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Abstract

The Maxwell equations in the magnetohydrodynamic (MHD) limit in heterogeneous domains composed of conducting
and non-conducting regions are solved by using Lagrange finite elements and by enforcing continuities across interfaces
using an Interior Penalty technique à la Baker [Finite element methods for elliptic equations using non-conforming ele-
ments, Math. Comp. 31 (137) (1977) 45–59]. The method is shown to be stable and convergent and is validated by con-
vergence tests. It is used to compute Ohmic decay in various compact conducting domains and to simulate the
kinematic dynamo action in two different geometries.
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1. Introduction

1.1. Introduction

The goal of the present paper is to introduce a finite element technique for solving the Maxwell equations in
the MHD limit in heterogeneous domains. Denoting by L and T the characteristic length and time scales of
interest, the MHD limit we refer to corresponds to L=T � c, where c is the speed of light. In this context, the
displacement currents are neglected and the electromagnetic waves are filtered out. We particularly focus our
attention on domains that can be decomposed into regions with non-zero conductivity and regions with zero
conductivity. We refer to [1,6] for the asymptotic analysis of this problem.
0021-9991/$ - see front matter. Published by Elsevier Inc.
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The main mathematical difficulty arising from this situation is that the magnetic field, H, in the non-
conducting region is curl free and the electric field, E, cannot be eliminated by using the Ohm law in this
region. Many methods have been proposed to solve this problem. One technique consists of modeling the
insulating region as weakly conducting and eliminating E using the small artificial conductivity thereof, see
e.g. [18]. This is a penalty method which is known to be ill-conditioned and to be unable to account for
induced charge problems as occurring in the so-called Faraday disk. Alternative algorithms involving vec-
tor potentials for the magnetic field or for the electric current have also been proposed (see for example
[4,12]). Another approach consists of realizing that E in the non-conducting region is the Lagrange mul-
tiplier associated with the constraint $ · H = 0, as emphasized in [15,16]. It then becomes clear that if both
E and H are retained as dependent variables, the problem has a saddle point structure. If finite elements
are used, this implies that either mixed pairs of finite elements (see e.g. [14–16]) or a stabilization method
(e.g. Galerkin/least-squares, sub-grid viscosity, discontinuous Galerkin, etc.) must be employed. The for-
mer method has been shown to be efficient in two space dimensions in [14], but it turns out that retaining
both H and E in the non-conducting region is somewhat computationally expensive in three space
dimensions.

The above reasons have led us to shift our focus on methods that are based on H in the conducting
region and on a magnetic scalar potential in vacuum. In fact, if the external insulating domain is simply
connected, the magnetic field thereof can be expressed in terms of a harmonic scalar potential /. It is then
possible to reduce the dynamical variables to H in the conducting region and to / in the insulating exterior.
A further reduction is possible in principle by using boundary elements to solve the external harmonic prob-
lem. This method has been introduced in [5] and shown in [17] to work well for solving the ohmic diffusion
equation. However, it remains to be validated with the kinematic dynamo and the full nonlinear MHD
equations, which is the focus of our group. If the boundary elements reduction alluded to above is not
done, a serious question concerning the coupling of the two representations of the magnetic field arises.
The tangential component of H must match the tangential component of $/ across the interface between
the conducting and non-conducting regions. Likewise, the normal component of lcH must also match the
normal component of lv$/ across this interface, where lc, lv are the magnetic permeabilities in the con-
ducting and non-conducting regions, respectively. As shown by Bossavit [6], it turns out that when using
Nédélec finite elements (also called edge elements) the above coupling is natural. However, if Lagrange ele-
ments are used, this coupling becomes a serious mathematical headache. The first mathematical difficulty is
that when strongly enforcing tangential boundary conditions on Lagrange elements, it may happen that a
singular component of the solution is not computed if the interface is not smooth (see Costabel’s lemma
[10]).2 Another issue is that exact coupling may sometimes be impossible when using polynomials to approx-
imate H and /. These reasons and the fact that we nevertheless insist on working with Lagrange elements
have lead us to consider an Interior Penalty technique [3] to weakly enforce the coupling across the
interface.

The method under consideration in the present paper consists of working with the pair H–/. We use
Lagrange elements of degree k P 1 to approximate H in the conducting region, and we use Lagrange elements
of degree k + 1 P 2 to approximate / in the non-conducting region. The tangential component of the mag-
netic field is weakly enforced to be continuous across the interface by a consistent Interior Penalty method.
The normal component of the magnetic induction is naturally (i.e., not particularly taken care of) enforced
to be continuous across the interface by the weak formulation. The method is shown to be stable and conver-
gent and is validated on three-dimensional benchmark problems.

