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Abstract. The purpose of this paper is to show that the Fourier-based Nonlinear Galerkin
Method (NLGM) constructs suitable weak solutions to the periodic Navier–Stokes equa-
tions in three dimensions. We re-interpret NLGM as a Large-Eddy Simulation technique
(LES) and we rigorously deduce a relationship between the mesh size and the large-eddy
scale.

1 Introduction

Large eddy simulation methods for approximating turbulent flows are commonly viewed
as techniques in which the governing equations are derived by applying a low-pass filter to
the Navier–Stokes equations. These filtered equations are similar to the original equations
but for the presence of the so-called subgrid scale stresses accounting for the influence of
the small scales onto the large ones. Assuming that the behavior of the small scale
structures is more or less universal, the objective of LES is then to find some models for
the subgrid scale stresses, the so-called closure problem, and to compute the dynamics of
the large scales by using the filtered equations. Although this description of LES has been
widely accepted over the years (see for example the books by Geurts [8], John [13], or
Sagaut [17]), it nevertheless falls short of an unambiguous mathematical theory. Indeed,
the filtering operators, which implicitly appear in the definition of the subgrid scale tensor,
are often ignored while constructing the LES models. It is a common practice to work
with filter length scales regardless of the actual filters being used. More importantly,
it is now known that the closure problem actually yields a paradox; namely that it is
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possible to close exactly the LES equations, i.e., without invoking ad hoc hypotheses, by
choosing a bijective filtering operator, see [7, 9]. In this case, there exists a one-to-one
correspondence between the solution set of the Navier-Stokes equations and that of the
filtered equations, which means that the same “number of degrees of freedom” should
be used in both cases to represent any given solution. Another unjustified practice very
often consists of assuming that the filtering length scale is equal to the mesh size of the
approximation method that is used, regardless on the method in question.

The above observations have led us to develop a research program aiming at construct-
ing a mathematical framework for the large eddy simulation of turbulent flows. Our first
step in this direction is to introduce the concept of suitable approximation (see Section 2.2
and [10]). The definition is essentially based on two requirements. A suitable approxi-
mation is a sequences of finite-dimensional approximations converging in an appropriate
sense to a weak(s) solution of the Navier-Stokes equations. Second, we require that these
finite-dimensional approximations be constructed in such a way that the weak solutions(s)
at the limit is (are) suitable in the sense defined by Scheffer [18] (see Section 2.1). One
rationale behind this definition is that suitable solutions are expected to be more regu-
lar than weak solutions (see Duchon-Robert [4]) and the best partial regularity result as
stated in the so-called Caffarelli-Kohn-Nirenberg (CKN) Theorem, see Caffarelli et al. [1],
Lin [14], Scheffer [18] was first proved for the class of the suitable solutions. Note however
that the CKN result has been recently extended to the weak solutions by He Cheng [11].

The goal of this paper we is to show that the Nonlinear Galerkin Method (NLGM)
[16, 5, 6] constructs suitable approximations (see Theorem 5.1). We show also that NLGM
shares many of the heuristic features that are usually assigned to LES methods. The
paper is organized as follows. We recall in Section 2 the notion of suitable weak solutions
of the Navier–Stokes equations and we define what we mean by sequence of suitable
approximations. We briefly review Nonlinear Galerkin methods in Section 3 and we
reinterpret one of its version as a means to construct suitable approximations. The proof
of the main result of the paper, i.e., Theorem 5.1, is done in § 4 and § 5. We prove in § 6
that provided the Navier–Stokes solution is smooth enough, the NLGM approximation is
as accurate as that that would be obtained by retaining all the nonlinearities and the time
derivative in the momentum equations for the small scales. Finally, concluding remarks
and comments on our interpretation of NLGM as a LES technique are reported in § 7.

2 Preliminaries

2.1 Navier–Stokes equations and suitable weak solutions

Let Ω ⊂ R3 be an open connected domain with smooth boundary Γ. Let (0, T ) be a
finite time interval and set QT = Ω × (0, T ). The time evolution for the velocity u and
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the pressure p fields of a fluid occupying Ω is described by the Navier–Stokes equations:
∂tu + u·∇u +∇p− ν∇2u = f in QT ,

∇·u = 0 in QT ,

u|Γ = 0 or u is periodic,

u|t=0 = u0,

(2.1)

where u0 is a solenoidal vector field, f a source term, and ν the viscosity. Note that the
density is chosen equal to unity, that is, (2.1) is a nondimensional form of the Navier–
Stokes equations and ν is the inverse of the Reynolds number. In order to account for the
boundary conditions, we consider the space X defined as:

X =

{
H1

0(Ω) if homogeneous Dirichlet

{v ∈ H1(Ω), v periodic} if periodicity is prescribed
(2.2)

We also introduce the spaces:

V = {v ∈ X, ∇·v = 0}, H = V
L2

. (2.3)

Unless explicitly stated otherwise, the minimal regularity assumed for the data is u0 ∈ H
and f ∈ L2(0, T ;H−1(Ω)) and in the periodic situation u0 (resp. f(t) a.e. t in (0, T )) is
assumed to be of zero mean over Ω.

We now recall the notion of suitable weak solutions of the Navier–Stokes equations as
introduced by Scheffer [18].

