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SUMMARY

This work describes a projection method for approximating incompressible viscous 1ows of non-
uniform density. It is shown that unconditional stability in time is possible provided two projections are
performed per time step. A 3nite element implementation and a 3nite volume one are described and
compared. The performance of the two methods are tested on a Rayleigh–Taylor instability. We show
that the considered problem has no inviscid smooth limit; hence con3rming a conjecture by BirkhoA
stating that the inviscid problem is not well-posed. Furthermore, we show that at even moderate Reynolds
numbers, this problem is extremely sensitive to mesh re3nement and to the numerical method adopted.
Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulating variable density incompressible viscous 1ows presents the diDculty of satisfy-
ing the property of mass conservation in two respects. On the one hand, the mass density
of each 1uid particle must remain unchanged during the 1uid motion, whatever the level of
unsteadiness and mixing. On the other hand, the velocity 3eld must satisfy the incompress-
ibility constraint which re1ects the inability of pressure to do compression work. These two
important physical characteristics are fully described by the set of the incompressible Navier–
Stokes equations augmented by the advection equation for the density. These equations are
expressed in terms of the primitive variables: density �, velocity u and pressure P. The math-
ematical statement of the problem is: 3nd �¿0, u and P up to a constant (actually, up to an
arbitrary function of t only), so that

@�
@t

+∇ · (�u)=0

@(�u)
@t

+∇ · (�u⊗ u)− �∇2u+∇P= f

∇ · u=0

(1)
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where �¿0 the (shear) viscosity of the 1uid (assumed here to be a constant) and f is a
known body force (per unit volume), possibly dependent on space, or time, or both; typically,
in strati3ed 1ows, f =�g, g being the gravity 3eld. We recall that ∇ · (�u⊗ u)= @j(�uiuj).
The viscous stress contribution due to bulk viscosity is zero by the assumed incompressibility
of the 1ow.
The complete mathematical statement of the problem requires suitable boundary and initial

conditions. For the sake of simplicity, only Dirichlet boundary conditions for velocity are
considered here, but more general boundary conditions can be handled by the techniques
presented below. We shall assume a homogeneous Dirichlet condition on the velocity on the
entire boundary.

�|t=0 =�0; u|t=0 = u0; u|L = b (2)

where �0¿0 and u0 are the initial distributions of density and velocity, and b is the velocity
prescribed on the boundary with b · n=0.
The solvability of the problem de3ned by equation system (1) supplemented with the

boundary and initial conditions (2) requires the satisfaction of the following conditions on the
boundary and initial data for the velocity:∫

L
n · b=0; ∀t¿0; and ∇· u0 = 0; n · b|t=0 = n · u0|L (3)

For the mathematical theory of existence and uniqueness of solutions to this set of equations,
we refer to Lions [1]. This theory is far from being trivial due to the fact that the equations
governing the motion of a variable density but incompressible 1uid constitute a mixed PDE
system entangling hyperbolic, parabolic and elliptic features.
The variable density incompressible Navier–Stokes equations are important in several 3elds

of 1uid dynamics: for instance, in highly strati3ed 1ows, in the study of the dynamics of
interfaces between 1uids of diAerent density, in problems of inertial con3nement and in as-
trophysics.
The goal of the present work is to describe a projection method for approximating the

solution to Equations (1) and (2) in the same spirit as that of Chorin [2; 3] and Teman [4; 5].
The paper is organized as follows. In Section 2, we present a projection method and prove
that unconditional stability in time is possible provided two projections are performed per
time step. We also describe two implementations of the method: one with 3nite elements and
the other with 3nite volumes. The performance of the two methods are tested in Section 3.
The test problem is a Rayleigh–Taylor instability. We show that the considered problem has
no inviscid smooth limit, hence con3rming a conjecture by BirkhoA stating that the inviscid
problem is not well-posed. As a consequence, at high Reynolds numbers or large dimensionless
times, this problem is very sensitive to mesh variations and to the numerical method adopted.