The paper is organized as follows. We introduce the setting and a weak formulation of the problem under
consideration in Section 2. The Interior Penalty Galerkin approximation technique that we propose to solve
the problem together with its stability and error analysis is presented in Section 3. Technical details and con-
vergence tests confirming our a priori error analysis are reported in Section 4. In Section 5, we demonstrate the
capability of the method by studying ohmic diffusion in different geometries and two examples of kinematic
dynamo action. Concluding remarks are reported in Section 6.
2 H1(X) \ H0,curl(X) is a genuine closed subspace of H0,curl(X) \ Hdiv(X) if X is a non-convex polyhedron.
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2. The continuous problem

2.1. The setting

Let us consider the MHD limit of the Maxwell equations in an open, connected, domain X � R3:
Fig. 1.
domai
lotH ¼ �r� E in X;

r�H ¼ rðEþ u� lHÞ þ js in X;

E� njC ¼ a; Hjt¼0 ¼ H0;

8><
>: ð2:1Þ
where js is an externally imposed distribution of current, u an imposed velocity field, a a given boundary data,
H0 an initial magnetic field, l the permeability field, and r the conductivity field. In the above formulation the
displacement currents represented by the term �otE in the Ampère–Maxwell equation has been neglected due
to the fact that u scales like L/T and the scales of interest L and T are such that L=ðcT Þ is extremely small. Note
also that this formulation is valid only if r is uniformly positive over X and in this case an evolution equation
for H can be obtained after eliminating the electric field.

Additional terms must be accounted for in (2.1) when r is not uniformly positive, as we now explain, To be
more specific, the domain is henceforth assumed to be bounded and its boundary C to be at least Lipschitz
continuous. X is assumed to be partitioned into a conducting region (subscript c) and an insulating region
(subscript v) as follows:
�X ¼ �Xc [ �Xv; Xc \ Xv ¼ ;; ð2:2Þ

where the overbar ð�Þ denotes the closure. We henceforth assume that the conductivity r(x) is zero in Xv and is
bounded from below and from above in Xc by positive constants, say r0 and r1, respectively. For instance the
conducting medium occupying Xc could be the Earth core, the solar plasma, molten metals (gallium, sodium),
or any other conducting material. The insulating region, Xv, could be for instance vacuum, the Earth mantle,
or air. To refer to boundary conditions easily, we introduce
Cc ¼ oX \ oXc; Cv ¼ oX \ oXv; C ¼ oX ¼ Cv [ Cc:
Moreover, we denote by C0
v the connected component of oXv that contains Cv. We assume that oXv has J + 1

connected components, say
C0
v;C

1
v; . . . ;CJ

v :
Fig. 1 presents a particular setting with J = 2.
The interface between the conducting region and the non-conducting region is denoted by
R ¼ oXc \ oXv:
When r and js are simultaneously zero somewhere in the domain, say in Xv, the problem (2.1) must be
replaced by:
Γ1
v

Γ2
v

Γc

Γ0
v

Γ0
vΩv

Ωc

Ωc

Ωc

Computational domain X with its different boundaries: the shaded regions constitute the conducting domain Xc, the non-shaded
n is the vacuum Xv.
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lotH ¼ �r� E in X;

r�H ¼
rðEþ u� lHÞ þ js in Xc;

0 in Xv;

�
r � E ¼ 0 in Xv;

E� njC ¼ a; Hjt¼0 ¼ H0;R
Ci

v
E � n ¼ 0; 1 6 i 6 J

8>>>>>>>><
>>>>>>>>:

ð2:3Þ
where C0
v;C

1
v; . . . ;CJ

v are the J + 1 connected components of oXv as defined above. We refer to [1,6] for more
details on the asymptotic analysis leading to this model. Note that the condition

R
C0

v
E � n ¼ 0 needs not be

enforced since it is a consequence of the J other conditions together with E being solenoidal. Observe that
the two extra conditions r � EjXv

¼ 0 and
R

Ci
v

E � n ¼ 0; 1 6 i 6 J are what is left from the Ampère–Maxwell
equation when passing to the limit to zero on the ratio L=ðcT Þ assuming that there is no electrostatic charge
distributed in the domain. These extra conditions ensure that E is uniquely defined, i.e., they have no
effect on H.
2.2. Introduction of / and elimination of E