Definition 2.1. A weak solution to the Navier–Stokes equations (u, p) is suitable if u ∈
L2(0, T ;X) ∩ L∞(0, T ;L2(Ω)), p ∈ L3/2(0, T ; L3/2(Ω)) and the local energy balance

∂t(
1
2
u2) +∇·((1

2
u2 + p)u)− ν∇2(1

2
u2) + ν(∇u)2 − f ·u ≤ 0 (2.4)

is satisfied in the distributional sense.

By analogy with nonlinear conservative laws, (2.4) can be viewed as an entropy-like
condition which may (hopefully?) selects the physical solutions of (2.1). An explicit form
of the distribution D(u) that is missing in the left-hand side of (2.4) to reach equality
has been given by Duchon and Robert [4]. For a smooth flow, the distribution D(u)
is zero; but for nonregular flow, D(u) may be nontrivial. Suitable solutions are those
which satisfy D(u) ≥ 0, i.e., if singularities appear, only those that dissipate energy
pointwise are admissible. It is expected that suitable solutions are more regular than
weak solutions. In this respect, the so-called Caffarelli-Kohn-Nirenberg (CKN) Theorem
states that the one-dimensional Hausdorff measure of singular points of suitable solutions
is zero. Whether these solutions are indeed classical is still far from being clear. Although
it has been proved recently by He Cheng [11] that the result of the CKN Theorem also
hods for weak solutions it is not known whether indeed weak solutions are suitable.
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2.2 Definition of suitable approximations

The following definition has been introduced in [10]

Definition 2.2. A sequence (uγ, pγ)γ>0 with uγ ∈ L2(0, T ;X) ∩ L∞(0, T ;L2(Ω)) and
pγ ∈ D′((0, T ), L2(Ω)) is said to be a suitable approximation to (2.1) if

(i) There are two finite-dimensional vectors spaces Xγ ⊂ X and Mγ ⊂ L2(Ω) such that
uγ ∈ C0([0, T ];Xγ), ∂tuγ ∈ L2(0, T ;Xγ), and pγ ∈ L2(0, T ; Mγ) for all T > 0.

(ii) The sequence converges to a weak solution of (2.1), say uγ ⇀ u weakly in L2(0, T ;X),
weakly-∗ in L∞(0, T ;L2(Ω)), and pγ → p in D′((0, T ), L2(Ω)).

(iii) The weak solution (u, p) is suitable.

In practice, suitable approximations in the sense defined above are constructed in three
steps.
(1) We first construct what we hereafter call the pre-LES-model. This step consists of
regularizing the Navier-Stokes equations by introducing a parameter ε representing the
large eddy scale beyond which the nonlinear effects are dampened. The purpose of the
regularization technique is to yield a well-posed problem for all times, and when passing
to the limit in ε the limit solution must be a suitable weak solution to the Navier–Stokes
equations.
(2) Second, we discretize the pre-LES-model. Since Xγ and Mγ are finite-dimensional,
there is a discretization parameter h associated with the size of the smallest scale that
can be represented in Xγ, roughly dim(Xγ) = O((L/h)3) where L = diam(Ω).
(3) The third step consists of choosing the relative size of the large eddy scale ε and the
mesh size h in such a way that the discrete solution converges to a suitable solution of
the Navier-Stokes equations when ε→ 0 and h→ 0.

The item (i) in our definition is meant to shortcut an issue that is almost never ad-
dressed in the LES literature, namely, that of the discretization of the so-called LES
models. Actually, the LES literature concentrates essentially on what we herein refer to
as pre-LES-model, that is on regularized Navier–Stokes equations involving a large eddy
scale ε. When approximating these equations the ad hoc choice ε = h is very often made
without any justification. The item (ii) is simply a consistency hypothesis, that is, the
couple (uγ, pγ) must solve something that is a perturbation of the Navier–Stokes equa-
tions. The item (iii) is the condition that enables us to fix a reasonable (i.e., suitability of
the limit) relation between ε and h, i.e., it is a condition which says which distinguished
limit (limh→0,ε→0) should be chosen.

2.3 Notations and conventions

For the sake of simplicity, we limit ourselves in this paper to periodic boundary con-
ditions and Fourier approximations techniques. The domain Ω is henceforth assumed to
be the three-dimensional torus (0, 2π)3.
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We use the convention that R3-valued variables are represented by boldfaced characters
or symbols. For all z ∈ C3, we denote by z the conjugate of z, by |z| the Euclidean norm,
and by |z|∞ the maximum norm.

The Sobolev spaces Hs(Ω), s ≥ 0 is defined in terms of Fourier series as follows

Hs(Ω) =
{
u(x) =

∑
k∈Z3 uke

ik·x, uk = u−k,
∑

k∈Z3 (1 + |k|2)s|uk|2 < +∞
}

.

In other words, the set of trigonometric polynomials exp(ik · x), k ∈ Z3, is complete
and orthogonal in Hs(Ω) for all s ≥ 0. The scalar product in L2(Ω) is denoted by
(u, v) = (2π)−3

∫
Ω

uv and the dual of Hs(Ω) by H−s(Ω). We introduce the closed subspace

Ḣs(Ω) ⊂ Hs(Ω) composed of those functions in Hs(Ω) that are of zero mean value.
Let N be a positive integer and set

h =
1

N
. (2.5)

For approximating the velocity and the pressure fields we will consider the set of trigono-
metric polynomials of partial degree less than or equal to N :

PN =
{

p(x) =
∑

|k|∞≤N cke
ik·x, ck = c−k

}
.

