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On the use of the notion of suitable weak solutions in CFD
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SUMMARY

The notion of suitable weak solutions for the three-dimensional incompressible Navier–Stokes equations
together with some standard regularization techniques for constructing these solutions is reviewed. The
novel result presented in this paper is that Faedo–Galerkin weak solutions to the Navier–Stokes equations
are suitable provided they are constructed using finite-dimensional spaces having a discrete commutator
property and satisfying a proper inf–sup condition. Low-order mixed finite element spaces appear to be
acceptable for this purpose. Connections between the notion of suitable solutions and LES modeling are
investigated. A proposal for a large eddy scale model based on the notion of suitable solutions is made
and numerically illustrated. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Position of the problem

This paper focuses on the notion of suitable weak solutions for the three-dimensional incompress-
ible Navier–Stokes equations and discusses the relevance of this notion to computational fluid
dynamics (CFD).
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1154 J.-L. GUERMOND

Let � be a connected, open, bounded domain in R3 and consider the Navier–Stokes equations
in �

�tu+u·∇u+∇p−R−1
e �u = f in QT

∇·u = 0 in QT

u|t=0 = u0, u|� =0

(1)

where QT =�×(0,T ) is the space–time domain, � is the boundary of �, and Re is the Reynolds
number. Additional regularity requirements on f and u0 will be added when needed.

The question we want to address in this paper is that of constructing approximate solutions to
(1) using under-resolved meshes. Solving (1) on under-resolved meshes cannot be avoided when
the Reynolds number is large, which is very often the case in engineering situations. At the present
time, simulating time-dependent flows at Reynolds numbers greater than a few thousands is a
daunting task. The reason for the very limited success of direct numerical simulation (DNS) is
rooted in the heuristic Kolmogorov estimate O(R9/4

e ) for the total number of degrees of freedom
required to simulate flows at a given value of Re. Considering the current pace of progress in
computing power, this estimate undercuts the prospect of DNS of large-Reynolds number flows
to some date possibly far in the future.

The current trend in CFD consists of computing the scales of the flow that can be represented
on the available grid (i.e. the so-called large eddy scales (LES)) and modeling the rest of the scales
that are smaller than the mesh size. The modeling in question has spawned scores of schools
of thoughts, not necessarily converging. An extended variety of LES models is now available;
see e.g. [1–3] for reviews. However, no satisfactory mathematical theory for LES has yet been
proposed (for preliminary attempts of formalization see [3–5]). More surprisingly, no mathematical
definition of LES has been stated either besides that in [6] and that in Hoffman and Johnson [7, 8].

In the wake of [6, 8], the objective of the present paper is to show that the notion of suitable
weak solutions introduced by Scheffer [9] is a sound, firm, mathematical ground, which may be
useful to LES modelers to built up their theories. In particular, we propose at the end of the
present paper a model that aims at controlling the energy balance at the grid scale in a way that
is consistent with the notion of suitable solutions, i.e. energetically consistent.

The paper is organized as follows. The definition of suitable weak solutions to the Navier–Stokes
equations is recalled in Section 2. Some open questions regarding this notion are discussed. Standard
techniques to construct suitable weak solutions are detailed in Section 3. All these techniques
are shown to have striking similarities with popular LES methods. It is shown in Section 4 that
the limits of Faedo–Galerkin approximations are suitable weak solutions to the Navier–Stokes
equations provided the discrete spaces have a discrete commutator property and satisfy a proper
inf–sup condition. This property holds for finite elements and wavelets, but is not satisfied by
spectral methods. Hence, whether DNS spectral methods give suitable solutions at the limit is still
an open question. The relevance of the notion of suitable weak solutions to under-resolved CFD
is discussed in Section 5. It is shown therein that requiring discrete solutions to be suitable in a
discrete sense amounts to requiring the energy of eddies of size similar to that of the mesh size to
cascade down to subgrid scales and be eventually dissipated. A proposal for a LES model based on
suitability is made at the end of the paper. The model consists of constructing a numerical viscosity
measuring the default to suitability. The idea is illustrated numerically on the one-dimensional
compressible Euler equations.
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1.2. Notations and conventions

Spaces of R3-valued functions on � are denoted in bold font. No notational distinction is made
between R-valued and R3-valued functions. The Euclidean norm in R3 is denoted by |·|, the
maximum norm in R3 is denoted by |·|∞. In the following c is a generic constant that may depend
on the data f, u0, Re, �,T . The value of c may vary at each occurrence. Whenever E is a normed
space, ‖·‖E denotes a norm in E . The scalar product in L2(�) is denoted with parentheses, i.e.
(v,w) :=∫

� v(x)w(x)dx ; the same notation is used for the scalar product in L2(�).
To account for solenoidal vector fields we set [10]

H={v∈L2(�);∇·v=0;v·n|� =0} (2)

V={v∈H1(�);∇·v=0;v|� =0} (3)

2. SUITABLE WEAK SOLUTIONS

2.1. The definition

It is known since Leray [11] and Hopf [12] that weak solutions to (1) exist, but the question of
uniqueness of these solutions is still open. This is an outstanding thorn in the side of mathematicians.
The major obstacle in the way is that the a priori energy estimates obtained so far do not preclude
the occurrence of so-called vorticity bursts reaching scales smaller than the Kolmogorov scale.
It is in general believed that the uniqueness question is intimately intermingled with what is
known/observed as turbulence. In mathematical terms, the turbulence question is an elusive one.
Since the bold definition of turbulence by Leray in the 1930s [11], calling ‘solution turbulente’
any weak solution of the Navier–Stokes equations, progress has been frustratingly slow.