If in addition to the above hypotheses on X, we assume that Xv is simply connected, the condition
r�HjXv

¼ 0 implies there is a scalar potential /, defined up to an arbitrary constant, such that
HjXv

¼ r/. Moreover, if the initial data H0 are such that r�H0jXv
¼ 0, we can also define /0 such that

H0jXv
¼ r/0. By inserting the above definitions into (2.3) and by setting Ec ¼ EjXc

; Ev ¼ EjXc
; Hc ¼ HjXc

;
lc ¼ ljXc

; lv ¼ ljXv
, we infer that Hc, Ec, Ev, / solve
lcotH
c ¼ �r� Ec; r�Hc ¼ rðEc þ u� lcHcÞ þ js in Xc;

lvotr/ ¼ �r� Ev; r � Ev ¼ 0 in Xv;

Hc � nc þr/� nv ¼ 0; Ec � nc þ Ev � nv ¼ 0 on R;

Ec � ncjCc
¼ ajCc

; Ev � nvjCv
¼ ajCv

;R
Ci

v
E � n ¼ 0; 1 6 i 6 J ;

Hcjt¼0 ¼ Hc
0; /jt¼0 ¼ /0:

8>>>>>>>>><
>>>>>>>>>:

ð2:4Þ
Note that the condition (Hc · n c + $/ · n v)jR = 0 is meant to ensure that the curl of the field
H ¼
Hc in Xc;

r/ in Xv

�

has no singular measure concentrated on R. The analogous condition (Ec · nc + Ev · nv)jR = 0 ensures the
same property for the curl of E.

The arbitrariness of / up to a constant can be removed by enforcing / to be of zero mean, say
R

Xv
/ ¼ 0.

Assuming enough regularity is at hand, we now formally eliminate E by proceeding as follows: we use
Ohm’s law to eliminate Ec from Faraday’s equation in the conducting region. We take the divergence of Far-
aday’s equation in the non-conducting medium to get rid of $ · Ev. We eliminate the tangential component of
E on Cv by using the following representation EvjCv

¼ ðEv � nvÞnv þ nv � a. Finally, we obtain:
lcotH
c ¼ �r� 1

r ðr �Hc � jsÞ � u� lcHc
� �

in Xc;

lvotD/ ¼ 0 in Xv;

ðr �Hc � ru� lHcÞ � nc ¼ raþ js � nc on Cc;

lvonvðot/Þ ¼ �nv � r � ðnv � aÞ on Cv;

Hc � nc þr/� nv ¼ 0 on R;

lcHc � nc þ lvr/ � nv ¼ 0 on R;

Hcjt¼0 ¼ Hc
0; /jt¼0 ¼ /0:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2:5Þ
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Observe that the operator nv Æ $ · (Æ) involves only tangential derivatives; hence, it is meaningful to have it act-
ing on the field nv · a which is only defined on C. Note also that (lcHc Æ nc + lv$/ Æ nv)jR = 0 express the con-
tinuity of the normal component of the magnetic induction across R. This equation is a consequence of the
continuity of the tangential component of the electric field. If the electric field is needed, it is computed in
the conducting domain by using Ohm’s law, and it is determined in the non-conducting medium by solving
the Cauchy–Riemann problem: $ · E v = �lv ot$/, $ Æ Ev = 0, Ev · nvjR = �Ec · ncjR, Ev · njC = a, andR

Ci
v

Ev � n ¼ 0; 1 6 i 6 J :

2.3. Weak formulation

Let us now construct a weak formulation for problem (2.5). We henceforth assume that u 2 L1(0,+1;
L2(Xc)) and js 2 L1(0,+1;L2(Xc)). Likewise we assume that r and lc are both in L1(0, +1;L1(Xc)) and lv

is in L1(0,+1;L1(Xv)). Being given a normed space E,Lp(0,+1;E) is the set of the functions that map the
time interval (0,+1) to E and whose norm in E is Lp integrable, 1 6 p 6 +1. More generally, we denote by
Ws,p(0,+1;E) the subspace of L p(0,+1;E) whose members are differentiable with respect to time up to the
order s, and the time derivatives in question have norms in E that are Lp integrable. To alleviate notation, we
use the notation (f,g)E to denote the integral

R
E f � g, where E is any measurable subset of X or Cv [ Cc.

