diffusion on the subgrid
scales. Numerical tests show that the method applies also to nonlinear semi-groups. c© 2001 John Wiley &
Sons, Inc. Numer Methods Partial Differential Eq 17: 1–25, 2001
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I. INTRODUCTION

In this article, we are concerned with the following abstract linear problem: For f ∈ C1([0,+∞[;
L) and u0 ∈ D(A),



Find u ∈ C1([0,+∞[;L) ∩ C0([0,+∞[;D(A)) so that

u|t=0 = u0,

du
dt

+Au = f,

(1.1)

whereL is a separable Hilbert space,A is the generator of a linear contraction semi-group of class
C0, andD(A) ⊂ L is the domain ofA. The Hille–Yosida theorem guarantees that this problem is
well posed. Hereafter, we shall think ofA as being a first-order differential operator; for instance
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Ω =]0, 1[2, A = ∂x1 , D(A) = {v ∈ L2(Ω), ∂x1v ∈ L2(Ω), v|x1=0 = 0}, L = L2(Ω). The goal
of the present article is to present a stabilized Galerkin technique for approximating (1.1). The
most novel feature of the proposed technique is that it yields optimal error estimates in the graph
norm of A.

Classical approximation theories based on the Galerkin technique yield approximate semi-
groups that are uniformly bounded in the norm ofL only (see for instance Brenner et al. [1]). It is
in general difficult to obtain optimal error bounds in the graph norm, although stability in norms,
which are intermediate between that of L and the graph norm, can sometimes be obtained. For
instance, in the case of scalar hyperbolic equations, the discontinuous Galerkin technique yields
stability in a mesh-dependent norm that is related to the graph norm (see Lesaint–Raviart [2] and
Johnson-Pitkäranta [3]). Also for this class of problems, another possibility consists in using the
Galerkin/Least-Square technique both in space and time as in Johnson et al. [4].

Another situation that we shall also consider in this article consists in the following problem:
For f ∈ C1([0,+∞[;L) and u0 ∈ X ,



Find u ∈ C1([0,+∞[;L) ∩ C0([0,+∞[;X) so that

u|t=0 = u0,

du
dt

+Au+ εDu = f,

(1.2)

where X is a separable Hilbert space that is dense and continuously embedded in D(A), D :
X −→ X ′ is linear, continuous, and

∃c > 0, ∀v ∈ X, 〈Dv, v〉 + (Av, v)L + ‖v‖2
L ≥ c‖v‖2

X . (1.3)

This situation corresponds to parabolic equations (see, e.g., Lions–Magenes [5, p. 253]). In
practice, one may think of D = −∆ : H1

0 (Ω) ⊂ D(A) −→ H−1(Ω). When ε is small or if
D is degenerate, the stability induced by the elliptic term εDu is not strong enough to guarantee
the Galerkin approximation to be free from spurious numerical wiggles. The second result of
the present article is that, by adopting the stabilized Galerkin technique tailored for solving (1.1),
one obtains an approximate solution of (1.2) that converges in the Graph norm of A uniformly
with respect to ε. Hence, contrary to the space-time Galerkin/Least-Square method, no stability
parameter needs to be tuned as a function of ε.

The theory developed in this article is based on the following two principles:
(i) The first principle is that any valuable internal approximation theory of etA should provide

some stability in the graph norm, because controlling the graph norm guarantees the approximate
solution to be free of spurious numerical wiggles.To this end, the theory presented herein involves
two approximation spaces XH and Xh, so that the triplet (Xh, XH , A) satisfies the following
discrete inf-sup condition:

∃ca, ∀(H,h), ∀uH ∈ XH , sup
vh∈Xh

(AuH , vh)L

‖vh‖L
≥ ca‖AuH‖L. (1.4)

It is shown in [6, 7] that, for a large class of linear PDE’s of first order, it is indeed possible to find
couples (Xh, XH) satisfying the discrete condition above, whereXh can be broken up as follows:
Xh = XH ⊕ XH

h , the decomposition being L-stable. The spaces XH and XH
h are referred to

as the resolved scales space and the subgrid scales space, respectively. The inequality (1.4) is
important, because it yields stability on the graph norm of the resolved scales of the approximate
solution.
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(ii) The second principle upon which the present work is based is that, for monotone operators,
the graph norm of the subgrid scales of the approximate solution can be controlled by means of
a small artificial diffusion mechanism; the control being provided by a simple energy argument.

The ideas of scale separation and subgrid viscosity are rooted in many works: subgrid modeling
and spectral viscosity (Smagorinsky [8], Tadmor [9]), the Nonlinear Galerkin Method (Foias–
Manley–Temam [10], Marion–Temam [11]), the stabilizing property of bubble functions (Arnold–
Brezzi–Fortin [12], Brezzi et al. [13], Baiocchi–Brezzi–Franca [14], Crouzeix–Raviart [15]).

The material of the article is organized as follows. In Section II, the abstract functional
framework is introduced; stability and quasi-optimal convergence results in the graph norm are
proved. The singular perturbation problem (1.2) is considered in Section III, and the results of
Section II are extended to this context. Section IV is devoted to examples and applications of the
present theory.

II. APPROXIMATION OF A MODEL PROBLEM

A. Model Problem

Let L be a real separable Hilbert space and (·, ·)L be its inner product. LetA : D(A) ⊂ L −→ L
be an unbounded linear operator. We assume that A is monotone:

∀v ∈ D(A), (Av, v)L ≥ 0; (2.1)

and A is maximal:

∀f ∈ L, ∃v ∈ D(A), v +Av = f. (2.2)

A first series of consequences of these hypotheses are as follows.

Lemma 2.1. If A : D(A) ⊂ L −→ L is monotone and maximal, then

(i) D(A) is dense in L.
(ii) A is closed (i.e. the graph of A is closed).

(iii) For all λ > 0, I + λA : D(A) −→ L is bijective and ‖(I + λA)−1‖L(L,L) ≤ 1.

Proof. See Brezis [16, p. 101] or Yosida [17, p. 246].
Furthermore, the Hille–Yosida theorem states that A is the generator of a contraction semi-

group of class C0 and, conversely, generators of such semi-groups are maximal monotone op-
erators (see Brezis [16, p. 110] or Yosida [17, p. 248]). In practice, this result implies the
following.