Since in the torus the mean value of the velocity and that of the pressure are irrelevant,
we introduce ṖN the subspace of PN composed of the trigonometric polynomials of zero
mean value. We finally introduce the truncation operator Ph : Hs(Ω) −→ PN such that

v =
∑
k∈Z3

vke
ik·x 7−→ Phv =

∑
|k|∞≤N

vke
ik·x.

Let us recall that

Lemma 2.1. Ph satisfies the following properties:

(i) Ph is the restriction on Hs(Ω) of the L2 projection onto PN .

(ii) ∀s ≥ 0, ‖Ph‖L(Hs(Ω);Hs(Ω)) = 1.

(iii) Ph commutes with differentiation operators.

(iv) ∃c > 0, ∀v ∈ Hs(Ω), ∀µ, 0 ≤ µ ≤ s, ‖v − Phv‖Hµ ≤ c Nµ−s‖v‖Hs.

(v) ∃c > 0, ∀v ∈ PN , ∀µ, s, s ≤ µ, ‖Phv‖Hµ ≤ c Nµ−s‖v‖Hs.

The symbol c is henceforth a generic constant that may depend on the data f , u0, ν,
T , or Ω, and which value may change from one occurrence to an other.
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3 The Nonlinear Galerkin Method

3.1 Brief review

The Nonlinear Galerkin Method (NLGM) is an approximation technique that aims at
constructing Approximate Inertial Manifolds (AIM) of nonlinear PDE’s; see [2, 5, 6, 16].

A dissipative evolution equation over H is said to have an Inertial Manifold if the
manifold in question contains the global attractor, is positively invariant under the flow,
attracts all the orbits exponentially, and is given as the graph of a C1 mapping over a
finite-dimensional subspace of H. This class of object has been proved to exist for many
equations, but for the Navier–Stokes equations, even in dimension two, the question of the
existence of an Inertial Manifold is still open. Then, the concept of Approximate Inertial
Manifold has been introduced to remedy this [5, 6]. In this case, a sequence of manifolds
of increasing dimension in H is explicitly constructed and the global attractor is shown
to lie in small neighborhoods of these manifolds, the width of the neighborhoods rapidly
shrinking as the dimension of the manifolds goes to infinity.

NLGM consists of expanding the solution of the dynamical system in a two-scale fashion
(large and small scales) and to simplify the dynamics of the small scales in such a way
that they solve a linear PDE whose source term only depends on the large scales; in other
words the small scales are slaved to the large scales. Then, the small scales are inserted
into the Galerkin equations approximating the large scales. This technique is expected to
have better approximations properties than the Galerkin method restricted to the large
scales only. This technique was shown to construct an Approximate Inertial Manifold for
the Navier–Stokes equations in two dimensions [5], and for some time, sparkled a lot of
interest as the concept, accompanied with substantial mathematical results, seemed well
suited for turbulence modeling.

Heywood and Rannacher [12] later argued that the seemingly improved performance
of NLGM over the standard Galerkin method could not be attributed to turbulence mod-
eling. The authors advanced that the observed improved accuracy was in part to be
attributed to the fact that NLGM has a better ability than the Galerkin method to han-
dle the Gibb’s phenomenon induced by higher-order boundary incompatibilities induced
by the no-slip boundary condition. They further argued that in periodic domain, both
NLGM and the Galerkin method perform identically. The mathematical argumentation
in [12] is clear and convincing, and [12] probably rightly watered down some earlier, pos-
sibly overblown, claims about NLGM. Nevertheless, we want to offer in the present paper
an alternative point of view of NLGM that, we think, should give some credit back to the
method.

First we show that, when using Fourier expansions and passing to the limit, the NLGM
solution converge (up to subsequences) to a suitable weak solution, whereas it is not known
whether this property holds for pure Galerkin solutions, see Theorem 5.1. This difference
of behavior is due to the particular treatment of the nonlinear terms in NLGM (turbulence
modeling?). Second, if arbitrary smoothness is assumed, NLGM always outperform the
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Galerkin method by a factor equal to 1 in the convergence order of the H1-norm for
the velocity and the L2-norm for the pressure, see Theorem 6.1. And this result holds
independently of the nature of the boundary conditions (whether periodicity or no-slip
BC is enforced). As suspected in [12], we confirm that this superconvergence property
has nothing ado with turbulence modeling but is instead a very simple consequence of a
seemingly not wellknown result by Wheeler [19] stating that for parabolic equations, the
elliptic projection of the solution is always superconvergent in the H1-norm by one order.
This is a purely linear superconvergence effect resulting from standard elliptic regularity.
However, this result somewhat contradicts the claim in [12] stating that both NLGM and
the Galerkin method should perform identically in periodic domains.

3.2 NLGM as a pre-LES model

We introduce in this section the Nonlinear Galerkin Method in an infinite-dimensional
setting. We show that in this case the infinite-dimensional NLGM is a pre-LES model in
the sense we introduced in § 2.2.