Instead of working directly with (2.5) it turns out that it is more straightforward to construct the weak for-
mulation starting from (2.4) and eliminating E on the fly. Let b 2 Hcurl (Xc) be a test function. After multiply-
ing the Faraday equation by b in Xc in (2.4), integrating over Xc, and integrating by parts, we obtain
ðlcotH
c; bÞXc

þ ðEc;r� bÞXc
þ ðEc; b� ncÞR ¼ ðE

c � nc; bÞCc
:

Then using Ohm’s law in Xc and using the boundary conditions on Ec yields
ðlcotH
c; bÞXc

þ 1

r
r�Hc;r� b

� �
Xc

þ 1

r
r�Hc; b� nc

� �
R

¼ 1

r
js þ u� lcHc;r� b

� �
Xc

þ 1

r
js þ u� lcHc; b� nc

� �
R

þ ða; bÞ: ð2:6Þ
Likewise by using $w, w 2 H1(Xv), to test the Faraday equation in Xv in (2.4), we obtain
ðlvotr/;rwÞXv
� ðEv � nv;rwÞR ¼ ðE

c � nc;rwÞCv
:

By using again the boundary condition together with the fact that
Ev � nvjR ¼ �Ec � ncjR ¼ �
1

r
ðr �Hc � jsÞ � u� lcHc

� �
� ncjR;
we infer
ðlvotr/;rwÞXv
þ 1

r
ðr �Hc � jsÞ � u� lcHc;rw� nv

� �
R

¼ ða;rwÞCv
: ð2:7Þ
For the above developments to make sense we now specify the regularity we expect to hold on Hc and / by
introducing
L ¼ ðb;wÞ 2 L2ðXcÞ � H 1R
¼0
ðXvÞ

� �
; ð2:8Þ

X ¼ ðb;wÞ 2 HcurlðXcÞ � H 1R
¼0
ðXvÞ; ðb� nc þrw� nvÞjR ¼ 0

� �
; ð2:9Þ
and we equip L and X with the norm of L2(Xc) · H1(Xv) and Hcurl(Xc) · H1(Xv), respectively. Here, H1(Xv) is
the space of the scalar-valued functions on Xv that are L2-integrable and whose partial derivatives are also
L2-integrable. H 1R

¼0
ðXvÞ is the subspace of H1(Xv) composed of the functions of zero mean value. Recall that

owing to the Poincaré–Friedrichs inequality kr/kL2ðXvÞ is a norm equivalent to that of H1(Xv). The space
Hcurl(Xc) is composed of the vector-valued functions on Xc that are componentwise L2-integrable and whose
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curl is also componentwise L2-integrable. The space Hdiv(X) is composed of the vector-valued functions on X
that are componentwise L2-integrable and whose divergence is L2-integrable.

By adding (2.6) and (2.7) we obtain that the pair (Hc,/) solves
ðlcotH
c; bÞXc

þ ðlvotr/;rwÞXv
þ 1

r
ðr �Hc � jsÞ � u� lcHc;r� b

� �
Xc

þ 1

r
ðr �Hc � jsÞ � u� lcHc; b� nc þrw� nv

� �
R

¼ ða; bÞCc
þ ða;rwÞCv

: ð2:10Þ

Observe that the term ð1rðH

c � jsÞ � u� lcHc; b� nc þrw� nvÞR is zero whenever the pair of test functions
(b,w) is a member of X. This term will play a major role when it comes to constructing a non-conforming
approximation to the problem, see Section 3.1.

Let us denote by X 0 the dual of the Hilbert space X. We are now in measure to formulate the problem as
follows: Seek the pair (Hc,/) 2 L2(0, +1;X) \ L1(0, +1,L) with (otH

c,o t/) 2 L2(0,+1;X 0) such that for all
(b,w) 2 X and a.e. t 2 (0,+1),
Hcjt¼0 ¼ Hc
0; r/jt¼0 ¼ r/0;

ðlvotH
c; bÞXc

þ ðlvotr/;rwÞXv
þ 1

r
r�Hc � u� lcHc;r� b

� �
Xc

¼ 1

r
js;r� b

� �
Xc

þ ða; bÞCc
þ ða;rwÞCv

: ð2:11Þ
To alleviate notation, let us define the following bilinear form
aððb;wÞ; ðh;uÞÞ ¼ 1

r
r� b� u� lcb;r� h

� �
Xc

; ðb;wÞ; ðh;uÞ 2 X : ð2:12Þ
Lemma 2.1. Under the assumptions above on r and lc, there are c P 0 and c > 0 s.t.
8ðb;wÞ 2 X; aððb;wÞ; ðb;wÞÞ þ cðkbk2
L2ðXcÞ þ krwk2