Theorem 2.2. For f ∈ C1([0,+∞[;L) and u0 ∈ D(A), the problem

ut=0 = u0,

du
dt

+Au = f,
(2.3)

has a unique u in C1([0,+∞[;L) ∩ C0([0,+∞[;D(A)).
Having in mind a Galerkin approximation of the evolution equation in (2.3), we want to

introduce a bilinear form a(u, v) = (Au, v)L. To this end, we set V = D(A) and we equip
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V with the graph norm: ‖v‖V = (‖v‖2
L + ‖Av‖2

L)1/2. Since the graph of A is closed, V is a
Banach space. Furthermore, it is clear that equipped with the inner product (u, v)L +(Au,Av)L,
V is a Hilbert space. Since D(A) = V is dense in L, we are in the following classical situation
V ⊂ L ≡ L′ ⊂ V ′. Furthermore, we introduce the semi-norm |v|V = ‖Av‖L. From this
definition, we deduce

∀u ∈ V, sup
v∈L

a(u, v)
‖v‖L

= |u|V . (2.4)

We introduce the symmetric part of a, as : V × V −→ R as follows:

∀(u, v) ∈ V × V, as(u, v) =
1
2
(a(u, v) + a(v, u)). (2.5)

It is clear that for all u in V we have a(u, u) = as(u, u) ≥ 0; we shall hereafter refer to this
property as a and as being monotone bilinear forms. We shall make use of the following classical
property.

Lemma 2.3. Let E be a vector space and x : E ×E −→ R be a symmetric monotone bilinear
form, then

∀(u, v) ∈ E × E, x(u, v) ≤ x(u, u)1/2x(v, v)1/2.

The problem (2.3) can be recast into the following equivalent form: For f ∈ C1([0,+∞[;L)
and u0 ∈ D(A), find u in C1([0,+∞[;L) ∩ C0([0,+∞[;D(A)) so that


(u(0), v) = (u0, v), ∀v ∈ L

(
du
dt
, v)L + a(u, v) = (f, v)L, ∀v ∈ L, ∀t ≥ 0.

(2.6)

Remark. Problem (2.6) is essentially a Petrov–Galerkin problem; that is, the solution space
and the space of the test functions are different; i.e., u(t) is expected to be in D(A), whereas the
test functions span L. The failure of classical discrete Galerkin techniques to approximate this
problem properly is rooted in this basic fact.

Remark. Note that since u is in C1([0,+∞[;L), the bound ‖Au‖L ≤ ‖du/dt‖L + ‖f‖L

provides an estimate on ‖Au‖L. The key idea of the present work is that good Galerkin approxi-
mations to this problem should yield a similar estimate.

B. Discrete Setting

We introduce two sequences of finite dimensional subspaces of V , say (XH)H and (Xh)h, where
indices 0 < H ≤ 1 and 0 < h ≤ 1 denote two positive parameters tending to zero. In the
applications described in §IV., we take h ≈ H/2.

The spaceXH is assumed to have the following approximation property: there areW , a dense
subspace of V , a linear operator IH ∈ L(W,XH) and k > 0, c > 0, so that

∀v ∈ W, ‖v − IHv‖L +H‖v − IHv‖V ≤ cHk+1‖v‖W . (2.7)

From now on, c denotes a generic constant that does not depend on (H,h) and the value of which
may change on different occurrences.
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The couple (XH , Xh) is assumed to satisfy the following discrete inf-sup condition: there is
ca > 0, independent of (H,h), so that

∀vH ∈ XH , sup
φh∈Xh

a(vH , φh)
‖φh‖L

≥ ca|vH |V . (2.8)

Furthermore, we assume that XH ⊂ Xh, and there is a linear projection operator PH : Xh −→
XH that is stable with respect to the L-norm:

∃c > 0, ∀(H,h), ∀vh ∈ Xh ‖PHvh‖L ≤ c‖vh‖L. (2.9)

For further references, we denote XH
h = (1 − PH)Xh, and for all vh in Xh we set vH = PHvh

and vH
h = vh − vH ; that is to say,

Xh = XH ⊕XH
h . (2.10)

We shall hereafter refer to XH and XH
h as the space of the resolved scales and the space of the

subgrid scales, respectively. The reader may think of PH as a filter.
In addition, we assume thatXh satisfies the following inverse stability property: there is ci > 0

so that

∀vh ∈ Xh, ‖vh‖V ≤ ciH
−1‖vh‖L. (2.11)

Remark. It is at this point that we implicitly assume thatA is a first-order differential operator.
Actually, in the case of a finite element approximation, (2.11) holds uniformly if the mesh is
quasi-uniform (see, e.g., Girault–Raviart [18, p. 103]), A is a first-order differential operator,
and c1h ≤ H ≤ c2h. The last constraint is equivalent to assuming that the dimension of XH is
a fraction of that of Xh. In other words, Xh is not significantly larger than XH , but it is large
enough for the discrete inf-sup inequality (2.8) to hold uniformly with respect to H and h.

Remark. The present theory can be extended to nonuniform meshes by proceeding as in
Guermond [7].

Remark. The reader is referred to Guermond [6, 7] for examples of P1 and P2 finite element
frameworks satisfying the hypotheses (2.7), (2.8), (2.9), and (2.11) for a large class of first-order
differential operators.

C. Discrete Problem

The subgrid scales have been introduced for the sole purpose of controlling the resolved scales by
means of the inf-sup inequality (2.8). By doing so, we are left with the problem of controlling the
subgrid scales. To this end, we introduce an artificial diffusion mechanism. More precisely, we
define a bilinear form bh : XH

h ×XH
h −→ R that satisfies the following continuity and coercivity

properties: There are a semi-norm | · |b and cB > 0 so that

bh(vH

h , v
H
h ) ≥ H|vH

h |2b ,
bh(vH

h , w
H
h ) ≤ cBH|vH

h |b |wH
h |b,

(2.12)

where the semi-norm | · |b is such that there are two constants ce1 > 0 and ce2 > 0 so that

∀vH
h ∈ XH

h , ce1|vH
h |V ≤ |vH

h |b ≤ ce2H
−1‖vH

h ‖L. (2.13)
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Example 1. The simplest choice for bh is bh(vH
h , w

H
h ) = H(AvH

h , Aw
H
h )L.

Example 2. Let X be a dense subspace of V , continuously embedded in V . Assume that
there is a semi-norm | · |X in X so that ce1|vH

h |V ≤ |vH
h |X ≤ ce2H

−1‖vH
h ‖L for all vH

h in
XH

h . Let (·, ·)X be the inner product associated with | · |X . By assuming Xh ⊂ X , one can set
bh(vH

h , w
H
h ) = H(vH

h , w
H
h )X .

Example 3. For the scalar transport equation du/ dt+β·∇u = f in Ω, with suitable assump-
tions on the vector field β, we have Au = β·∇u, L = L2(Ω) and V = {v ∈ L2(Ω) | β·∇ v ∈
L2(Ω), v|Γ− = 0}, where Γ− is the inflow boundary. By assuming Xh ⊂ H1(Ω) and Xh ⊂ V ,
the following two definitions are possible for bh:

bh(vH
h , w

H
h ) =



H

∫
Ω
(β·∇ vH

h )(β·∇wH
h ),

H

∫
Ω
(∇vH

h ) · (∇wH
h ).