Let ε be a positive number that from now on we mentally associate with the smallest
scale of the flow that we really want to represent well (i.e., the Large Eddy Scale). Let
us set Nε = 1

ε
(or the integer the closest to 1

ε
). We now introduce the following finite-

dimensional vector spaces:

Xε = ṖPPNε , and Mε = ṖNε , (3.1)

and we introduce the projection Qε = I −Pε, where I is the identity. From this definition
it is clear that any field in L̇2(Ω), say v, can be decomposed as follows: v = Pεv + Qεv.
The component Pεv living in Xε is referred to as the large scale component of v and the
remainder Qεv is called the small scale component.

The nonlinear Galerkin method can be recast into the following form: Seek uε and pε

in the Leray class such that for all v ∈ Ḣ1(Ω), q ∈ L̇2(Ω), that
(∂tPεuε,v) + ν(∇uε,∇v) + NL(uε,uε,v)− (pε,∇·v) = (f ,v),

(∇·uε, q) = 0,

(uε,v)|t=0 = (u0,v).

(3.2)

where the nonlinear term is decomposed as follows:

NL(uε,uε, v) = (Pεuε·∇(Pεuε),v) + (Pεuε·∇(Qεuε), Pεv)

+ (Qεuε·∇(Pεuε), Pεv).

For reasons we do not yet fully understand, this form of the nonlinear does not seem to
lend itself easily to analysis. In particular we have not been able to show that, at the limit
ε→ 0, the weak solution is suitable. Thus this form of NLGM seems to be failing to com-
ply with item (iii) in our definition. But as hinted in [2, 16] many other admissible forms
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of the nonlinear term are possible. We then propose to set NL(uε,uε,v) = (Pεuε·∇uε, v)
so that the pre-LES model we henceforth consider is the following:

(∂tPεuε,v) + ν(∇uε,∇v) + (Pεuε·∇uε, v)− (pε,∇·v) = (f ,v),

(∇·uε, q) = 0,

(uε,v)|t=0 = (u0,v).

(3.3)

It is then possible to prove that (3.3) has a unique solution and that this solution converges
up to subsequences to a suitable weak solution of the Navier–Stokes equations. We omit
the details since the essential arguments will be repeated for the analysis of the fully
discrete problem in §4 and §5. Considering that no nonlinearity operates at wavenumbers
larger that ε, we also conjecture that (3.3) has an Inertial Manifold.

3.3 The NLGM-based LES approximation

We now want to construct a finite-dimensional approximation to the solution to (3.3).
To this end we introduce an integer N that we suppose to be larger than ε. We set

h =
1

N
(3.4)

and we define
Xh = ṖPPN , and Mh = ṖN , (3.5)

To be able to control the separation between the large eddy scale ε and the discretiza-
tion scale h, we introduce a parameter θ, 0 < θ < 1, and we assume that ε and h are
related by the following relation

ε = hθ. (3.6)

This can be equivalently be rewritten as: ε = N−θ.
Then, (3.3) is approximated as follows: Seek uh ∈ C0([0, T ];Xh), and ph ∈ L2(0, T ; Mh)

such that ∀t ∈ (0, T ], ∀v ∈ Xh, and ∀q ∈Mh
(∂tPεuh,v) + ν(∇uh,∇v) + (Pεuh·∇uh,v)− (ph,∇·v) = (f ,v),

(∇·uh, q) = 0,

uh|t=0 = Pεu0.

(3.7)

Following [5, 6, 16] we now show that we are on our way to construct an AIM. To
remove the incompressibility constraint and the pressure from the above formulation we
define Vh = Xh ∩V and we set Zε = Pε(Vh) and Yh = Qε(Vh). Clearly Vh = Zε ⊕Yh

and the decomposition is orthogonal with respect to the L2- and the H1-scalar product.
Let uh = zε + yh be the corresponding decomposition of uh(t) in Vh. Let us assume
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moreover that the spectrum of f is restricted to low wavenumbers, i.e., when N is large
enough (or h small enough) Qεf = 0. Then (3.7) reduces to

zε|t=0 = Pεu0

(∂tzε,φ) + ν(∇zε,∇φ) + (zε·∇(zε + yh),φ) = (f ,φ), ∀φ ∈ Zε

ν(∇yε,∇ψ) + (zε·∇(zε + yh),ψ) = 0, ∀ψ ∈ Yh.

(3.8)

It is clear that the small scale component of uh is solution to a linear equation forced by
−zε·∇zε. Let Ψ : Zε −→ Yh be the mapping such that

ν(∇Ψ(zε),∇ψ) + (zε·∇Ψ(zε),ψ) = −(zε·∇zε,ψ), ∀ψ ∈ Yh.

Then, clearly
uh(t) = zε(t) + Ψ(zε(t)), a.e. t in (0, T ). (3.9)

We show next that the discrete problem (3.7) yields a suitable approximation in the
sense of Definition 2.2.

4 A priori estimates and convergence

We start with standard a priori estimates, then we prove that the solution to (3.7)
converges, up to subsequences, to a weak solution of (2.1).

Lemma 4.1. Let f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ H, then the solution to (3.7) satisfies

max
0≤t≤T

‖Pεuh(t)‖2L2 + ν

∫ T

0

‖∇Pεuh‖2L2 + ‖∇Qεuh‖2L2 ≤ c. (4.1)

Proof. These are the basic energy estimates.