2. A FINITE ELEMENT METHOD

2.1. A projection method for variable density 4ows

The main idea of the fractional step projection method of Chorin [2; 3] and Teman [4; 5]
consists of splitting the viscous eAects and the incompressibility. Various extensions of this
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technique to variable density 1ows have been devised, see e.g. Bell and Marcus [6], but
to our knowledge, none of them have been shown to yield unconditional stability in time.
The objective of this section is to present a second-order accurate projection method that is
unconditionally stable.
We adopt the three-level BDF method for marching in time in the mass equation and the

momentum equation. To this end, we introduce the linearly extrapolated velocity 3eld at the
new time level by means of the de3nition

un+1
? =2un − un−1 (4)

Setting =
√
�, the complete set of uncoupled problems to be solved in the BDF incremental

projection method assumes the form

3
2Qt

�n+1 + un+1
? ·∇�n+1 +

1
2
(∇ · un+1

? )�n+1 =
4�n − �n−1

2Qt
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|Lin = an+1
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−∇Pn+1 − 4n+1

3n
∇(Qn − Pn) +

n+1

3n−1∇(Qn−1 − Pn−1) (7)

un+1
|L = bn+1

−∇ ·
(

1
�n+1∇(Qn+1 − Pn+1)

)
= − 3

2Qt
∇ · un+1

@(Qn+1 − Pn+1)
@n |L

= 0

(8)

We refer to Guermond–Quartapelle [7] for details. Note that (6) and (8) are projection
steps. Contrary to other known projection methods, the present one contains two projection
steps. Given this particularity, the following stability results are established in Reference [7]:
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Theorem 2.1. For any Qt¿0; the solution (�n; un; Pn); n=1; 2; : : : ; of the incremental
projection method (5)–(8) with f=0 satis3es the stability estimate

‖n+1un+1‖20 + (Qt)2
∥∥∥∥∇Qn+1

n+1

∥∥∥∥
2

0
+ 2�Qt

n∑
k=0

‖∇uk+1‖206c

(
‖0u0‖20 + (Qt)2

∥∥∥∥∇Q0

0

∥∥∥∥
2

0

)

2.2. The 7nite element implementation

We adopt a mixed 3nite element technique where the density and the velocity are approx-
imated in the same space. This choice makes it very easy to develop the method from an
existing FEM solver dedicated to the solution of uniform density 1ows (see Guermond–
Quartapelle [8]). In our implementation, we use P1 interpolation for pressure and P2 interpo-
lation for velocity and density.
Of course, the solution of the discrete Equation (5) presents well-known diDculties per-

taining to any Galerkin 3nite element approximation to hyperbolic problems. To avoid the
spurious spatial oscillations induced by the Galerkin technique, we have used a new stabiliza-
tion procedure proposed in Reference [9]. This technique basically amounts to introducing a
two-level hierarchical decomposition of the 3nite element space and to adding a non-linear
diAusion term to Equation (5) as follows:(

vh;
�n+1
h − �nh
Qt

)
+ (vh; unh ·∇�n+1

h + 1
2(∇ · unh)�n+1

h )= bh(vh; �nh; �
n
h)

where bh(vh; �h; �h) is a trilinear form of order hk+1 when �h is smooth, k being the order of
interpolation of the density. For a detailed description of this subgrid stabilization technique
the reader is referred to [9].
The two projection steps (6) and (8) are solved in weak form as Poisson problems. The

homogeneous Neumann boundary conditions are enforced naturally by the weak formulation.

2.3. A 7nite volumes method

We now describe a 3nite volume method developed by the 3rst author.
The conservation equations for mass and momentum are used in conservative form (1) and

are discretized on a structured staggered grid.
For the momentum equation, the advection 1uxes are estimated following a strategy pro-

posed by Leonard [10]. For each cell face, the 1uxes are computed with the Quickest scheme,
based on upwind biased cubic interpolation. This scheme derives from the method of char-
acteristics. We recall that the method of characteristics is based on the following property:
for pure advection of a scalar F at constant vector velocity V , the exact solution at time
t + dt is F(x; t + dt)=F(x − Vdt; t). As long as there are no oscillations, we use the method
of characteristics after linearization. Otherwise, we use the 1ux limiter devised in Reference
[10] for the Ultimate-Quickest scheme.
To march in time we have adopted a projection method with only one projection step per

time step as in Bell and Marcus [6]. The momentum equation is solved in the form of a
matrix system arising from an implicit formulation of diAusion 1uxes: L[V (t + dt)]= S(t).
S is the source term containing pressure gradient, advection 1uxes and the explicit contribution
of the temporal discretization. L is the matrix de3ned by discretization of the diAusion 1uxes
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and the temporal term associated with V (t + dt). The linear systems are solved by means of
the ADI algorithm. The pressure Poisson equation is solved by means of a multigrid method.
The mass equation is directly solved following the method of characteristics [11]. The

advective 1uxes are estimated using either Superbee [12; 13] or Super-C [10]. These schemes
are known to be second order and Superbee is TVD. Both succeed in convecting discontinuities
without introducing excessive numerical diAusion. The main diAerence between both schemes
is that Super-C is less diAusive than Superbee when convecting a discontinuity. For example,
if we consider the convection of a 1D step function, the numerical diAusion smooths the step
over 3–4 grid cells for Super-C, whereas it typically spreads from 6 to 7 cells for Superbee.
These results depend weakly on the Courant number.