(2.14)

The second model may be helpful in practice for two reasons. First, it may help dampening
cross-wind oscillations when approximating very stiff problems; second, if, in practice, β is
time-dependent (though the present theory assumes β to be time-independent), this model is
time-independent (hence, the assembling of the matrix is done only once).

Lemma 2.4. There is cb > 0 so that

∀vH
h ∈ XH

h , sup
wh∈Xh

bh(vH
h , w

H
h )

‖wh‖L
≤ cb|vH

h |b. (2.15)

Proof. The stability hypothesis (2.9) on PH together with the inverse stability property (2.13)
yields

bh(vH
h , w

H
h ) ≤ cBH|vH

h |b|wH
h |b

≤ cBce2|vH
h |b‖wH

h ‖L

≤ cBce2|vH
h |b‖(1 − PH)wh‖L

≤ cBce2‖1 − PH‖|vH
h |b‖wh‖L.

The desired result follows readily.
For the sake of simplicity we assume that u0 is in W , and we approximate the initial data by

IHu0. The discrete problem we consider hereafter consists in finding uh in C1([0,+∞[;Xh) so
that 


uh|t=0 = IHu0,

(
duh

dt
, vh)L + a(uh, vh) + bh(uH

h , v
H
h ) = (f, vh), ∀vh ∈ Xh.

(2.16)

Theorem 2.5. The discrete problem (2.16) has a unique solution.
Proof. (2.16) is a system of linear ODEs.

Remark. The subgrid stabilization technique proposed here has some similarities with the
spectral viscosity method proposed by Tadmor [9], Maday, Ould Kaber and Tadmor [19] to
stabilize spectral methods for nonlinear conservation laws.
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D. Error Analysis

Let T be a strictly positive real number.

Lemma 2.6. Let φ be in W 1,1((0, T ); R) (the derivative being understood in the usual distri-
bution sense) and ψ be in L1((0, T ); R) so that φ ≥ 0, ψ ≥ 0. Assume there are a, b ≥ 0 two
real numbers so that φ(1)(t) + ψ ≤ aφ1/2 + b, then

‖φ‖L∞(0,T ) + ‖ψ‖L1(0,T ) ≤ e (
a2

4
T 2 + bT + φ(0)).

Proof. By using the inequality xy ≤ γx2 + y2/4γ, which is valid for any positive constant
γ, we infer

dφ
dt

+ ψ ≤ a2T

4
+
φ

T
+ b,

which yields

d
dt

(φ(t)e−t/T ) + ψ(t)e−t/T ≤ e−t/T (
a2

4
T + b).

By integrating this inequality, we obtain for a.e. t in (0, T )

φ(t) +
∫ t

0
ψ(τ)e(t−τ)/T dτ ≤ φ(0)et/T + (

a2

4
T + b)

∫ t

0
e(t−τ)/T dτ,

φ(t) +
∫ t

0
ψ(τ) dτ ≤ φ(0)e+ (

a2

4
T + b)T (e− 1)

≤ e(
a2

4
T 2 + bT + φ(0)).

The proof is complete.
The main convergence result of this section is as follows.

Theorem 2.7. Assume u is inW 2,∞([0, T ];W ), then the discrete solution uh of (2.16) satisfies

‖u− uh‖L∞([0,T ];L) +

[∫ T

0
as(u− uh, u− uh)

]1/2

≤ c1(T, u)Hk+1/2, (2.17)

[
1
T

∫ T

0
‖u− uh‖2

V

]1/2

≤ c2(T, u)Hk, (2.18)

where constants c1 and c2 can be bounded from above as follows:

c1 ≤ c [H + T [1 + T ]]1/2 ‖u‖W 2,∞([0,T ];W ),

c2 ≤ c [1 + T ] ‖u‖W 2,∞([0,T ];W ).

Proof. To simplify the notations, let us set ηh(t) = u(t) − IHu(t), and eh(t) = IHu(t) −
uh(t). Note that we have u− uh = ηh + eh. From the definition of ηh(t), we deduce

∀j ∈ {0, 1, 2}, ‖η(j)
h ‖L∞([0,T ];H) +H‖η(j)

h ‖L∞([0,T ];V ) ≤ cHk+1‖u‖W 2,∞([0,T ];W ).
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The equation that controls eh is obtained by subtracting (2.16) from (2.6), where the test functions
span Xh:

∀vh ∈ Xh, (
deh

dt
, vh)L + a(eh, vh) − bh(uH

h , v
H
h ) = −(

dηh

dt
, vh)L − a(ηh, vh).

Since XH is invariant by the projection PH and PH is linear, we infer

uH
h = uh − PHuh

= uh − IHu− PH(uh − IHu)
= −eh + PHeh

= −eH
h .

As a result, the equation that controls eh can be recast into the form

∀vh ∈ Xh, (
deh

dt
, vh)L + a(eh, vh) + bh(eH

h , v
H
h ) = −(

dηh

dt
, vh)L − a(ηh, vh). (2.19)

Furthermore, deh/dt = e
(1)
h is controlled by

∀vh ∈ Xh, (e(2)h , vh)L + a(e(1)h , vh) + bh(e(1)Hh , vH
h ) = −(η(2)

h , vh)L − a(η(1)
h , vh). (2.20)

Let us derive some bounds on the initial data. It is clear that eh(0) = 0; furthermore, by using
(2.19) at t = 0, we infer ‖e(1)h (0)‖L ≤ ‖η(1)

h (0)‖L+‖ηh(0)‖V . As a result, we have the following
error estimates at t = 0: 


‖eh(0)‖L = 0,

‖e(1)h (0)‖L ≤ cHk‖u‖W 2,∞([0,T ];W ).

Now, we seek a bound on ‖e(1)h ‖L∞([0,T ];L). We take e(1)h as test function in (2.20). Owing to the
coercivity property of bh, we obtain

1
2

d
dt

‖e(1)h ‖2
L + as(e

(1)
h , e

(1)
h ) +H‖eH(1)

h ‖2
b ≤ (‖η(2)

h ‖L + |η(1)
h |V )‖e(1)h ‖L.

Since as is monotone, we have

d
dt

‖e(1)h ‖2
L ≤ 2(‖η(2)

h ‖L + |η(1)
h |V )‖e(1)h ‖L.

By using Lemma 2.6, we infer

‖e(1)h ‖2
L∞([0,T ];L) ≤ c(‖e(1)h (0)‖2

L + T 2‖ηh‖2
W 2,∞([0,T ];V )).

As a result, we have

‖e(1)h ‖L∞([0,T ];L) ≤ cHk(1 + T )‖u‖W 2,∞([0,T ];W ).