L2ðXvÞÞP ckðb;wÞk2
X:
Proof. Let us set cðu; lÞ ¼ kukL1ðXcÞkl
ckL1ðXcÞ and c = c(u,l)2r1. Then for all (b,w) 2 X, the following holds:
aððb;wÞ; ðb;wÞÞP
1

r1
kr �Hk2

L2ðXcÞ � cðu; lÞkHkL2ðXcÞkr �HkL2ðXcÞ

P
1

2r1

kr �Hk2
L2ðXcÞ � cðu; lÞ2 r1

2
kHk2

L2ðXcÞ:
Clearly,
aððb;wÞ; ðb;wÞÞ þ ckðb;wÞk2
L P min

1

2r1

; cðu; lÞ2 r1

2

� �
kðb;wÞk2

X: �
Note that in the real nonlinear MHD situation, u solves the Navier–Stokes equations, and the magnetic
energy produced by the velocity-induced currents exactly balances the kinetic energy produced by the Lorentz
force in the momentum equation (i.e., �ððr �HcÞ � lcHc; uÞXc

). In other words, the bothering term (i.e.,
�ðu� lcHc;r�HcÞXc

) in the above lemma is exactly compensated by �ððr �HcÞ � lcHc; uÞXc
which is

obtained by testing the momentum equation with u.

Theorem 2.1. The problem (2.11) is wellposed.

Proof. Owing to the coercivity property stated in Lemma 2.1, Lions’ theorem (see e.g. [8, p. 218; 21, pp. 253–
258]) ensures that problem (2.11) has a unique solution. h
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2.4. Stabilized weak formulation

It is clear from (2.4) that if Hc
0 is solenoidal, Hc stays solenoidal for all times. Note, however, that $ Æ Hc = 0

is not part of the system defining the magnetic field but is merely a consequence of Faraday’s equation. Nev-
ertheless, provided r �Hc

0 ¼ 0, it is quite common to transform $ Æ Hc = 0 into a constraint by replacing Far-
aday’s equation in Xc in (2.4) by
lcotH
c ¼ �r� Ec þ lcrðar � lcHcÞ; ð2:13Þ

r � ðlcHcÞjCc
¼ 0; ð2:14Þ
where a = a(x) is a user-defined scalar-valued function (a constant may do the job), which must be positive,
uniformly bounded from above, uniformly bounded away from zero from below, and should be chosen so that
the magnitude of the two terms in the right-hand side are balanced. Henceforth we assume a(x) P a0 > for all
x 2 Xc. Consequently, without any additional difficulty, we shall henceforth consider a modified (i.e., stabi-
lized) version of the problem (2.11) by replacing the bilinear form a by the following one:
~aððb;wÞ; ðh;uÞÞ ¼ aððb;uÞ; ðh;uÞÞ þ ðar � lcb;r � lchÞXc
: ð2:15Þ
3. Finite element approximation

We now approximate the problem (2.11) by using finite elements. The key feature of the method that we
propose is that the continuity of the tangential component of the magnetic field across R is enforced weakly
by using an interior penalty technique. This technique is the work horse of discontinuous Galerkin approxi-
mation methods for elliptic and parabolic equations [2,3].

3.1. The interior penalty Galerkin approximation

Let fTc
hgh>0 and fTv

hgh>0 be regular families of non-overlapping meshes for Xc and Xv, respectively. For
the sake of simplicity we assume that the meshes are composed of simplices and the interface between the two
non-overlapping meshes Tc

h and Tv
h is R. Let k and k 0 be two positive integers. The approximation space for

the magnetic field and the scalar potential is denoted by Xh ¼ XH
h � X /

h and defined as follows:
Xh ¼ fðb;wÞ 2 C0ðXcÞ � C0ðXvÞ; bjK 2 ;8K 2Tc
h; wjK 2 Pk0 ; 8K 2Tv

hg; ð3:1Þ

where Pk0 denotes the vector space of the scalar-valued polynomials of total degree at most k 0, and denotes
the vector space of the vector-valued polynomials of total degree at most k. We shall also use the space
X(h) = [H1(Xc) · H2(Xv)] + Xh, where H2(Xv) is the space of the scalar-valued functions on Xv that are in
H1(Xv) and whose second-order partial derivatives are square integrable. Observe that for any given pair
(b,w) in Xh we do not enforce the tangent component of b to match that of the gradient of w across R. Actu-
ally, enforcing such a match would be impossible in most practical situations unless Xh is composed of the so-
called edge elements or Nédélec elements. Since we do not want to use edge elements, the matching in question
will be enforced weakly as explained below.