3. NUMERICAL RESULTS

3.1. The Rayleigh–Taylor instability

As a test case we have computed the development of a Rayleigh–Taylor instability in the
viscous regime. Our starting point is the problem documented by Tryggvason [14]. This prob-
lem consists of two layers of 1uid initially at rest in the gravity 3eld in S= ]−d=2; d=2[×]−
2d; 2d[. The initial data proposed in Reference [14] are as follows. The initial position of the
interface is �(x)=−0:1d cos(2�x=d). The heavy 1uid is above and the density ratio is 3, so
that the Atwood number is 0:5 according to the de3nition At =(�max − �min)=(�max + �min).
The transition between the two 1uids is regularized by means of the following law:

�(x; y; t=0)
�min

=2 + tanh
(
y − �(x)
0:01d

)

The governing equations are made dimensionless by using the following references: �min for
density, d for length, and d1=2g−1=2 for time, where g is the gravity 3eld, so that the reference
velocity is d1=2g1=2, and the Reynolds number is de3ned by Re=�mind3=2g1=2=�. Assuming the
symmetry of the initial condition is maintained during the time evolution, the computational
domain has been restricted to ]0; d=2[×] − 2d; 2d[. A no-slip condition is enforced at the
bottom and top walls while symmetry is imposed on the two vertical sides.

3.2. On the inviscid limit of the RT instability

We made computations with 3nite elements and 3nite volumes at Re=1000 and 5000. The
aim of this study is to verify whether the problem considered has a limit solution as the
Reynolds number increases to in3nity, as suggested by the computations of Tryggvason [14].
The time evolution of the interface of the density 3eld for Re=1000 is plotted in Figure 1

at times 1; 1:5; 1:75; 2; 2:25; 2:5 in the time scale of Tryggvason which is related to ours by
tTryg = t

√
At . The 3nite volume solution is shown at the top of the 3gure and the 3nite element

one is at the bottom. The 3nite volume mesh is composed of 256×512 cells and the 3nite
element mesh has 30189 P2 nodes. The two solutions are consistent in that they show similar
structures and diAer only in 3ne details at large time; the 3nite volume gives more details
showing that it is twice as much re3ned as the 3nite element one.
To further assess the sensitivity of the method to spatial resolution and to verify that the

arti3cial viscosity is much smaller than the physical one, we have solved the same problem
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Figure 1. Re=1000. Top, 3nite volumes, 256×512 cells; bottom, 3nite elements, 30189 P2 nodes. The
interface is shown at times: 1, 1.5, 1.75, 2, 2.25, and 2.5.

for Re=5000. In Figure 2, we show the evolution of the interface computed using the same
3nite volume mesh as before and a 3nite element mesh composed of 49577 P2 nodes.
We compare now the viscous solutions, Re=1000 and 5000, with the inviscid one computed

in Reference [14].
We 3rst compare the position of the interface of the rising and falling bubbles as a function

of time. The positions predicted by the 3nite element and the 3nite volume method for
Re=1000 and 5000 are almost coincident and are in fair agreement with that reported in
Reference [14]. We notice though that the velocity of the falling bubble is somewhat higher
in our calculations than in Reference [14]. The computational domain used in Reference [14]
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Figure 2. Re=5000. Top, 3nite volumes, 256× 512 cells; bottom, 3nite elements, 49577 P2 nodes. The
interface is shown at times: 1, 1.5, 1.75, 2, 2.25, and 2.5.

is S= ]− d=2; d=2[×]− d; d[; as a result, the asymptotic velocity of the falling bubble in the
inviscid simulation is reduced due to the presence of the lower no-through 1ow boundary.
See [7] for detailed comparisons.
Coming to the comparison of the vortex structure, there is a satisfactory agreement of

the global characteristics of the 1ow between the viscous solutions and the inviscid one
[14, Figure 4], especially in the early stage; note, however, that the roll-up of the main vortex
in the present calculation does not develop since the singularity at the centre of the vortex is
removed by viscous dissipation.
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All these results indicate that an accurate and detailed prediction of such a 1ow for times
t¿1:5 and Re¿5000 is a diDcult task. In any case, note that our 3nite element and 3nite
volume Re=5000 solutions are so diAerent from the inviscid one reported in Reference [14]
that we face the question of knowing whether the in3nite Reynolds limit of the viscous
solution should be equal to the inviscid solution. In this respect, we recall that BirkhoA
had speculated that the initial-value problem (for inviscid strati3ed 1ows) might be ill-posed
(as a consequence of the fact that) the growth rate of an in3nitely small unstable wave is
proportional to the square root of its wave number, as reported by Tryggvason. Our results
seem to con3rm BirkhoA’s conjecture in the sense that this problem has no smooth inviscid
solution for large times.