To obtain a bound on eh, we use eh as a test function in (2.19). Since as is symmetric and
monotone, owing to Lemma 2.3 we have

1
2

d
dt

‖eh‖2
L + as(eh, eh) +H‖eH

h ‖2
b ≤ ‖η(1)

h ‖L‖eh‖L + a(eh, ηh) − 2as(eh, ηh)

≤ ‖η(1)
h ‖L‖eh‖L + |eh|V ‖ηh‖L

+ γas(eh, eh) + cγas(ηh, ηh),
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where we have used the inequality 2xy ≤ γx2 + y2/γ, which is valid for any positive constant γ.
Hereafter, γ denotes a generic constant that can be chosen as small as needed and cγ is a constant
that depends on γ; the value of γ and cγ may change on different occurrences. By choosing
γ = 1/2, we obtain

d
dt

‖eh‖2
L + as(eh, eh) + 2H‖eH

h ‖2
b ≤ 2‖eh‖L‖η(1)

h ‖L

+ c(|eh|V ‖ηh‖L + ‖ηh‖V ‖ηh‖L). (2.21)

Note that the term |eh|V ‖ηh‖L on the right-hand side of (2.21) is not controlled yet; it is the most
critical one in this error analysis. It is a this point that the inf-sup inequality (2.8) plays its role:

ca|eH |V ≤ sup
φh∈Xh

a(eH , φh)
‖φh‖L

≤ sup
φh∈Xh

−(e(1)h , φh) − a(eH
h , φh) − bh(eH

h , φ
H
h )

‖φh‖L

+ sup
φh∈Xh

−(η(1)
h , φh) − a(ηh, φh)

‖φh‖L

≤ ‖e(1)h ‖L + |eH
h |V + ‖η(1)

h ‖L + |ηh|V + cb|eH
h |b

≤ c(‖e(1)h ‖L + |eH
h |b + ‖η(1)

h ‖L + |ηh|V ).

By using the bound already obtained on ‖e(1)h ‖L together with the triangular inequality, we infer

|eh|V ≤ |eH |V + |eH
h |V

≤ c(|eH
h |b + (1 + T )Hk‖u‖W 2,∞([0,T ];W )).

Coming back to (2.21), we have

d
dt

‖eh‖2
L + as(eh, eh) + 2H‖eH

h ‖2
b ≤ 2‖eh‖L‖η(1)

h ‖L + cH2k+1‖u‖2
W 2,∞([0,T ];W )

+ c′
[|eH

h |b + (1 + T )Hk‖u‖W 2,∞([0,T ];W )
] ‖ηh‖L

≤ 2‖eh‖L‖η(1)
h ‖L

+ c(1 + T )H2k+1‖u‖2
W 2,∞([0,T ];W )

+ γH|eH
h |2b + cγH

−1‖ηh‖2
L.

By choosing γ = 1, we obtain

d
dt

‖eh‖2
L + as(eh, eh) +H‖eH

h ‖2
b ≤ 2‖eh‖L‖η(1)

h ‖L

+ c(1 + T )H2k+1‖u‖2
W 2,∞([0,T ];W ).
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Owing to lemma 2.6, we infer

‖eh‖2
L∞([0,T ];L) +

∫ T

0
(as(eh, eh) +H‖eH

h ‖2
b)

≤ c
[
‖eh(0)‖2

L + T 2‖η(1)
h ‖2

L

+T (1 + T )H2k+1‖u‖2
W 2,∞([0,T ];W )

]
≤ cT [1 + T ]H2k+1‖u‖2

W 2,∞([0,T ];W ),

which yields

‖u− uh‖L∞([0,T ];L) ≤ cHk+1/2 [H + T (1 + T )]1/2 ‖u‖W 2,∞([0,T ];W ).

Now we derive an error estimate in the graph norm. By using the bound already obtained on
|eh|V , we have ∫ T

0
|eh|2V ≤ c

∫ T

0

[
|eH

h |2b + (1 + T )2H2k‖u‖2
W 2,∞([0,T ];W )

]
≤ cTH2k

[
(1 + T ) + (1 + T )2

] ‖u‖2
W 2,∞([0,T ];W )

≤ cTH2k(1 + T )2‖u‖2
W 2,∞([0,T ];W ).

As a result, [
1
T

∫ T

0
|u− uh|2V

]1/2

≤ cHk [1 + T ] ‖u‖W 2,∞([0,T ];W ).

The final estimate in the graph norm is obtained by combining this bound and that in the
L-norm.

Remark. The bound (2.18) is optimal in the graph norm.

Remark. The bound (2.17) is not optimal: a factor H1/2 is missing. Actually, by proceeding
as in Zhou [20], optimality can be recovered if the mesh underlying the approximation space Xh

satisfies special geometrical properties.

Remark. The estimate (2.17) is identical to the one that could be obtained by applying the
counterpart of the discontinuous Galerkin method to the present problem (see Johnson–Pitkäranta
[3]).

Remark. Note that for large time T , c1 = O(T ) and c2 = O(T ), that is, in the most
unfavorable case, the error grows linearly with respect to T .

Remark. When looking back at the proof of theorem 2.7, one observes that the stability
hypothesis (2.8) can be slightly weakened as follows: there are ca > 0 and cδ > 0, independent
of (H,h) so that

∀vh ∈ Xh, sup
φh∈Xh

a(vH , φh)
‖φh‖L

≥ ca|vH |V − cδ[‖vh‖L + as(vh, vh)1/2 + |vH
h |V ]. (2.22)
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III. SINGULAR PERTURBATION PROBLEM

This section is devoted to the analysis of problem (1.2). In terms of PDEs, this situation cor-
responds in practice to hyperbolic equations perturbed by a small elliptic term or a degenerate
elliptic operator.

A. Abstract Framework

In addition to the two Hilbert spaces, L and D(A) = V , already defined, we introduce a new
Hilbert spaceX that is dense and continuously embedded inD(A) = V (for the sake of simplic-
ity).

We introduce a continuous bilinear form d ∈ L(X × X,R), and we assume that there is a
semi-norm | · |X in X so that d(u, v) ≤ cd|u|X |v|X for all u and v in X . In practice, d can be a
degenerate elliptic operator. We also assume that a+ d is coercive with respect to the semi-norm
| · |X , that is,

∀v ∈ X, |v|2X ≤ as(v, v) + ds(v, v) = a(v, v) + d(v, v). (3.1)

We shall now consider the following problem: For f ∈ C1([0,+∞[;L) and u0 ∈ X , find u in
C1([0,+∞[;L) ∩ C0([0,+∞[;X) so that


(u(0), v) = (u0, v), ∀v ∈ L

(
du
dt
, v)L + a(u, v) + εd(u, v) = (f, v)L, ∀v ∈ X, ∀t ≥ 0,

(3.2)

where ε is a positive real number, which may be arbitrarily small. Hereafter, we assume that ε
is bounded from above by a constant; say ε ≤ 1. Furthermore, to ensure that problem (3.2) is
well-posed, we assume the following property: ‖v‖X ≤ c(‖v‖L + |v|X).