Since the solution to (2.11) also satisfies (2.10) where the test functions b and w may be discontinuous, we
define the following bilinear form on X(h) · Xh:
ahððh;uÞ; ðb;wÞÞ ¼ ~aððh;uÞ; ðb;wÞÞ þ 1

r
r� h� u� lh; ðb� nc þrw� nvÞ

� �
R

þ b
1

h
ðh� nc þru� nvÞ; ðb� nc þrw� nvÞ

� �
R

: ð3:2Þ
The parameter b > 0 is a tunable constant and h denotes the typical mesh size. The second term in the right-
hand side of (3.2) is the consistency term already present in (2.10). As already mentioned earlier, this term
vanishes whenever b · nc + $w · nv is zero on R. The last term is a penalty term. It is meant to constrain
the jump of the tangential component of the approximate magnetic field across R to be small.
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Let [0,T] be some given interval. Let ðHc
0;h;/0;hÞ 2 Xh be approximations of Hc

0 and /0, respectively. The
semi-discrete problem is formulated as follows: Seek ðHc

h;/hÞ 2 C1ð½0; T �; XhÞ such that for all (b,w) 2 Xh

and all t 2 [0,T],
ðHc
h;/hÞjt¼0 ¼ ðHc

0;h;/0;hÞ; ðlcotHh; bÞXc
þ ðlvrot/h;rwÞXv

þ ahððHc
h;/hÞ; ðb;wÞÞ

¼ JððHc
h;/hÞ; ðb;wÞÞ; ð3:3Þ
where the source term is given by
JððHc
h;/hÞ; ðb;wÞÞ ¼

1

r
js;r� b

� �
Xc

þ 1

r
js; b� nc þrw� nv

� �
R

þ ða; bÞCc
þ ða;rwÞCv

: ð3:4Þ
The error analysis will show that b must be taken large enough for the method to be convergent. This fea-
ture is characteristic of Interior Penalty methods. It would have been possible to overcome this slight incon-
venience by using a local discontinuous Galerkin (LDG) approach, [9,23]. We preferred not using this
approach since LDG requires solving local problems.

3.2. Error analysis

We perform the error analysis of problem (3.3) in this section.
Before stating the main convergence result, we define appropriate interpolation operators. For all

Hc 2 C1ð0; T ; H1ðXcÞÞ we define phHc 2 C1ð0; T ; XH
h Þ so that phHcjt¼0 ¼ IhHcjt¼0 where Ih is an interpolation

operator with optimal interpolation properties (e.g. Lagrange, Clément, or Scott–Zhang interpolation opera-
tors.), and for all b 2 XH

h and for a.e. t 2 (0,T),
ðlcotphHc; bÞXc
þ 1

r
r� phHc;r� b

� �
Xc

þ ðar � ðlcphHcÞ;r � ðlcbÞÞXc

¼ ðlcotH
c; bÞXc

þ 1

r
r�Hc;r� b

� �
Xc

þ ðar � ðlcHcÞ;r � ðlcbÞÞXc
: ð3:5Þ
We henceforth assume that the following approximation result holds: There are k1 P k2 > 0 such that
kphHc �HckL1ð0;T ;L2ðXcÞÞ þ kðphHc �HcÞ � nckL2ð0;T ;L2ðRÞÞ 6 chk1kHckHo; ð3:6Þ

jr � ðphHc �HcÞkL2ð0;T ;L2ðXcÞÞ þ kr � ðphHc �HcÞkL2ð0;T ;L2ðXcÞÞ þ kr � ðphHc �HcÞ � nckL2ð0;T ;L2ðRÞÞ

6 chk2kHckHo; ð3:7Þ
where i Æ iHo is a norm involving high-order space derivatives, for instance kHckHo ¼ kHckL1ð0;T ;Wk1þ1;1ðXcÞÞ.
Proving these estimates (the first one in (3.6) and the first and second one in (3.7)) for k1 = k2 = k is a standard
exercise. Proving k1 = k + 1 for the second term in (3.6) and k2 = k for the third term in (3.7) is not trivial and
is far beyond the scope of the present paper. If all the possible regularity is at hand, we should expect
k1 = k + 1 and k2 = k.