Since we are not able (yet) to prove uniqueness, we have to admit the fact that weak solutions
may not be unique. Then one may wonder whether it is possible to distinguish one of these to be
more physically relevant than the others. This principle has been fruitful for the analysis of scalar
nonlinear conservations laws. It is known since Kružkov [13] that, although nonlinear conservations
laws have infinitely many weak solutions in general, there is only one weak solution that satisfies
the entropy inequality(ies). Hence, adding to the conservation law one entropy inequality (or more)
is enough to select the so-called physical weak solution. One may then wonder whether a similar
idea could apply for the Navier–Stokes equations. A possibly important step in this direction has
been made by Scheffer [9].

In a ground-breaking paper [9] Scheffer introduced the notion of suitable weak solutions for
the Navier–Stokes equations. In a few words, this notion boils down to the following.

Definition 2.1
Let (u,p), u∈L2((0,T );H1(�))∩L∞((0,T );L2(�)), p∈D′((0,T ); L2(�)), be a weak solution
to the Navier–Stokes equation (1). The pair (u,p) is said to be suitable if the local energy balance

�t ( 12u2)+∇·(( 12u2+p)u)−R−1
e �( 12u2)+R−1

e (∇u)2− f·u�0 (4)

is satisfied in the distributional sense, i.e. in D′(QT ;R+).

It is remarkable that the above inequality has striking similarities with entropy conditions for
conservation laws. Think of it as an entropy inequality where the kinetic energy would play the
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1156 J.-L. GUERMOND

role of an entropy (recall that for the inviscid Burgers equation, the kinetic energy is the only
entropy that needs to be taken of).

With this notion Scheffer has been able to derive a bound from above of some Hausdorff measure
of the set of singularities of suitable weak solutions, the remarkable fact being that these bounds
cannot (yet) be obtained without invoking suitability, i.e. it is not known whether every weak
solution satisfies (4). The result of Scheffer has been improved by Caffarelli–Kohn–Nirenberg
and is now referred to as the Caffarelli–Kohn–Nirenberg Theorem [14, 15] in the literature. In a
nutshell, this result asserts that the one-dimensional Hausdorff measure of the set of singularities of
a suitable weak solution is zero. In other words, if singularities exist, they must lie on a space–time
set whose dimension is smaller than that of a space–time line. At the present time, this is the
best partial regularity result available for the Navier–Stokes equations. For any practical purpose,
this theorem asserts that suitable weak solutions are almost classical. Recall that if a classical
solution to (1) exists, then it is unique (of course, proving the existence of a classical solution is
as difficult as proving the uniqueness of a weak solution). The word ‘almost’ is important here;
although suitable weak solutions are the most regular solutions we know that exist, they may still
have singular points, i.e. not be classical.

2.2. Open questions

For the person who is not familiar with this field, the first question that comes to mind is whether
suitable weak solutions exist at all. The answer to this question is always yes. More details on
how suitable solutions can be constructed are given later in Section 3. In a few words it suffices to
regularize the Navier–Stokes equations just a little to obtain suitable solutions. This can be done
either by smoothing the nonlinear term or by adding some hyperviscosity. Another way, which
has been discovered in 2006, consists of constructing Galerkin approximations to (1). Under some
hypotheses on the discrete setting, it can be shown that Galerkin solutions converge to suitable
weak solutions as the mesh size goes to zero.

Another more intriguing question is the following: Is the class of suitable weak solutions a proper
subclass of weak solutions? This problem seems to have been open since Scheffer introduced
the notion of suitable solutions. Proving that these two sets are different would imply that the
Navier–Stokes equations are not well posed, i.e. weak solutions are not unique (for some set of
data, there would be a weak solution that is not suitable and one that is suitable); see Figure 1.

A third question a CFD specialist is certainly entitled to raise is the following: What use can
be made of the notion of suitable weak solution in CFD? I hope it will be clear at the end of

Figure 1. Suitable versus weak solutions.
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this paper that suitability is exactly what a CFD specialist cares about the most. In a few words
suitability is a guaranty that energy is dissipated at the mesh scale in a way that is physically
consistent, i.e. the energy that goes below the mesh scale is dissipated and never returns.§ See also
Hoffman and Johnson [8, Chapter 19] for a related discussion on this topic.

Another question of interest is that concerning DNS. Since DNS is the highest court in the LES
world, is it clear that as the mesh size goes to zero DNS solutions converge to a suitable solution?
This is indeed true if the numerical method that is used satisfies some particular properties that will
be detailed later in Section 4.2. Surprisingly, the Fourier method, which is the method of choice
in turbulence computing, does not satisfy these properties, and to the best of my knowledge it is
still an open question whether Fourier solutions are suitable at the limit.

3. CONSTRUCTION OF SUITABLE SOLUTIONS BY REGULARIZATION

The purpose of this section is to review some techniques that are known to produce suitable
weak solutions. They all consist of regularizing the Navier–Stokes equations appropriately. All
these technique have striking similarities with popular LES models. Why is it so? One can also
reformulate the question otherwise: why is that most LES models have striking similarities with
regularization methods that are known to produce suitable weak solutions? Would not it be that
the LES world is looking for suitability without being aware of Definition 2.1?