Corollary 4.1. Under the assumptions of Lemma 4.1

‖Pεuh‖Lr(H2/r) + ‖Pεuh‖Lr(Lq) ≤ c, with 3
q

+ 2
r

= 3
2
, 2 ≤ r, 2 ≤ q ≤ 6.

Proof. This result is standard and is a consequence of the interpolation inequality ‖v‖H2/r .
‖v‖1−2/r

L2 ‖v‖2/r

H1 , when 2 ≤ r, and the embedding H2/r(Ω) ⊂ Lq(Ω) for 1/q = 1/2−2/(3r),
(see e.g. [3, p. 208]),

Lemma 4.2. Under the assumptions of Lemma 4.1, the approximate pressure and the
approximate time derivative of the velocity from (3.7) satisfy

‖ph‖L4/3(L2) ≤ c (4.2)

‖∂tPεuh‖L4/3(H−1) ≤ c. (4.3)
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Proof. (1) We first prove the pressure estimate (4.2). We observe that ∇2 : Mh −→Mh is
bijective, and we denote by∇−2 the inverse operator. Then, observing that∇∇−2ph ∈ Xh,
we multiply the momentum equation in (3.7) by ∇∇−2ph. By using several integrations
by parts, we obtain

‖ph‖2L2 = −(∇ph,∇∇−2ph)

= (∂tPεuh − ν∇2uh + Pεuh·∇uh − f ,∇∇−2ph)

= (Pεuh·∇uh − f ,∇∇−2ph), since uh and Pεuh are solenoidal

= (∇·(Pεuh⊗uh)− f ,∇∇−2ph)

= (Pεuh⊗uh,∇∇∇−2ph)− (f ,∇∇−2ph)

≤ c(‖Pεuh‖L3‖uh‖L6 + ‖f‖H−1)‖ph‖L2 .

This yields ‖ph‖4/3

L2 ≤ c(‖Pεuh‖4/3

L3 ‖uh‖4/3

L6 + ‖f‖4/3

H−1). We proceed further by noticing that

‖ph‖4/3

L4/3(L2)
≤ c

(
‖Pεuh‖4/3

L4(L3)‖uh‖4/3

L2(H1) + ‖f‖4/3

L2(H−1)

)
.

The conclusion is a consequence of Lemma 4.1 together with Corollary 4.1 with q = 3
and r = 4.
(2) We now prove the estimate on the time derivative of Pεuh. Using the H1-stability of
Ph (see Lemma 2.1(ii)), we infer

‖∂tPεuh‖H−1 = sup
v∈H1

(∂tPεuh,v)

‖v‖H1

= sup
v∈H1

(∂tPεuh, Phv)

‖v‖H1

≤ c sup
v∈H1

(∂tPεuh, Phv)

‖Phv‖H1

≤ c sup
v∈Xh

(∂tPεuh,vh)

‖vh‖H1

≤ c(ν‖uh‖H1 + ‖Pεuh‖L3‖uh‖H1 + ‖ph‖L2 + ‖f‖H−1).

We conclude by proceeding as in step 1.

We are now in measure of proving

Theorem 4.1. Under the assumptions of Lemma 4.1, Pεuh converges up to subsequences
to a weak solution to (2.1) in L2(0, T ;H1) weak and in any Lr(0, T ;Lq) strong (1 ≤ q <

6r
3r−4

, 2 ≤ r <∞); each subsequence of Pεuh and uh have the same limit; ph converge up

to subsequences in L
4
3 (0, T ; L2).

Proof. We only outline the main steps of the proof for the arguments are quite standard.
Since Pεuh is uniformly bounded in L2(0, T ;H1)∩L∞(0, T ;L2), and ∂tPεuh is uniformly

bounded in L4/3(0, T ;H−1(Ω)), the Aubin-Lions compactness lemma (see Lions [15, p.
57]) implies that there exists a subsequence (uhl

) such that Pεl
uhl

converges weakly in
L2(0, T ;H1) and strongly in any Lr(0, T ;Lq), such that 1 ≤ q < 6r

3r−4
, 2 ≤ r <∞, and that
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∂t(Pεl
uhl

) converges weakly in L4/3(0, T ;H−1). Moreover, since ph is bounded uniformly
in L4/3(0, T ; L2), there exists a subsequence (phl

) converging weakly in L4/3(0, T ; L2). Let
u and p denote these limits, and let us show that the couple (u, p) is a weak solution to
(2.1).

Observing that ‖Pεl
uhl
−uhl

‖L2 ≤ c εl‖uhl
‖H1 it is clear that the subsequences (Pεl

uhl
)

and (uhl
) have the same limit in L2(L2). Note that this also implies that (Pεl

uhl
) and

(uhl
) have the same limit in L2(H1) weak; in other words Qεl

uhl
⇀ 0 is L2(H1).

Let s > 4 be a real number and let s∗ be such that 1
s

+ 1
s∗

= 1
2
. Let v be an arbitrary

function in Ls(0, T ;H1) and let (vhl
)hl

be a sequence of functions in Ls(0, T ;Xhl
) strongly

converging to v in Ls(0, T ;H1) ⊂ L4(0, T ;H1).
(1)

∫
QT

∂t(Pεl
uhl

) · vhl
→

∫
QT

∂tu · v, since ∂t(Pεl
uhl

) ⇀ ∂tu in L4/3(H−1).