Theorem 3.1. Problem (3.2) has a unique solution.
Proof. Apply Lions’s theorem (cf. Lions–Magenes [5, p. 253]).

B. Discrete Setting

We introduceXH andXh, two finite dimensional subspaces ofX that satisfy the same hypotheses
as in Section II; namely, hypotheses (2.7), (2.22), (2.9), (2.11). For the sake of simplicity, we
assume that there is c > 0 so that

∀vh ∈ X, |vh|X ≤ cH−1‖vh‖L. (3.3)

Remark. In practice, the hypothesis (3.3) means that X and V control derivatives of the
same order. For instance, think of Ω =]0, 1[2, V = {v ∈ L2(Ω), ∂x1v ∈ L2(Ω), v|x1=0 = 0},
L = L2(Ω), a(u, v) =

∫
Ω v∂x1u, X = H1

0 (Ω), and d(u, v) =
∫
Ω ∇u · ∇v.

For the sake of simplicity, the initial data u0 is assumed to be in W , and we approximate
it by IHu0. The discrete problem that we shall consider hereafter consists in finding uh in
C1([0,+∞[;Xh) so that


uh|t=0 = IHu0,

(
duh

dt
, vh)L + a(uh, vh) + εd(uh, vh) + bh(uH

h , v
H
h ) = (f, vh), ∀vh ∈ Xh.

(3.4)
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Theorem 3.2. Problem (2.16) is well-posed.
Proof. It is a system of linear ODEs.

C. Error Analysis

The main convergence result of this section is as follows.

Theorem 3.3. Assume u is in W 2,∞([0, T ];W ), then the discrete solution uh of (3.4) satisfies

‖u− uh‖L∞([0,T ];L) +

[∫ T

0
as(u− uh, u− uh)

]1/2

+ ε1/2‖u− uh‖L2([0,T ];X) (3.5)

≤ c1(T, u)
[
Hk+1/2 + ε1/2Hk

]
,[

1
T

∫ T

0
‖u− uh‖2

V

]1/2

≤ c2(T, u)Hk, (3.6)

where constants c1 and c2 can be bounded from above as follows:

c1 ≤ c [H + T [1 + T ]]1/2 ‖u‖W 2,∞([0,T ];W ),

c2 ≤ c [1 + T ] ‖u‖W 2,∞([0,T ];W ).

Proof. As in the proof of theorem 2.7, set ηh(t) = u(t)−IHu(t), and eh(t) = IHu(t)−uh(t).
The equation that controls eh is obtained by subtracting (3.4) from (3.2), where the test functions

span Xh; that is, eh(0) = 0 and for all vh in Xh

(e(1)h , vh)L + a(eh, vh) + εd(eh, vh) + bh(eH
h , v

H
h ) = −(η(1)

h , vh)L (3.7)

− a(ηh, vh) − εd(ηh, vh),

where we have used uH
h = −eH

h . Likewise, the ODE that controls e(1)h is

(e(2)h , vh)L + a(e(1)h , vh) + εd(e(1)h , vh) + bh(eH(1)
h , vH

h ) = −(η(2)
h , vh)L

− a(η(1)
h , vh) − εd(η(1)

h , vh). (3.8)

First, we derive upper bounds for the initial data. By using (3.7) at t = 0 and owing to (3.3) we
obtain ‖e(1)h (0)‖L ≤ ‖η(1)

h (0)‖L + |η(1)
h (0)|V + cdεH

−1|η(1)
h (0)|X . That is to say,


‖eh(0)‖L = 0,

‖e(1)h (0)‖L ≤ c(1 + εH−1)Hk‖u‖W 2,∞([0,T ];W ).

Second, we bound from above the L-norm of the time-derivative of eh. By using e(1)h as test
function in (3.8), we obtain

1
2

d
dt

‖e(1)h ‖2
L + (1 − ε

2
)as(e

(1)
h , e

(1)
h ) +

ε

2
|e(1)h |2X +H‖eH(1)

h ‖2
b ≤ cdε|η(1)|X |e(1)h |X

+ (‖η(2)
h ‖L + |η(1)

h |V )‖e(1)h ‖L.
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Since ε ≤ 1 and as is monotone, we infer

1
2

d
dt

‖e(1)h ‖2
L + (

1
2

− γ)ε|e(1)h |2X +H‖eH(1)
h ‖2

b ≤ cγε|η(1)
h |2X

+ (‖η(2)
h ‖L + |η(1)

h |V )‖e(1)h ‖L.

We choose γ = 1/4 and apply Lemma 2.6

‖e(1)h ‖2
L∞([0,T ];L) ≤ c[‖e(1)h (0)‖2

L + T 2(‖η(2)
h ‖2

L + |η(1)
h |2V ) + εT |η(1)

h |2X)]

≤ c(1 + T 2 + ε2H−2)H2k‖u‖2
W 2,∞([0,T ];W ).

As a result, we have

‖e(1)h ‖L∞([0,T ];L) ≤ cHk(1 + T + εH−1)‖u‖W 2,∞([0,T ];W ).

Third, we derive a bound on ‖eh‖L by using eh as test function in (3.7). Owing to Lemma 2.3,
we deduce

1
2

d
dt

‖eh‖2
L +

1
2
as(eh, eh) +

ε

2
|eh|2X +H‖eH

h ‖2
b

≤ ‖η(1)
h ‖L‖eh‖L + εcd|ηh|X |eh|X + a(eh, ηh) − 2as(eh, ηh)

≤ ‖η(1)
h ‖L‖eh‖L + |eh|V ‖ηh‖L + γε|eh|2X + cγε|ηh|2X

+ γas(eh, eh) + cγas(ηh, ηh)

≤ ‖η(1)
h ‖L‖eh‖L + |eh|V ‖ηh‖L + γε|eh|2X + γas(eh, eh)

+ cγ(ε|ηh|2X + |ηh|V ‖ηh‖L).

By choosing γ = 1/4, we obtain

d
dt

‖eh‖2
L +

1
2
as(eh, eh) +

ε

2
|eh|2X + 2H‖eH

h ‖2
b ≤ 2‖η(1)

h ‖L‖eh‖L + 2|eh|V ‖ηh‖L (3.9)

+ c(εH2k +H2k+1)‖u‖2
W 2,∞([0,T ];W ).