3.1. Leray mollification

A simple construction yielding a suitable solution has indeed been proposed by Leray [11] before
this very notion was introduced in the literature by Scheffer [9]. Leray proved the existence of
weak solutions by using a, now very popular, mollification technique.

Assume that � is the three-dimensional torus (0,2�)3. Denoting by B(0,ε)⊂R3 the ball of
radius ε centered at 0, consider a sequence of nonnegative mollifying functions (�ε)ε>0 satisfying

�ε ∈C∞
0 (R3;R+), supp(�ε)⊂ B(0,ε),

∫
R3

�ε(x)dx=1 (5)

Defining the convolution product �ε∗v(x)=∫
R3 v(y)�ε(x−y)dy, Leray suggested to regularize

the Navier–Stokes equations as follows:

�tu�+(�ε∗u�)·∇u�+∇p�−R−1
e �u� =�ε∗f

∇·u� =0

u� is periodic

u�|t=0=�ε∗u0

(6)

The following holds (see [11, 16]):

§The reader who believes that it is legitimate to let energy come back from scales that cannot be represented by the
mesh would save his time by stopping reading at this point. This statement does not deny backscatter, but simply
says that if backscatter occurs and is important, then the mesh should rather be fine enough so that backscatter
occurs above the finest mesh scale.
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1158 J.-L. GUERMOND

Theorem 3.1
For all u0∈H, f∈H, and ε>0, (6) has a unique C∞ solution. The velocity is bounded uniformly
in L∞(0,T ;H)∩L2(0,T ;V) and, up to subsequences, converges weakly in L2(0,T ;V). The limit
solution as ε→0 is a suitable weak solution of the Navier–Stokes equations.

The above mollification technique can be extended to account for the homogeneous Dirichlet
boundary condition as done in [14] and the limit solution is suitable in this case as well.

Roughly speaking, the convolution process removes scales that are smaller than ε. Hence, by
using �ε∗u� as the advection velocity, scales smaller than ε are not allowed to be nonlinearly
active. This feature is a characteristic of most LES models for which ε would be the so-called
LES.

3.2. NS-� and Leray-� models

Let ε be a small parameter that we henceforth refer to as the LES. Introduce the so-called Helmholtz
filter (·) :v 
→v such that

v :=(I −ε2�)−1v (7)

where either homogeneous Dirichlet boundary conditions or periodic boundary conditions are
enforced depending on the setting considered. The so-called Navier–Stokes-alpha model introduced
in Chen et al. [17] and Foias et al. [18, 19] consists of the following:

�tu�+u�·∇u�+(∇u�)
T ·u�−R−1

e �u�+∇�ε = f

∇·u� =0

u�|� =0, u�|� =0 or u� and u� are periodic

u�|t=0=u0

(8)

Once again, regularization yields uniqueness for each ε>0 and suitability at the limit as stated
in the following

Theorem 3.2
Assume f∈H, u0∈V. Problem (8) with the Helmholtz filter (7) has a unique solution u� in
C0([0,T );V) with �tu� ∈L2(0,T ;H). The solution u� is uniformly bounded in L∞(0,+∞;H)∩
L2(0,+∞;V) and, up to subsequences, converges weakly in L2

loc(0,+∞;V) to a weak Navier–
Stokes solution as ε→0.

Here again, it is a simple matter to show that when periodic boundary conditions are enforced
u� converges, up to subsequences, to a suitable solution.

A variant of the above regularization technique consists of replacing the term (∇u�)
T ·u� in (8)

by ∇ 1
2u2

� . The resulting model then falls in the class of the Leray regularization in the sense that
the momentum equation is the same as that in (6) but for the advection velocity �ε∗u�, which is
replaced by u�. This model has been analyzed in [20] and is called the Leray-� model. It also
gives a suitable solution at the limit. It has been reported in [21] to be a good candidate for an
LES model.
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ON THE USE OF THE NOTION OF SUITABLE WEAK SOLUTIONS IN CFD 1159

3.3. Hyperviscosity

Lions [22, 23] proposed the following hyperviscosity perturbation of the Navier–Stokes equations:

�tu�+u�·∇u�+∇p�−R−1
e �u�+ε2�(−�)�u� = f in QT

∇·u� = 0 in QT

u�|�, �nu�|�, . . . ,��−1
n u�|� = 0 or u� is periodic

u|t=0 = u0

(9)

where ε>0 is the LES and �∈R. The appealing aspect of this perturbation is that it yields a
well-posed problem in the classical sense when �� 5

4 in three space dimensions. More precisely,
upon denoting the space dimension by d�2, the following result (see [22–24]) holds.
Theorem 3.3
Assume f ∈L2(0,T ;L2(�)) and u0∈H�(�)∩H1

0(�). Problem (8) has a unique solution u� in
L∞(0,T ;H�(�)∩H1

0(�)) for all times T>0 if �>(d+2)/4. Up to subsequences, u� converges to
a weak solution u of (1), weakly in L2(0,T ;H1

0(�)). Moreover, if periodic boundary conditions
are enforced, the limit solution (u, p) is suitable.