We also define an interpolation operator for scalar potentials. For all / 2 C1ð0; T ; H1ðXvÞÞ we define
ph/ 2 C1ð0; T ; X/

h Þ so that for all w 2 X/
h and for a.e. t 2 (0, T),
ðlvrph/;rwÞXv
¼ ðlvr/;rwÞXv

: ð3:8Þ
Likewise, we assume that the following error estimates hold: There is ‘ > 0 such that
krðph/� /ÞkL1ð0;T ;L2ðXvÞÞ þ krðph/� /Þ � nckL2ð0;T ;L2ðRÞÞ 6 ch‘k/kHo: ð3:9Þ
When maximal regularity is at hand, it is a standard exercise to prove ‘ = k 0 for the first term in the left-hand
side. Proving ‘ = k 0 for the second term is far more technical and relies on W1,1 estimates.

We finally assume that the algorithm is initialized so that
kH0 �Hc
0;hkL2ðXcÞ 6 chk1kHckHo; k/0 � /0 � /0;hkL2ðXvÞ 6 ch‘k/kHo: ð3:10Þ
Having introduced k1,k2, and ‘, we are now in measure to state the convergence result.



J.-L. Guermond et al. / Journal of Computational Physics 221 (2007) 349–369 357
Theorem 3.1. Under the above assumptions and provided the solution to (2.11) is smooth enough (say iHciHo and

i/iHo finite) and b is large enough, the solution to (3.3) satisfies the following error estimates
kHc �Hc
hkL1ð0;T ;L2ðXcÞÞ þ k/� /hkL1ð0;T ;H1ðXvÞÞ 6 chminðk1�1

2;k2þ1
2;‘�

1
2Þ; ð3:11Þ

kr � ðHc �Hc
hÞkL2ð0;T ;L2ðXcÞÞ þ kr �H

c
hkL2ð0;T ;L2ðXcÞÞ 6 chminðk1�1

2;k2;‘�1
2Þ: ð3:12Þ
Proof.

(1) We are going to compare the pair ðHc
h;/hÞ with (phHc,ph/). Define eh ¼ phHc �Hc

h; �h ¼ ph/� /h;
d ¼ phHc �Hc, and d = ph/ � /. Owing to the definition of phHc and ph/, the following holds
ðlcoteh; bÞXc
þ ðlvotr�h;rwÞXv

þ ahððeh; �hÞ; ðb;wÞÞ ¼ Rððeh; �hÞ; ðb;wÞÞ;
for all (b,w) 2 Xh and t 2 (0, T), and R is defined by
Rððeh; �hÞ; ðb;wÞÞ ¼ �ðu� lcd;r� bÞXc
þ 1

r
r� d� u� lcdþ b

h
ðd� ncþrd� nvÞ;b� ncþrw� nv

� �
R

:

(2) Testing the above equation with the pair (eh, �h) yields
1

2
dtðlckehk2

L2ðXcÞÞ þ
1

2
dtðlvkr�hk2

L2ðXvÞÞ þ ahððeh; �hÞ; ðeh; �hÞÞ ¼ Rððeh; �hÞ; ðeh; �hÞÞ:
Using a slight variation of Lemma 2.1 gives
ahððeh; �hÞ; ðeh; �hÞÞP
1

2r1

kr � ehk2
L2ðXcÞ þ a0kr � ehk2

L2ðXcÞ þ
b
h
keh � nc þr�h � nvk2

L2ðRÞ

� r1

2
kuk2

L1ðXcÞkl
ck2

L1ðXcÞkehk2
L2ðXcÞ

� 1

r0

kr � ehkL2ðRÞ þ kukL1ðXcÞkl
ckL1ðXcÞkehkL2ðRÞ

� �
keh � nc þr�h � nvkL2ðRÞ:
We now use the inverse inequality kbhkL2ðRÞ 6 cih
�1=2kbhkL2ðXcÞ to deduce
ahððeh; �hÞ; ðeh; �hÞÞP
1

2r1

� 2c2
i

br2
0

� �
kr � ehk2

L2ðXcÞ þ a0kr � ehk2
L2ðXcÞ þ

b
h

1� 1

4

� �
keh � nc þr�h � nvk2

L2ðRÞ

� cðu; lc; b; ciÞkehk2
L2ðXcÞ;
and we henceforth assume that b is chosen so that b P 8c2
i r1=r2