Now, the critical step consists in finding a bound from above on |eh|V . To this end, we shall use
(2.22) and we shall investigate two possibilities: either ε ≤ H or ε > H .
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First case: ε ≤ H . (Note that this case is the most important one in practical applications.)
The weakened stability hypothesis (2.22) yields

ca|eH |V ≤ sup
φh∈Xh

a(eH , φh)
‖φh‖L

+ cδ[‖eh‖L + |eH
h |V + as(eh, eh)1/2]

≤ sup
φh∈Xh

−(e(1)h , φh) − a(eH
h , φh) − εd(eh, φh) − bh(eH

h , φ
H
h ) − (η(1)

h , φh)
‖φh‖L

+ sup
φh∈Xh

−a(ηh, φh) − εd(ηh, φh)
‖φh‖L

+ cδ[‖eh‖L + |eH
h |V + as(eh, eh)1/2]

≤ ‖e(1)h ‖L + |eH
h |V + ‖η(1)

h ‖L + |ηh|V + cb|eH
h |b

+ εcd(|eh|X + |ηh|X) sup
φh∈Xh

|φh|X
‖φh‖L

+ cδ[‖eh‖L + |eH
h |V + as(eh, eh)1/2]

≤ c(‖e(1)h ‖L + |eH
h |b + ‖η(1)

h ‖L + |ηh|V + εH−1(|eh|X + |ηh|X)

+ ‖eh‖L + as(eh, eh)1/2)

≤ c(‖e(1)h ‖L + |eH
h |b + εH−1|eh|X + ‖eh‖L + as(eh, eh)1/2

+Hk‖u‖W 2,∞([0,T ];W )).

By using the bound already obtained on ‖e(1)h ‖L together with the triangular inequality and the
hypothesis ε ≤ H , we infer

|eh|V ≤ |eH |V + |eH
h |V

≤ c(|eH
h |b + εH−1|eh|X + ‖eh‖L + as(eh, eh)1/2 + (1 + T )Hk‖u‖W 2,∞([0,T ];W )).

Coming back to (3.9), we have

d
dt

‖eh‖2
L +

1
2
as(eh, eh) +

ε

2
|eh|2X + 2H‖eH

h ‖2
b

≤ 2‖eh‖L‖η(1)
h ‖L + c(εH2k + (1 + T )H2k+1)‖u‖2

W 2,∞([0,T ];W )

+ c′
[
|eH

h |b + εH−1|eh|X + ‖eh‖L + as(eh, eh)1/2
]
‖ηh‖L

≤ c‖eh‖L(‖η(1)
h ‖L + ‖ηh‖L) + c′(εH2k + (1 + T )H2k+1)‖u‖2

W 2,∞([0,T ];W )

+ γH|eH
h |2b + γε|eh|2X + γas(eh, eh) + cγ(1 + εH−2 +H−1)‖ηh‖2

L.

By choosing γ = 1/4, we obtain

d
dt

‖eh‖2
L +

1
4
as(eh, eh) +

ε

4
|eh|2X +H‖eH

h ‖2
b ≤ c‖eh‖L(‖η(1)

h ‖L + ‖ηh‖L)

+ c′[εH2k + (1 + T )H2k+1]‖u‖2
W 2,∞([0,T ];W ).
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Owing to Lemma 2.6, we infer

‖eh‖2
L∞([0,T ];L) +

∫ T

0
[as(eh, eh) +H‖eH

h ‖2
b + ε|eh|2X ]

≤ c
[
‖eh(0)‖2

L + T 2(‖η(1)
h ‖2

L + ‖ηh‖2
L)

+T (εH2k + (1 + T )H2k+1)‖u‖2
W 2,∞([0,T ];W )

]
≤ cT [1 + T ] (H2k+1 + εH2k)‖u‖2

W 2,∞([0,T ];W ).

Second case: ε > H . In this case, it is not necessary to control |eh|V by means of the discrete
inf-sup condition, since there is enough stability in the L-norm and X semi-norm to control this
term. More precisely, we have

2|eh|V ‖ηh‖L ≤ ‖eh‖V ‖ηh‖L

≤ c‖eh‖X‖ηh‖L

≤ c(‖eh‖L + |eh|X)‖ηh‖L

≤ c‖eh‖L‖ηh‖L + γε|eh|2X + cγH
−1‖ηh‖2

L.

Now coming back to (3.9) and by choosing γ = 1/4, we deduce

d
dt

‖eh‖2
L +

1
2
as(eh, eh) +

ε

4
|eh|2X + 2H‖eH

h ‖2
b

≤ c‖eh‖L(‖η(1)
h ‖L + ‖ηh‖L) + c(εH2k +H2k+1)‖u‖2

W 2,∞([0,T ];W ).

By applying Lemma 2.6, we infer

‖eh‖2
L∞([0,T ];L) +

∫ T

0
[as(eh, eh) +H‖eH

h ‖2
b + ε|eh|2X ]

≤ c
[
‖eh(0)‖2

L + T 2(‖η(1)
h ‖2

L + ‖ηh‖2
L)

+T (εH2k +H2k+1)‖u‖2
W 2,∞([0,T ];W )

]
≤ cT [1 + T ] (H2k+1 + εH2k)‖u‖2

W 2,∞([0,T ];W ).

In both cases, we infer

‖u− uh‖L∞([0,T ];L) +

[∫ T

0
as(u− uh, u− uh)

]1/2

+ ε1/2‖u− uh‖L2([0,T ];X)

≤ c(Hk+1/2 + ε1/2Hk) [H + T (1 + T )]1/2 ‖u‖W 2,∞([0,T ];W ).

To obtain the error estimate in the graph norm (3.6), we proceed by looking alternatively at the
case ε ≤ H and the case ε > H .

First case: ε ≤ H . By using the bound already obtained on |eh|V , we deduce

H|eh|2V ≤ c(H|eH
h |2b + ε|eh|2X + as(eh, eh) +H‖eh‖2

L

+H(1 + T )2H2k‖u‖2
W 2,∞([0,T ];W )).
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As a result, we infer

H

∫ T

0
|eh|2V ≤ c

∫ T

0

[
H|eH

h |2b + ε|eh|2X + as(eh, eh)
]

+HT (‖eh‖2
L∞([0,T ];L) + (1 + T )2H2k‖u‖2

W 2,∞([0,T ];W )),

≤ [1 +HT ]T (1 + T )H2k+1‖u‖2
W 2,∞([0,T ];W ).

The desired result follows readily.
Second case: ε ≥ H .∫ T

0
|eh|2V ≤ c(T‖eh‖2

L∞([0,T ];L) +
1
ε

∫ T

0
ε|eh|2X)

≤ cT (1 + T )(H2k+1 + εH2k)(T +
1
ε
)‖u‖2

W 2,∞([0,T ];W )

≤ cT (1 + T )2H2k(1 +
H

ε
)‖u‖2

W 2,∞([0,T ];W )

≤ cT (1 + T )2H2k‖u‖2
W 2,∞([0,T ];W ).

This completes the proof.