(2)
∫

QT
∇uhl

:∇vhl
→

∫
QT
∇u:∇v, since ∇uhl

⇀ ∇u in L2(L2) ⊂ L4/3(L2).

(3)
∫

QT
phl
∇·vhl

→
∫

QT
p∇·v, since ph ⇀ p in L4/3(L2).

(4) Since Pεl
uhl
→ u in Ls∗(L3) and vhl

→ v ∈ Ls(H1) ⊂ Ls(L6), we infer that
vhl
⊗(Pεl

uhl
)→ v⊗u in L2(L2⊗L2). As a result,

∫
QT

[vhl
⊗(Pεl

uhl
)]:∇uhl

→
∫

QT
[v⊗u]:∇u

since ∇uhl
⇀ ∇u in L2(L2⊗L2).

(5) Since ∇·uhl
= 0 and uhl

⇀ u in L2(H1), ∇·u = 0 in L2(H1).

(6) Clearly
∫ T

0
< f ,vhl

>→
∫ T

0
< f , φv > since vhl

→ u in Ls(H1) ⊂ L2(H1) and
f ∈ L2(H−1).
(7) Finally since the subsequence (Pεl

uhl
) converges in C0(0, T ;L2

w) (space of the functions
that are continuous over [0, T ] with value in L2 equipped with the weak topology) we have
u0 ← Pεl

u0 = Pεl
uhl

(0) ⇀ u(0) in L2; hence, u(0) = u0. The theorem is proved.

5 Convergence to a suitable solution

5.1 Formulation (3.7)

The main contribution in this section is Theorem 5.1 which establishes that the solution
of (3.7) converges to a suitable solution of the Navier–Stokes equations.

Theorem 5.1. Let f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ H. Let N > 0 and ε = hθ. Provided

0 < θ < 2
3
, (5.1)

the limit solution(s) of (3.7) is (are) suitable.

Proof. Let φ be a smooth nonnegative function, periodic with respect to space, and com-
pactly supported with respect to time in (0, T ). Taking Ph(uhφ) to test the momentum
equation in (3.7) and integrating in time, we obtain∫ T

0

(∂tPεuh, Ph(uhφ)) + ν(∇uh,∇Ph(uhφ))− (ph,∇·Ph(uhφ))

+ (Pεuh·∇uh, Ph(uhφ)) =

∫ T

0

(f , Ph(uhφ)).

11



Jean-Luc Guermond, Serge Prudhomme

Using the fact that Pε and Ph commute with differentiation operators and after integrating
by parts in time and space, we obtain∫ T

0

−1
2
((|Pεuh|2, ∂tφ) + ν(|∇uh|2, φ)− 1

2
ν(|uh|2,∇2φ)− (ph,∇·(uhφ))

+ (Pεuh·∇uh, Ph(uhφ)) =

∫ T

0

(f , Ph(uhφ)).

We now pass to the limit in each term of the above equation separately, and to avoid
cumbersome notations we still denote by (uh), (ph) the subsequences that are extracted
instead of (uhl), (phl).

(1)
∫ T

0
−1

2
((|Pεuh|2, ∂tφ) →

∫ T

0
−1

2
((|u|2, ∂tφ) since |Pεuh|2 → |u|2 in Lr(L1) for any 1 ≤

r <∞.
(2) For the term ν

∫ T

0
(|∇uh|2, φ) we proceed as follows:∫ T

0

(|∇uh|2, φ) =

∫ T

0

(|∇(uh − u)|2 + 2∇(uh − u):∇u + |∇u|2, φ).

The second term in the right-hand side goes to zero since uh ⇀ u in L2(H1). As a result

lim inf
N→+∞

∫ T

0

(|∇uh|2, φ) ≥
∫ T

0

(|∇u|2, φ).

(3) 1
2
ν

∫ T

0
(|uh|2,∇2φ)→ 1

2
ν

∫ T

0
(|u|2,∇2φ) since |uh|2 → |u|2 in L2(L1). To be convince of

the last result observe that
∫ T

0
‖uh − u‖2L2 ≤

∫ T

0
2‖Pεuh − u‖2L2 + 2‖Qεuh‖2L2 . The using

‖Qεuh‖L2 ≤ c ε‖uh‖H1 together with the fact that
∫ T

0
2‖Pεuh − u‖2L2 → 0, we conclude

uh → u in L2(L2).

(4) Since uh is solenoidal, the pressure term simplifies as follows
∫ T

0
(ph,∇·(uhφ)) =∫ T

0
(phuh,∇φ). As a result,

∫ T

0
(ph,∇·(uhφ)) →

∫ T

0
(pu,∇φ) since ph ⇀ p in L4/3(L2)

and uh·∇φ→ u·∇φ in L4(L2).
(5) We treat the trouble-making nonlinear term as follows

(Pεuh·∇uh, Ph(uhφ)) = (Pεuh·∇uh,uhφ) + R1

= −(1
2
|uh|2Pεuh,∇φ) + R1,

= −(1
2
|Pεuh|2Pεuh,∇φ) + R1 + R2,

where

R1 = (Pεuh·∇uh, Ph(uhφ)− uhφ),

R2 = −1
2
((Pεuh + uh) ·QεuhPεuh,∇φ).