It is remarkable that hyperviscosity models are frequently used in so-called LES simulations of
oceanic and atmospheric flows [25–27].

3.4. Nonlinear viscosity models

Recalling that the Navier–Stokes equations are based on Newton’s linear hypothesis, Ladyženskaja
and Kaniel proposed to modify the incompressible Navier–Stokes equations to take into account
possible large velocity gradients [28–30].

Ladyženskaja introduced a nonlinear viscous tensor Ti j (∇u), 1�i, j�3 satisfying the following
conditions:

∀ n∈R3×3, |T(n)|�c(1+|n|2�)|n| (10)

∀ n∈R3×3, T(n) :n�c|n|2(1+c′|n|2�) (11)∫
�
(T(∇n)−T (∇g)) :(∇n−∇g)�c

∫
�

|∇n−∇g|2 (12)

The three above conditions are satisfied if T(n)=�(|n|2)n, provided the viscosity function �(�)
is a positive monotonically increasing function of ��0 and for large values of � the following
inequality holds: c����(�)�c′��, where �� 1

4 and c, c′ are some strictly positive constants.
After introducing the LES ε>0, the modified Navier–Stokes equations take the form

�tu�+u�·∇u�+∇p�−∇·(R−1
e ∇u�+ε2�+1T(∇u�))= f

∇·u� =0

u�|� =0 or u� is periodic

u�|t=0=u0

(13)
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1160 J.-L. GUERMOND

The main result from [29, 30] (see [28] for a similar result where monotonicity is also assumed)
is the following theorem.

Theorem 3.4
Assume u0∈H and f∈L2(0,+∞;L2(�)). Provided conditions (10)–(12) hold, then (13) has a
unique weak solution, for all ε>0, in L2+2�(0,T ;W1,2+2�(�)∩V)∩C0([0,T ];H). Moreover, for
periodic boundary conditions, (u�,p�) converges, up to subsequences, to a suitable solution, of (1)
as ε→0.

Possibly one of the most popular LES models is that proposed by Smagorinsky [31], which
corresponds to setting T(∇u)=|D|D. (i.e. �(�)=�� with �= 1

2 ). Hence, in addition to other possible
appealing features LES modelers may see in Smagorinsky-like LES models, the one of interest to
us is that they guaranty well posedness for all ε>0 and give suitable solutions at the limit.

3.5. Suitable versus weak

Let us summarize what has been said so far. There are different ways of constructing weak solutions
to (1).

The first strategy, developed by Leray [11], consists of introducing a small parameter ε and
perturbing (1) so as to make sure that the perturbed problem is well posed (see all the examples
in Section 3). Then by passing to the limit on ε one obtains a weak solution (actually, one obtains
possibly many subsequences, each converging to a weak solution). Very often it turns out that the
weak solutions thus reached are suitable.

A second strategy has been developed by Hopf [12] in 1951. Hopf showed that the Navier–
Stokes equations have weak solutions with prescribed initial values in smooth bounded domains
in the three-dimensional space, with zero velocity at the boundary. Hopfs proof does not make
use of mollification but instead uses a Galerkin procedure to construct approximate solutions and
reaches weak solutions by passing to the limit on the dimension of the approximation spaces, a
technique that is now familiar to numerical analysts. Until recently it was not known whether the
weak solutions reached by Hopf’s technique are suitable. It turns out that this is indeed the case in
some circumstances that are detailed in Section 4. Quite surprisingly, the case of Galerkin/Fourier
approximations, which is very important to turbulence experts in CFD, is still an open problem.

A third different approach to the existence theory was taken by Fujita and Kato [32] in 1964 by
making use of fractional powers of operators and the theory of semi-groups. It is not yet known
whether the weak solutions reached by this theory are suitable.

To conclude (1) has always weak solutions and suitable weak solutions. Whether every weak
solution is a suitable solution is an outstanding open question. The ideas discussed in this section
are illustrated in Figure 1.

4. THE CASE OF FAEDO–GALERKIN APPROXIMATIONS

The purpose of this section is to clarify the situation of DNS. We want to answer the following
question: Do approximate Navier–Stokes solutions computed with DNS methods converge to
suitable weak solutions as the mesh size goes to zero? Using the language of Section 3.5, is it true
that Hopf/Galerkin approximate solutions converge to weak suitable solutions?
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4.1. The Galerkin setting

Let us introduce a family of discrete spaces Xh ⊂H1
0(�) for the velocity and a family of discrete

spaces Mh ⊂H1∫=0(�) :={q∈H1(�); ∫
� q=0} for the pressure.

In addition to the usual interpolation (approximation) properties of Xh and Mh that we omit
here for conciseness, we assume that the pair (Xh,Mh) is compatible in the following sense: There
is c>0 independent of h such that

∀qh ∈Mh, sup
0 �=vh∈Xh

(∇qh,vh)

‖vh‖L2
�c‖∇qh‖L2

This condition is a strengthened version of the Ladyzhenskaya-Babsuka-Brezzi (LBB) condition.
It can be shown to hold for a large variety of elements that are H1-conforming on the pressure
(Hood-Taylor, Mini, etc.).