IV. NUMERICAL IMPLEMENTATION

A. P1 and P2 Interpolations

We describe in this section two 2D finite element settings that we use in our numerical tests. For
the sake of simplicity, we assume hereafter that Ω is a polygon and TH is a regular triangulation
of Ω composed of affine simplexes, (TH).

Two-Level P1 Interpolation Assuming that we shall deal with m-valued vector functions, we
define a P1 resolved scale space, XH , by

XH = {vH ∈ H1(Ω)m | vH|TH
∈ P1(TH)m, ∀TH ∈ TH}. (4.1)

To build the subgrid scale space, we proceed as follows. From each triangle TH ∈ TH , we create
4 new triangles by connecting the middle of the 3 edges of TH . We set h = H/2 and denote
by Th the resulting new triangulation. For each macro-triangle TH , we denote by P the set of
functions that are continuous on TH , piecewise P1 on each subtriangle of TH , and vanish at the
three vertices of TH . Now we set

XH
h = {vH

h ∈ H1(Ω)m | vH
h|TH

∈ P
m, ∀TH ∈ TH}. (4.2)

It is clear that Xh has the following simple characterization:

Xh = {vh ∈ H1(Ω)m | vh|Th
∈ P1(Th)m, ∀Th ∈ Th}. (4.3)

We shall call the couple (XH , Xh) the two-level P1 approximation (see Fig. 1).

Two-Level P2 Interpolation Now we build the P2 extension of the two-level P1 setting. First,
we define the P2 finite element space for the resolved scales:

XH = {vH ∈ H1(Ω)m | vH|TH
∈ P2(TH)m, ∀TH ∈ TH}. (4.4)
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FIG. 1. Two examples of admissible finite elements: (left) resolved scale finite element; (right) subgrid
scale finite element. Top: two-level P1 finite element; bottom: two-level P2 finite element.

To define the subgrid scale space, we again set h = H/2, and we denote by Th the triangulation
that is obtained by dividing each triangle of TH into four subtriangles. For each triangle Th in the
new triangulation Th, we denote by ψ1, ψ2, ψ3 the three P2 nodal functions associated with the
middle of each edges of Th. We define the subgrid scale space by

XH
h = {vH

h ∈ H1(Ω)m | vH
h|Th

∈ span(ψ1, ψ2, ψ3)m, ∀Th ∈ Th}. (4.5)

Xh has the following simple characterization:

Xh = {vh ∈ H1(Ω)m | vh|Th
∈ P2(Th)m, ∀Th ∈ Th}. (4.6)

We shall hereafter refer to the couple (XH , Xh) as the two-level P2 approximation (see also
Fig. 1).

Subgrid Viscosity In all the numerical tests reported hereafter, the bilinear form associated
with the subgrid viscosity is defined by

bh(vH
h , w

H
h ) = cb

∑
Th∈Th

mes(Th)1/2
∫

Th

∇vH
h · ∇wH

h , (4.7)

where cb is a fixed parameter.

B. Convergence Tests

To illustrate the efficiency of the present method, we make convergence tests in Ω =]0, 1[ on the
model problem 


u|t=0 = sin(2πxα),
∂u

∂t
+
∂u

∂x
= 0,

(4.8)

with periodic boundary conditions. To avoid superconvergence phenomena, we use random
quasi-uniform grids. The subgrid parameter cb in (4.7) is set to 0.1; O(1) variations around this
value do not change the conclusions we shall draw. The march in time is done by means of a
fully implicit time-stepping strategy based on the second-order, 3-level, backward differentiation
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formula. In each case, the time-step is chosen small enough to guarantee that the error in time is
much smaller than the error in space.

We use P1 finite elements, and we make tests with α = 0.6 and α = 0.8. In both cases, u0 is
in H1(Ω). The results at time t = 1 are shown in Fig. 2.

It is clear that, in the two cases considered, the convergence in the L2 norm is monotone for
the stabilized 2-level P1 solution, whereas it is erratic for the P1 Galerkin solution. Note also that
the Galerkin solution does not converge in the H1 norm, whereas the stabilized one does, though
slowly, because the exact solution is not in H2(Ω).

To further illustrate the convergence problem in the Graph norm of the Galerkin solution, we
show in Fig. 3 the two-level P1 stabilized solution and the P1 Galerkin solution on three different
grids: h = 1/60, h = 100, and h = 1/200. For all grids, the Galerkin solution is plagued
by oscillations that spread all over the computational domain, whereas the stabilized solution is
smooth everywhere except close to the point where the space derivative of the solution is singular.

To give an idea on the efficiency of the proposed method on 2D problems, we now solve (4.8)
in Ω =]0, 1[2, still with periodic boundary conditions. The mesh is composed of 3728 triangles
and of 1945 P1 nodes; the mesh size is approximatively h ≈ 1/40. The results at time t = 1 are
shown in Fig. 4. As in 1D, the Galerkin solution oscillates widely throughout the domain. The
2-level P1 stabilized solution is smooth, and the error is localized in the region where the solution
is rough.

C. Convergence Tests with Rough Data

The tests performed above show that the subgrid stabilization technique can efficiently dampen
oscillations that otherwise propagate throughout the domain. However, when the solution, or one
of its derivative, is rough, the stabilization technique cannot control the highly localized Gibbs
phenomenon. To eliminate these residual, unwelcome oscillations, we introduce a subgrid shock

FIG. 2. Convergence tests; L2 norm and H1 norm of error as a function mesh size h: (solid line) the two-level
P1 solution; (dashed line) the P1 Galerkin solution. Left: u0 = sin(2πx0.6); right:u0 = sin(2πx0.8).
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FIG. 3. Convergence tests with u0 = sin(2πx0.6); top: 2-level P1 stabilized solution; bottom: P1 Galerkin
solution; from left to right: h = 1/60, h = 1/100, h = 1/200.

capturing form as follows:

ch(uH
h , vh, wh) = csc

∑
Th∈T2h

mes(Th)1/2 ‖∇uH
h ‖0,Th

‖∇uh‖0,Th

∫
Th

∇vh · ∇wh, (4.9)

where we recall that uH
h = (1 − PH)uh is the subgrid scale (i.e., the fluctuating part) of uh.

Basically, this term is O(Hk+1) when the solution is smooth; as a result, it does not modify
the convergence properties of the algorithm. The approximate problem is now: Find uh in

FIG. 4. Advection problem in a square, with u0 = sin(2πx0.6); left: P1 interpolate of the exact solution;
middle: 2-level P1 stabilized solution; right: P1 Galerkin solution.
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C1([0,+∞];Xh) so that


uh|t=0 = IHu0,

(
duh

dt
, vh)L + a(uh, vh) + εd(uh, vh) + bh(uH

h , v
H
h )

+ch(uH
h , uh, vh) = (f, vh), ∀vh ∈ Xh.