12
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Using the approximation property of Ph (see Lemma 2.1(iv)) and the fact that ‖uhφ‖H1 ≤
c‖uh‖H1‖φ‖W 1,∞ , we can bound the first residual as follows:

|R1| ≤ ‖Pεuh‖L∞‖∇uh‖L2‖Ph(uhφ)− uhφ‖L2 ,

≤ c ε−
3
2 N−1‖Pεuh‖L2‖∇uh‖L2‖uhφ‖H1 ,

≤ c N
3
2
θ−1‖Pεuh‖L2‖uh‖2H1‖φ‖W 1,∞ .

Then, it is clear that
∫ T

0
|R1| → 0 as N →∞ owing to (5.1). For the second residual, we

use the embedding H1(Ω) ⊂ L6(Ω), to show that:

|R2| ≤ c ‖Qεuh‖L2‖Pεuh‖L3‖Pεuh + uh‖L6‖φ‖W 1,∞

≤ c ε‖Qεuh‖H1ε−
1
2‖Pεuh‖L2‖Pεuh + uh‖H1‖φ‖W 1,∞

≤ c N− 1
2
θ‖Pεuh‖L2‖uh‖2H1‖φ‖W 1,∞ .

Then, for θ > 0,
∫ T

0
|R2| → 0 as N →∞.

(6) Passing to the limit in the source term does not pose any difficulty since

< f , Ph(φuh) > =< f , φuh > +R,

where R =< f , Ph(φuh) − φuh >. Clearly
∫ T

0
< f , φuh >→

∫ T

0
< f , φu > since uh ⇀ u

in L2(H1) and f ∈ L2(H−1). Moreover,∫ T

0

|R| ≤ ‖f‖L2(H−1)‖Ph(φuh)− φuh‖L2(H1)

≤ c N−1‖f‖L2(H−1)‖uh‖L2(H1).

Then
∫ T

0
|R| → 0 as N → +∞.

Remark 5.1. The above theorem shows that if the sizes of the large eddy scales and the
mesh size are such that ε � h2/3, then the pair (uh, ph) is a suitable approximation in
the sense of Definition 2.2.

5.2 Other NLGM formulations

We now briefly explain why we are not successful to prove that the discrete versions of
the NLGM formulation (3.2) converge to a suitable solution.

For the other formulation (3.2) we would need to show that terms like (z·∇y, Ph(uhφ))
converge to zero as N → ∞, where recall z = Pεuh, and y = Qεuh. For example, we
have:

(z·∇y, Ph(uhφ)) = (z·∇y,uhφ) + (z·∇y, Ph(uhφ)− uhφ)

= (z·∇y,yφ) + (z·∇y, zφ) + (z·∇y, Ph(uhφ)− uhφ)

= −(1
2
|y|2z,∇φ) + (z·∇y, zφ) + (z·∇y, Ph(uhφ)− uhφ)

13
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It is clear that the first term in the right hand side goes to zero as N → ∞, but unfor-
tunately we have not been able to show that the last two terms vanish as N → ∞. The
difficulty stems from that we cannot see any way to integrate by parts the two other terms
so that the derivative acts only on the test functionφ. Hence is seems that the Fourier
version of (3.2) does not yield a suitable approximation.

6 Convergence analysis assuming regularity

We (re)prove in this section that provided the solution to (2.1) is smooth enough
(wishful thinking?) the velocity field from (3.7) is as accurate in the H1-norm as that of the
un-truncated Galerkin solution on Xh×Mh. This feature is a well-known characteristics
of nonlinear Galerkin methods. However, as noted in [12] the presence or absence of
nonlinearities has nothing ado with this remarkable property. The single key argument at
stake here is that the elliptic projection is super-convergent in the H1-norm. It seems to
us that this property, found by Wheeler in [19], has not been emphasized enough in the
literature dedicated to NLGM. The goal of this section is make this point clearer. The
main result of this section is Theorem 6.1.

Denote by (Rh(u), Sh(p)) ∈ Xh×Mh the elliptic projection of the couple (u, p), i.e., for
a.e. t ∈ [0, T ], for all vh ∈ Xh, and for all qh ∈Mh{

(∇Rh(u),∇vh)− (Sh(p),∇·vh) = (u,∇vh)− (p,∇·vh)

(qh,∇·uh) = 0.
(6.1)

Define K1 = ‖ut‖L2(Hσ+1), K2 = ‖u‖L∞(Hs), with s > 3
2
, K3 = ‖u‖L2(Hσ+1), and

K4 = ‖u0‖Hσ+1 . Let us set K = K1 + . . . + K4. Throughout this section we assume that
f and u0 are smooth enough so that there exist σ > 0 and s > 3

2
for which K is bounded.

Lemma 6.1. Provided the quantity K is bounded,

‖u−Rh(u)‖L2(L2) + ‖ut −Rh(ut)‖L2(L2) ≤ c(K1, K2)ε
−(σ+1). (6.2)

‖Rh(u)‖L∞(L∞) ≤ c(K2) (6.3)

‖u0 −Rh(u0)‖L2 ≤ c(K4)ε
−(σ+1) (6.4)

The following Lemma clarifies what we meant above when stating that the elliptic
projection is super-convergent in the H1-norm.