Since the velocity field may not be solenoidal (recall that the mass conservation is enforced
weakly only), we must slightly modify the nonlinear term to make it skew-symmetric. This can
be done at least in two ways as follows:

bh(u,v,v)=
{

(u·∇u+ 1
2u∇·u,v) [33]

((∇×u)×u+ 1
2∇(Kh(u

2)),v)

where Kh : L2(�)−→Mh is any linear L2-stable approximation operator (for instance, the L2-
projection).

Using the above setting, the Hopf/Galerkin formulation of (1) is the following: Seek uh ∈
C1([0,T ];Xh) and ph ∈C0([0,T ];Mh) such that for all vh ∈Xh , all qh ∈Mh , and all t ∈[0,T ]

(�t uh,v)+bh(uh,uh,v)−(ph,∇·v)+R−1
e (∇uh,∇v) = 〈f,v〉

(∇·uh,q) = 0

uh |t=0 = Ihu0

where Ih : L2(�)−→Vh is any L2-stable interpolation operator (it can be the L2-projection, for
instance). The pair (uh, ph) is henceforth referred to as a DNS solution. Note that at variance with
the various regularization techniques presented in Section 3, no smoothing of the nonlinear term
is done and no extra hyperviscosity is added.

4.2. The discrete commutator property

Before attacking the question of the convergence of the DNS approximation, we now make a
fundamental assumption on the discrete setting. We assume that the discrete framework satisfies the
following property that we henceforth refer to as the discrete commutator property (see Bertoluzza
[34–36], [37, Appendix B], or [38, Chapter I.7]):
Definition 4.1
The space Xh (resp. Mh) is said to have the discrete commutator property if there is an operator
Ph ∈L(H1

0(�);Xh) (resp. Qh ∈L(H1(�);Mh)) such that for all � in W 2,∞
0 (�) (resp. all � in

W 2,∞
0 (�)) and all vh ∈Xh (resp. all qh ∈Mh)

‖�vh−Ph(�vh)‖Hl � ch1+m−l‖vh‖Hm‖�‖Wm+1,∞, 0�l�m�1

‖�qh−Qh(�qh)‖Hl � ch1+m−l‖qh‖Hm‖�‖Wm+1,∞
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1162 J.-L. GUERMOND

Remark 4.1
When Ph (resp. Qh) is a projector, the above definition is an estimate of the operator norm of
the commutator [�, Ph] :=�◦Ph−Ph◦� where �◦v :=�v. This property is also called ‘super-
approximation’ in the finite element literature [8, 35, 36].
Remark 4.2
The discrete commutator property is known to hold in discrete spaces where there exist projectors
that have local approximation properties, see Bertoluzza [34]. It is known to hold for finite
elements and wavelets. The key property is localization. To understand how the discrete commutator
property can be proved let us assume that Ph is a linear projector and let x ∈�. For every y in a
ball of radius h centered at x , we formally have Ph(�vh)(y)≈ Ph((�(x)+O(h))vh)(y)≈(�(x)+
O(h))Ph(vh)(y)=(�(x)+O(h))vh(y)+O(h), that is to say Ph(�vh)(y)−(�vh)(y)≈O(h)vh(y),
where O(h) depends on the gradient of �.

We are now in a position to state the main result of this section.

Theorem 4.1
Under the above hypotheses, if Xh and Mh have the discrete commutator property, the pair (uh, ph)
convergences, up to subsequences, to a suitable solution to (1).

The proof to this result is quite technical and can be found in [39]. The same result holds with
periodic boundary conditions, see [37]. The technicalities in [39] reside in the handling of the
Dirichlet conditions on the velocity. The discrete commutator property is the key argument in both
[37, 39].

Theorem 4.1 asserts that, provided the discrete commutator property is satisfied by the underlying
discrete setting, DNS solutions converge to suitable weak solutions. In other words, DNS solutions
dissipate energy correctly at very fine scales. This result is not likely to surprise CFD specialists.
However, there is still some surprise in store when it comes to understand what happens when one
uses Fourier expansions to construct the DNS solution.

4.3. What happens with Fourier approximations?

Since most turbulence models are tested against DNS simulations using Fourier-based methods,
we now need to focus our attention on the Fourier technique. We assume in this section that � is
the three-dimensional torus.

Let N be a positive integer. The velocity and the pressure fields are approximated using trigono-
metric polynomials of partial degree less than or equal to N :

PN =
{
p(x)= ∑

|k|∞�N
cke

ik·x,ck=c−k

}

Since the mean value of the velocity and that of the pressure are irrelevant in the torus, we introduce
ṖN the subspace of PN composed of the trigonometric polynomials of zero mean value. Upon
introducing the notation h=1/N , we define

Xh =ṖPPN and Mh = ṖN (14)
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The stunning result of this section is summarized in the following:

Proposition 4.1
The Fourier setting does not have the discrete commutator property.