3.3. Sensitivity with respect to the numerical scheme

In this section, we discuss the 3nite volume results obtained for the case Re=5000. We
compare Superbee and Super-C schemes. The results obtained with Super-C are shown in
Figure 3. We observe similar evolutions of the interface up to t=1:25. A slight diAerence
in the spiral structure occurs at t=1:5. Superbee produces a nearly perfect roll-up, while the
spiralling motion is disrupted for Super-C. As a result, for the latter times, the instabilities
grow diAerently, although the mean features bear some resemblance, and the breakdowns
of the upwards structure occur approximately at the same location and at the same time
(2¡t¡2:5 and −0:2¡y¡−0:1).

Beyond t=1:75, the 1ow of the heavy 1uid is composed by a core trailing the falling bubble
and an arm resulting from the breakdown of the roll-up motion. The core stretches under the
action of the falling bubble, and the arm elongates upwards with instabilities growing at its
end. The length of the upwards plume is identical in both cases.
In the Superbee case, the main source of instabilities seem located at the arm’s extremity.

The arm’s end complex motion begins to disrupt the core’s interface, slightly at t=2:5. We
note also that no instability develops along the external interface of the arm.
In the Super-C case, the instabilities seem to grow faster and the dynamics seems richer

than in the Superbee case. The plume seems to be better resolved as it shows more long-
winded and wrinkled structures. The interface undergoes Kelvin–Helmholtz-like instabilities
along the arm. The complex dynamics induced by the instabilities generate waves along the
core’s interface.
The Super-C scheme, applied to the 2D problem considered here, seems to generate under-

shoots and overshoots on the density that are more important than for the Superbee scheme.
The overshoots and undershoots are mainly localized near interfaces and are typically of the
order of 1 per cent. The most important values (about 3–5 per cent) are rare and are localized
in the long-winded structures in the plume. In the Superbee case, the more diAusive eAect of
the scheme smooths the small structures. As a result, it reduces the number of undershoots
and overshoots as well as their intensity, with maximum values of the order of 3 per cent
that are very rare.
This comparative study emphasizes the in1uence of the schemes on the results. Choosing

can be diDcult. The two schemes that we used seemed to have good ability to enforce mass
conservation with discontinuous initial data. However, they may be inaccurate when dealing
with small structures. On the one hand, Superbee tends to smooth them too much due to
diAusive eAects. On the other hand, because of more compressive properties, we suspect that
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Figure 3. Re=5000. Finite volume solution. The interface is shown at times:
1, 1.5, 1.75, 2, 2.25, and 2.5.

Super-C generates spurious structures by interaction between the grid and the 1uid interface
especially when its curvature is important. Note, however, that the problem is complex and
more investigations are needed to sort out the origin of these shortcomings. Here, our purpose
is only to show that for 2D Rayleigh–Taylor instabilities, there is a tremendous sensitivity of
the approximate solution with respect to the choice of the numerical scheme.

4. CONCLUSIONS

In this work, we have extended the projection method to the case of incompressible viscous
1ows with non-uniform density. A second-order unconditionally stable projection scheme has
been proposed which is based on performing two projections per time step and using a three-
level BDF scheme for the time integration of the mass conservation and momentum equations.
To verify the correctness of the method, it has been applied to a test case previously

considered in the literature. The problem consists in simulating the evolution of the Rayleigh–
Taylor instability of the interface between 1uids of diAerent densities. The results of the
method in the range Re≈ 1000 are in agreement with the inviscid computations [14] only in
the early stages of vortex formation and roll-up.
By comparing the 3nite element solution to a 3nite volume one, we have come to the

conclusion that the considered problem has no inviscid smooth limit, hence con3rming a
conjecture by BirkhoA stating that the inviscid problem is not well-posed for large times.
Furthermore, we have shown that at even moderate Reynolds numbers, this problem is ex-
tremely sensitive to mesh re3nement and to the numerical method adopted. This problem is
a good test case for numerical methods dedicated to the solution of conservation laws.
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