Lemma 6.2. Under the regularity assumptions of Lemma 6.1, the velocity field from (3.7)
satisfies the following error estimate

‖uh −Rh(u)‖L2(H1) ≤ c(ν, T,K)ε−(σ+1). (6.5)

14
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Proof. Let us set eh = Rh(u)− uh and δh = Sh(p)− ph. Then the equations controlling
these two quantities are

(∂tPεeh,v) + ν(∇eh,∇v)− (δh,∇·v) = (F(uh,u),v) + (R0,v),

(∇·eh, q) = 0,

eh|t=0 = Pε(Rh(u0)− u0)

where we have defined F(uh,u) = (Pεuh)·∇uh − u·∇u, R0 = PεRh(ut) − ut, and the
test functions v and q span Xh and Mh respectively. The error estimate (6.5) is obtained
by using eh as a test function in the above equations and by integrating over the time
interval (0, T ).

Owing to the assumed regularity for u we have

‖R0‖L2(L2) ≤ ‖Pε(Rh(ut)− ut)‖L2(L2) + ‖Pεut − ut‖L2(L2)

≤ c ε−(σ+1)‖ut‖L2(Hσ+1).

This immediately yields∫ T

0
|(R0, eh)| ≤ γ‖∇eh‖2L2(L2) + c(γ, K1) ε−2(σ+1),

where γ > 0 is a positive real that can be chosen as small as needed.
To control the nonlinear term we set

F(uh,u) = Pεuh·∇(uh −Rh(u)) + Pε(uh −Rh(u))·∇Rh(u)

+ (PεRh(u)− u)·∇Rh(u) + u·∇(Rh(u)− u).

Let R1 to R4 be the four residuals in the right-hand side above. Clearly∫ T

0
(R1, eh) = 0.

Then, integrating by parts

|(R2, eh)| ≤ ‖Pεeh‖L2‖∇eh‖L2‖Rh(u)‖L∞ ≤ c(K2) ‖eh‖L2‖∇eh‖L2 .

Hence ∫ T

0
|(R2, eh)| ≤ γ‖∇eh‖2L2 + c(K2)‖eh‖2L2 .

For the third residual we have

|(R3, eh)| ≤ ‖PεRh(u)− u‖L2‖∇eh‖L2‖Rh(u)‖L∞
≤ c(K2) ε−(σ+1)‖u‖Hσ+1‖∇eh‖L2 .

This yields ∫ T

0
|(R3, eh)| ≤ γ‖∇eh‖2L2 + c(γ, K2, K3) ε−2(σ+1).
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For the last residual we proceed similarly

|(R4, eh)| ≤ ‖Rh(u)− u‖L2‖∇eh‖L2‖u‖L∞
≤ c(K2) ε−(σ+1)‖u‖Hσ+1‖∇eh‖L2 .

This yields ∫ T

0
|(R4, eh)| ≤ γ‖∇eh‖2L2 + c(γ, K2, K3) ε−2(σ+1).

We obtain the desired estimate by setting γ = ν/8 and using the Gronwall Lemma.

Lemma 6.3. Under the regularity assumptions of Lemma 6.1, the pressure field from
(3.7) satisfies the following error estimate

‖ph − Sh(p)‖L2(L2) ≤ c(ν, T,K)ε−(σ+1). (6.6)

Proof. The omit the details since the argument is the same as that for proving the estimate
(4.2) repeating the arguments of the proof of Lemma 6.2.

Theorem 6.1. Under the regularity assumptions of Lemma 6.1, the velocity field and the
pressure field from (3.7) satisfies the following error estimate

‖u− uh‖L2(H1) + ‖p− ph‖L2(L2) ≤ c(ν, T,K)(N−σ + N−θ(σ+1)). (6.7)

Proof. This is a simple consequence of the triangle inequalities

‖u− uh‖L2(H1) ≤ ‖u−Rh(u)‖L2(H1) + ‖Rh(u)− uh‖L2(H1)

‖p− ph‖L2(L2) ≤ ‖p− Sh(p)‖L2(L2) + ‖Sh(p)− ph‖L2(L2).

together with Lemma 6.2, Lemma 6.3, and the definition of ε.

Remark 6.1. As an immediate consequence of the above Theorem one deduces that the
couple (uh, ph) is as accurate as the un-truncated Galerkin solution on (Xh, Mh) in the
H1×L2-norm provided the expected regularity index σ and the real θ are such that

θ ≥ σ

σ + 1
. (6.8)

7 Concluding remarks

Although there is no mathematical definition of LES available in the literature at the
present time, it seems to us that, in addition to constructing a suitable approximation,
the NLGM described in the present paper satisfies many of the heuristic criteria usually
assigned to LES. More specifically: (1) This technique represents correctly all the non-
linear interactions between the scales larger than the large eddy scale ε; (2) The scales
below ε interact only with the large scales, i.e., there is no nonlinear interaction among
the small scales; (3) For any assumed regularity index, σ ≥ 0, the method is as accurate
as the un-truncated technique. In other words, when smoothness is assumed the method
performs as well as if the dynamics of the small scales had fully been accounted for.
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