Proof
We construct a counter example. Consider now the very smooth function �(x)=ei(x1+x2+x3) and set
vh =(1,− 1

2 ,− 1
2 )e

iN (x1+x2+x3) (not that it matters, but note that ∇·vh =0). Let Ph :L2(�)−→Xh be
the L2-projection. Then �Ph(vh)=�vh since vh ∈Xh . Now, observing that �vh is a trigonometric
polynomial of degree N+1, we obtain Ph(�vh)=0. As a result [�, Ph](vh)=�vh and clearly
‖[�, Ph](vh)‖L2�c‖vh‖L2 , where c>0 depends only on �. This means that the norm of the
commutator operator [�, Ph] in L(L2(�);L2(�)) is bounded from below by c, i.e. it does not go
to zero. This result holds for any other approximation operator, since the L2-projection is the best
approximation in L2(�). �

The consequence of this negative result is that the hypotheses of Theorem 4.1 do not hold,
meaning that it not yet known whether Fourier approximations converge to suitable weak solutions.
I think this question should attract the interest of mathematicians, since it might be a place to set
a wedge that could separate the class of suitable weak solutions from that of those that are weak
only.

One way to interpret the above results is the following: The Fourier technique is so accurate that it
does not induce enough numerical diffusion to counteract the Gibbs–Wilbraham phenomenon. The
key here is the lack of localization. On the other hand finite elements, wavelets, finite differences,
etc. have enough built-in numerical dissipation to help the energy cascade to go in the right direction,
meaning that the energy at extremely fine scales is always dissipated when using approximation
methods having local interpolation properties.

5. UNDER-RESOLVED SIMULATIONS

The goal of this section is to explore some implications the notion of suitable solutions may
have when it comes to approximate the Navier–Stokes equations on a finite grid. In other words,
since limh→0 is a mathematical dream, which is unachievable with the computing power currently
available, can we anyway draw something useful from the existence of suitable solutions?

5.1. Practical interpretation of the notion of a suitable solution

At high Reynolds numbers CFD is always under-resolved, i.e. the Reynolds is always too large
with respect to the mesh size at disposal. In other words, even if one uses finite elements, finite
differences, wavelets, or any other setting admitting a discrete commutator property, the results of
Theorem 4.1 are useless for practical purposes since the approximate solution thus calculated may
be far from a (the?) suitable solution. The limit h→0 is an ideal situation from which practical
CFD simulations are usually far. Then, one may ask oneself what is the use of the notion of
suitable solutions? Is it a notion that we should care about in CFD?

To answer the above question, let us rephrase the definition of suitability. Let u, p be a weak
solution of the Navier–Stokes equations in the Leray class (i.e. the velocity field satisfies the usual
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global energy estimates). Let us define the residual of the momentum equation:

R(x, t) :=�tu−R−1
e �u+u·∇u+∇p− f (15)

u, p being a weak solution means that the residual R(x, t) is zero in the distribution sense. Is it
then clear that the power of the residual, R(x, t)·u, is zero? Well, no, since it is not known whether
u is smooth enough to be tested against R(x, t). Think of the one-dimensional inviscid Burgers
equation �t u+ 1

2�x (u
2)=0, for instance. In the distribution sense 0= RB(x, t) :=�t u+ 1

2�x (u
2),

but the unique entropy equation is that which satisfies RB(x, t)u= 1
2�t u

2+ 1
3�x (u

3)�0. It is indeed
true that RB(x, t)u=0 at points (x, t) where u is smooth, but in shocks RB(x, t)u is a negative
Dirac measure. Similarly the definition of a suitable solution can be rephrased as follows: A
suitable solution is one for which the power of the residual is negative, i.e.

�t ( 12u2)+∇·(( 12u2+p)u)−R−1
e �( 12u2)+R−1

e (∇u)2− f·u�0 (16)

in the distribution sense in QT . The reader may verify by himself that indeed (16) is formally
equivalent to R(x, t)·u�0 (the term ‘formally’ meaning: in the optimistic hypothesis that u and p
are smooth functions). In other words, if singularities occur, suitable solutions are such that these
singularities dissipate energy.

5.2. What happens in under-resolved simulations?

Let us now focus our attention on numerical simulations and let us put ourselves in the under-
resolved situation. Being under-resolved in a space–time region means that the numerical solution
experiences large gradients that cannot be correctly represented by the mesh in the region in ques-
tion. In other words, for all practical purposes, the numerical solution is singular at the considered
mesh scale (i.e. behaves like a singular one on the available mesh). As time progresses the large
unresolved gradients are likely to produce even larger gradients through nonlinear interactions, i.e.
we have to deal with subgrid scales that can uncontrollably produce or dissipate energy locally. The
question is no longer to determine whether the solution(s) to the Navier–Stokes equation is (are)
classical or not (a debate that a pragmatic reader may think being of remote academic interest), it
now just amounts to deciding what to do with a quasi-singular numerical solution.

Let us rephrase the situation in mathematical terms. Let (uh, ph) be the approximate velocity
and the approximate pressure, the subscript h representing the typical mesh size. Let Dh(x, t) be
the numerical residual of the energy (entropy) equation:

Dh(x, t) :=�t ( 12u
2
h)+∇·(( 12u2h+ ph)uh)−R−1

e �( 12u
2
h)+R−1

e (∇uh)
2− f·uh (17)

Being under-resolved in a neighborhood of (x0, t0) means that Dh(x0, t0) is significantly larger than
the consistency error of the method, i.e. ‖Dh(x0, t0)‖�0. If locally the power of the numerical
singularity is negative, i.e. Dh(x0, t0)�0, we do not have anything to fear since energy is cascading
down and is eventually lost in the subgrid scales, a scenario in agreement with the Kolmogorov
cascade. On the other hand if the numerical singularity produces energy, i.e. Dh(x0, t0)·uh>0,
all the bets are off since the situation is out of control and, by analogy with a shock that would
produce energy, is unphysical.