(4.10)

We test the new formulation on the 1D advection problem (4.8) in Ω =]− 1,+1[ with initial data
proposed in [21]:

u0(x) =




e−300(x+0.7)2 if |x+ 0.7| ≤ 0.25,

1 if |x+ 0.1| ≤ 0.2,(
1 −

(
x− 0.6

0.2

)2
)1/2

if |x− 0.6| ≤ 0.2,

0 otherwise.

(4.11)

The computation is made with 2-level P1 finite elements and 2-level P2 finite elements on three
different grids, respectively composed of 50, 100, and 200 nodes. The stabilizing coefficients
are cb = 0.05, csc = 0.05. The results at time t = 4 are shown in Fig. 5. For both the P1 and
P2 approximations, the convergence is monotone. As expected, the 2-level P2 approximation
converges faster than the 2-level P1 solution.

FIG. 5. Advection problem; top: P1 approximation; bottom: P2 approximation; left: 50 nodes; center:
100 elements; right: 200 nodes.
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D. Degenerate Parabolic Problem

To test the capability of the proposed method to deal with degenerate parabolic problems, we
consider a new class of convection-diffusion equations proposed in a series of articles by Kurganov
and Rosenau (see [22] and the literature cited therein). ‘‘The novel feature of these equations is
that large amplitude solutions develop spontaneous discontinuities, while small solutions remain
smooth at all times.’’

Let us consider the following problem in Ω =] − 3, 3[:


u|t=0 =




1.2 if − 3 ≤ x < 0,

−1.2 if 0 < x ≤ 3,

u(±3, t) = ∓1.2 for 0 ≤ t,

∂tu+ ∂xu
2 − ∂x

(
∂xu√

1 + (∂xu)2

)
= 0.

(4.12)

The problem is solved, up to time t = 1.5, by using formulation (4.10) with P1 finite elements
on three grids: h = 6/100, h = 6/200, and h = 6/400. The results are shown in Fig. 6. Quite
surprisingly, the Galerkin solution is not plagued by spurious oscillations, but converges to a
nonentropic solution. To illustrate the insensitivity of the method to variations on the stabilizing
parameters, we make two sets of computations. In the first set, we use cb = 0.2, csc = 0.2;
and in the other set, we use cb = 0.5, csc = 0.1. The results shown in Fig. 6 demonstrate that
the stabilized solution converges and does not depend too much on the choice of the stabilizing
parameters.

E. The Rayleigh–Taylor Instability

We now illustrate the capability of the method to solve very stiff two-dimensional problems by
testing it on a Rayleigh–Taylor flow problem.

We are interested in solving the incompressible Navier–Stokes problem with variable density
in Ω =] − 1

2 ,
1
2 [×] − 2, 2[. We impose symmetry on x = 0, periodicity on x = ±1

2 , and the
no-slip boundary condition on y = ±2. We consider two fluids of constant density, the ratio
between the densities being 7. The heavy fluid is above the light one, and both fluids are at rest

FIG. 6. Degenerate parabolic problem on three grids: h = 6/100, h = 6/200, and h = 6/400; left: P1

Galerkin solution; center: 2-level P1 approximation with cb = csc = 0.2; right: 2-level P1 approximation
with cb = 0.5, csc = 0.1.
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at the initial time. It is almost impossible to approximate the solution to this problem using the
Galerkin technique alone. The problem is solved by means of mixed P2/P1 finite elements: P2
for velocity and density, P1 for pressure (see [23] for more details on this problem). We stabilize
the computation on the density equation by using the 2-level P2, shock-capturing subgrid viscosity
technique described above. To initiate the instability, the interface, initially set at y = 0, is slightly
deformed with a sine law whose amplitude is 1% of the domain width. The Reynolds number,
defined byRe = ρmind

3/2g1/2/µ, where d is the width of the domain and g the gravity constant,
is Re = 1000. In Fig. 7, we show the time evolution of the interface between the two fluids at
times: 1, 1.5, 2, 2.5, 3, 3.5, 3.75, 4, and 4.25. It is clear that the interface remains sharp during
the time evolution.

F. Shock Tube Problem

We finish this article by illustrating the capability of the proposed stabilization method to solve
nonlinear conservation laws.

We treat the shock tube problem known in the literature as the Lax problem (see [21] for other
details). The velocity, the pressure, the density, and the total energy are denoted by u, p, ρ, and
e, respectively. By setting φ = (ρ, ρu, e), the Euler equations read



φt=0 = φ0, for − ∞ < x < +∞
∂tφ+ ∂xf(φ) = 0, for − ∞ < x < +∞, and 0 < t,

FIG. 7. Rayleigh–Taylor instability; Re = 1000; density ratio 7. The initial amplitude is 1% of the
wavelength. The interface is shown at times: 1, 1.5, 2, 2.5, 3, 3.5, 3.75, 4, and 4.25 (density contours
2 ≤ ρ ≤ 4.).
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where f(φ) = (ρu, ρu2 + p, ue+ pu) and p = (γ − 1)(e− 1
2ρu

2) with γ = 1.4. We solve this
problem in Ω =] − 5,+5[ with initial data




ρ0 =




0.445 if x < 0

0.5 if 0 < x

u0 =




0.698 if x < 0

0 if 0 < x

p0 =




3.528 if x < 0

0.571 if 0 < x

The results obtained by means of the 2-level P1 stabilized technique on three different grids
are shown in Fig. 8. The stabilizing parameters are cb = 0.5, csc = 0.3. The approximate
solution converges to the entropic solution. Similar results have been obtained with the 2-level
P2 approximation.

FIG. 8. Lax problem; 2-level P1 approximation; top: 100 nodes; middle: 200 nodes; bottom: 400 nodes;
(left) density; (center) velocity; (right) pressure.
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V. CONCLUSION

This article is the third part of a work initiated in [6]. The objective of this research is to propose a
framework to stabilize Galerkin approximations of linear problems that do not possess a coercivity
property. In [6, 7], the analysis was restricted to steady problems. The present article extends the
arguments developed for steady problems to the approximation of linear contraction semi-groups
of class C0. The technique proposed is based on a hierarchical 2-level decomposition of the
approximation space. The stability in the graph norm is obtained by introducing an artificial
diffusion on the subgrid scales. As a result, optimal convergence in the graph norm has been
proved.

The convergence proofs given in the present article assume that the grid is quasi-uniform,
because uniform inverse inequalities have been used. This hypothesis can be weakened by using
the local mesh size in the definition of the artificial diffusion bilinear form bh and by proceeding
as in Guermond [7].

One goal of the present research is to understand and (hopefully) to theoretically justify some
dynamical subgrid viscosity models that are popular in Computational Fluid Dynamics. Conse-
quently, we are investigating the generalization of the present technique to turbulent flows.
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