In conclusion, ensuring that Dh(x0, t0)�0 is a highly desirable feature. If it could be enforced
everywhere in the domain, it would mean that the energy gently cascades down in the subgrid
scales and is eventually dissipated. Rephrased in eddy terms, these conditions would guaranty that
every eddy of size similar to the mesh size would eventually be dissipated.
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It seems clear now that in under-resolved situations, one should wish the discrete solution to
satisfy

Dh(x, t)�0 ∀(x, t)∈QT (18)

i.e. the approximate solution should be suitable in the discrete sense.

5.3. Proposal for an LES model

Of course (18) cannot be enforced in addition to the discrete momentum equation and the discrete
mass conservation. However, similarly to the entropy condition for nonlinear conservation laws,
(18) must be incorporated in the algorithm that calculates the pair (uh, ph).

Possibilities are numerous. The first technique that comes to mind is to use (18) to construct an
artificial viscosity:

�h(uh, ph) :=min

(
R−1
e ,h

(Dh(x, t))+
‖uh‖‖∇uh‖

)
(19)

where t+ := 1
2 (t+|t |) is the positive part. The momentum equation can then be modified by adding

the term−∇·(�h(uh, ph)∇uh) in the left-hand side. Observe that �h(uh, ph) is a consistent viscosity;
it is of order of the consistency error when the mesh is fine enough to resolve all the scales. The
viscosity is zero when the power of the residual is negative, i.e. when the energy cascades down.
The viscosity is active only in the under-resolved region if spurious energy is generated at the
mesh scale, i.e. when energy seems to be coming up from subgrid scales.

5.4. Numerical illustrations

To support the idea that constructing a numerical viscosity based on the notion of entropy is a
good one, we illustrate the concept on the compressible Euler equations in one space dimension.
To make the challenge difficult, we use the Fourier method, which is the most unstable of all since
it has no built-in numerical dissipation as discussed in Section 4.3 (see Guermond and Pasquetti
[40] for details).

The Euler equations of gas dynamics in one space dimension are as follows:

�tv(x, t)+�x f (v(x, t))=0, v(0)=v0, v=
⎡
⎢⎣

	

	u

E

⎤
⎥⎦ , f (v)=

⎡
⎢⎢⎣

	u

	u2+ p

u(E+ p)

⎤
⎥⎥⎦ (20)

where 	 is the density of the gas, u is the velocity, m :=	u is the momentum, E is the total energy
per unit volume, and p=(
−1)(E− 1

2	u
2) is the pressure, 
 :=1.4. The Euler system expresses

the conservation of mass, momentum, and energy for a perfect gas. This system has infinitely
many weak solutions, but only one of these satisfy the entropy inequality:

�t S+�x (uS)�0 (21)

where the physical entropy¶ is defined by

S=	 log(p/	
) (22)

¶We adopt the physical convention of the positive entropy.
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To construct a Fourier/Galerkin approximation to (20), we face the following question: where
should the entropy-based numerical viscosity be introduced? To answer this question, we follow
physics and look at the viscous case, that is at the Navier–Stokes system for which the momentum,
energy are as follows:

�tm+�x (mu+ p)=�x (��xu) (23)

�t E+�x ((E+ p)u)=�x (�u�xu)+�x (��x T ) (24)

where T := p/	 is the temperature, and � and � are the viscosity and conductivity, respectively.
The Navier–Stokes entropy satisfies the following balance equation:

�t S+�x (uS−�(
−1)�x log(T ))=(
−1)

(
�

(�xu)2

T
+�(�x logT )2

)
(25)

This equation is the counterpart of (16) for the compressible Navier–Stokes equations.
Let N ∈N be an integer. We then define an approximate Fourier/Galerkin solution to (20) by

setting

vN =
N−1∑
k=0

v̂k(t)exp(ikx), v̂k(t)= v̂N−k (26)

vN (0)= PNv0, and by solving

�tvN +�x PN ( f (vN )+ fvisc(vN ))=0, fvisc(vN )=

⎡
⎢⎢⎣

0

−�N�xvN

−�NuN�xuN −�N�x TN

⎤
⎥⎥⎦ (27)

where PN is the L2-projection onto the set of the trigonometric polynomials of degree at most N .
We construct the numerical viscosity �N and the conductivity �N by following the same line of
thought as in Section 5.2. We first define the entropy residual

RN = �t SN +�x (uN SN −�N (
−1)�x log(TN ))

−(
−1)

(
�N

(�xuN )2

TN
+�N (�x logTN )2

)
(28)

The quantity |uN |+(
TN )1/2 being the maximum wave speed, we construct a limiting viscosity
as follows:

�art=�r h	N max
x

(|uN (x)|+(
TN (x))1/2) with �r ∈[ 1
15 ,

1
4 ] (29)

Then �N and �N are computed as follows:

�N =min(�art,�mhL|R(vN )|) with �m ∈[ 14 ,2] (30)

�N =�e�N with �e∈[0, 1
4 ] (31)

where L is the size of the computational domain and �r , �m , �e are user-dependent parameters.
Note that we can also use the negative part of the entropy residual, (RN )−, since definition (25)
implies that S is an increasing quantity. Our experience is that using (RN )− instead of |RN | slightly
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Figure 2. Shu–Osher shock tube, density at t=1.8, 400 (left) and 800 points (right).

sharpens shocks, although it is less robust (and using (RN )+ produces oscillations, as expected).
However, again, using |RN | is slightly more robust since it can run very efficiently with very small
values for �r and �m .

The time integration is done using the strongly stable explicit Runge–Kutta algorithm RK3
described in [41]. The nonlinear viscosity �N (uN ) is made explicit at each time step, say tk+1, and
evaluated at time tk . To illustrate the performance of the above method, we now consider standard
test problems.

We first consider the so-called Shu–Osher shock tube. The computational domain is �=[0,10],
L=10, and the initial data are{

	 = 3.857143, v=2.629367, p=10.333333 if x<1

	 = 1+0.2sin(5x), v=0, p=1 if x>1
(32)

The problem is made periodic by extending the domain to [−10,10] and by slightly shifting the
data and extending the shifted data. The entropy viscosity is constructed by using |RN | in the
definition of �N . Using (RN )− gives similar results. The computations are done with CFL=0.1,
�r = 1

8 , �r =1, and �e= 1
30 . The graph of the density at t=1.8 is shown in the left panel of Figure 2

for two different resolutions, N =200 and 400 (400 and 800 points, respectively). This case is
challenging since the fine features are very sensitive to any artificial viscosity. The reader familiar
with this test case will note that it is remarkable that the solution with 400 points is very accurate.

The second test is the so-called Woodward–Collela shock wave. The computational domain is
�=[0,1], L=1. The initial data are

	=1, v=0,

⎧⎪⎨
⎪⎩
p=1000 if x<0.1

p=0.01 if 0.1<x<0.9

p=100 if 0.9<x<1

(33)

and the boundary conditions are v|x=0=0 at v|x=1=0 for all times. The Dirichlet boundary
conditions are enforced by extending � to [−2,2] and appropriately extending the data. The
computations are done with CFL=0.05, �r = 1

6 , �r = 1
2 , and �e= 1

20 . The graph of the density
at t=0.038 is shown in Figure 3 for various resolutions, 200,400,800, and 1600 points. We
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Figure 3. Woodward–Collela shock wave, density at t=0.038, using 200,400,800, and
1600 points (divide by 2 to get N ).

observe convergence and the reader who is familiar with this problem will recognize that the limit
solution is the correct one and the method performs quite well when compared with other standard
(nonadaptive) techniques available in the literature. In particular, the solution with 200 points is
remarkably accurate considering that no adaptive mesh refinement has been done (recall that we
are using the Fourier method).

We have applied the above strategy to two space dimension problems using conforming finite
elements. We have performed a test on a two-dimensional transport equation. The velocity field
is a constant rotation about the origin with angular speed equal to 2�. The initial data are the
characteristic function of a disk of radius 0.25 initially centered at (0.5,0). The computation is done
using conforming finite elements P1 and P2. The viscosity is defined by constructing the residual
of the entropy equation using the square of the unknown as an entropy. We computed the error at
time t=1 (one complete revolution) in the L1-norm and the L2-norm. We observed that the error
measured in the L1-norm behaves like 1

2 (k+ 1
2 )/(k+1) in L2, and (k+ 1

2 )/(k+1) in L1 where k
is the degree of the finite elements (k=1 for conforming P1 elements and k=2 for conforming
P2 elements). These estimates are compatible with the fact that the solution is in H1/2−� and in
W 1−�,1 and they correspond to the L p estimates that can be obtained by using a discontinuous
Galerkin method (or any other standard stabilization technique), see [42, Theorem 4.2]. In other
words, using a simple entropy-based viscosity stabilization is as efficient as DG and does not
require additional shock capturing. We are currently working on the proof for this result. These
findings will be reported elsewhere [40, 43].
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13. Kružkov SN. Generalized solutions of the Cauchy problem in the large for first order nonlinear equations.

Doklady Akademii Nauk SSSR 1969; 187:29–32.
14. Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier–Stokes equations.

Communications on Pure and Applied Mathematics 1982; 35(6):771–831.
15. Lin F. A new proof of the Caffarelli–Kohn–Nirenberg theorem. Communications on Pure and Applied Mathematics

1998; 51(3):241–257.
16. Duchon J, Robert R. Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes

equations. Nonlinearity 2000; 13(1):249–255.
17. Chen S, Foias C, Holm DD, Olson E, Titi ES, Wynne S. A connection between the Camassa–Holm equation

and turbulent flows in channels and pipes. Physics of Fluids 1999; 11(8):2343–2353.
18. Foias C, Holm DD, Titi ES. The Navier–Stokes-alpha model of fluid turbulence. Physica D 2001; 152–153:

505–519.
19. Foias C, Holm DD, Titi ES. The three dimensional viscous Camassa–Holm equations, and their relation to the

Navier–Stokes equations and turbulence theory. Journal of Dynamics and Differential Equations 2002; 14(1):1–35.
20. Cheskidov A, Holm DD, Olson E, Titi ES. On a Leray-� model of turbulence. Proceedings of the Royal Society

of London Series A 2005; 461:629–649.
21. Geurts BJ, Holm DD. Regularization modeling for large-eddy simulation. Physics of Fluids 2003; 5(1):L13–L16.
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