0 which yields ð 1
2r1
� 2c2

i
br2

0

ÞP 1
4r1

.
We now bound the residual R from above as follows:
jRððeh; �hÞ; ðeh; �hÞÞj 6
1

8r1

kr � ehk2
L2ðXÞ þ

b
4h
keh � nc þr�h � nvk2

L2ðRÞ

þ c hðkr � d� nck2
L2ðRÞ þ kdk

2
L2ðRÞÞ þ

1

h
kd� nc þrd� nvk2

L2ðRÞ þ kdk
2
L2ðXÞ

� �
:

Using the interpolation results (3.6), (3.7), (3.9) we infer
jRððeh; �hÞ; ðeh; �hÞÞj 6
1

8r1

kr � ehk2
L2ðXÞ þ

b
4h
keh � nc þr�h � nvk2

L2ðRÞ þ rðtÞ2;
where krkL2ð0;T Þ 6 chminðk1�1
2;k2þ1

2;‘�
1
2Þ.

(3) By combining the lower bound on ah and the bound on R, one obtains
lc

2
dtðkhehk2

L2ðXcÞÞ þ
lv

2
dtðkr�hk2

L2ðXvÞÞ þ
1

8r1

kr � ehk2
L2ðXcÞ þ a0kr � ehk2

L2ðXcÞ
b
2h
keh � nc þr�h � nvk2

L2ðRÞ

6 c1kehk2
L2ðXcÞ þ c2rðtÞ2:
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Using the Gronwall lemma, we infer that for all t 2 (0, T)
kehk2
L2ðXcÞ þ kr�hk2

L2ðXvÞ þ
Z t

0

ðkr � ehk2
L2ðXcÞ þ kr � ehk2

L2ðXcÞÞ

6 c2h2 minðk1�1
2;k2þ1

2;‘�
1
2Þ þ kehjt¼0k

2
L2ðXcÞ þ kr�hjt¼0k

2
L2ðXcÞ:
Using (3.10) together with (3.6), (3.9), and the triangle inequality implies that kehjt¼0kL2ðXcÞ þ kr�hjt¼0kL2ðXcÞ is

of order hminðk1:‘Þ

Then, using the above result along with the triangle inequality implies
kHc �Hc
hkL2ðXcÞ 6 kehkL2ðXcÞ þ kdkL2ðXcÞ 6 c2hminðk1�1

2;k2þ1
2;‘�

1
2Þ:
Proceed similarly for the other estimates. h

If full regularity is at hand k1 = k + 1, k2 = k, and ‘ = k 0, The above result yields kHc �Hc
hkL2ðXcÞ 6

chminðkþ1
2;k
0�1

2Þ: This in turn shows that to obtain optimality we should take
k0 ¼ k þ 1; ð3:13Þ

i.e., the finite elements used to approximate the scalar potential are one degree higher than those used to
approximate the magnetic filed in Xc. This is coherent with the fact that the magnetic field in Xv is the gradient
of /, i.e., the magnetic field is deduced from / by derivation. In conclusion, if we set k 0 = k + 1 and if full
regularity is guaranteed, the above theorem yields
kHc �Hc
hkL1ð0;T ;L2ðXcÞÞ þ k/� /hkL1ð0;T ;H1ðXvÞÞ 6 chkþ1

2 ð3:14Þ
kr � ðHc �Hc

hÞkL2ð0;T ;L2ðXcÞÞ þ kr �H
c
hkL2ð0;T ;L2ðXcÞÞ 6 chk: ð3:15Þ
These estimates are confirmed by the numerical tests reported in Section 4.
4. Convergence tests

In this section, we give technical implementation details and we report convergence tests that illustrate the
capability of the approximation technique introduced in the previous section. We limit the convergence tests
to magnetodynamic examples since the velocity field is inessential in the convergence analysis.

4.1. Implementation details

We henceforth assume that the domains Xc and Xv are either two-dimensional or axisymmetric. In the axi-
symmetric situation we use finite elements in the meridian plane and Fourier expansions in the azimuthal
direction. For instance, the approximate scalar potential is decomposed as follows:
/hðr; h; z; tÞ ¼ /c
h;0ðr; z; tÞ þ

XM

m¼1

/c
h;mðr; z; tÞ cosðmhÞ þ /s

h;mðr; z; tÞ sinðmhÞ;
where /c
h;0, /c

h;m, and /s
h;m are time-dependent two-dimensional finite element functions. The same decompo-

sition is used for each component of the approximate magnetic field. Depending on the situation P1 (piecewise
linear) or P2 (piecewise quadratic) finite elements are used for Hc, but P2 elements are always used for the
scalar potential /. The finite element meshes are composed of triangles and are constructed using a Delaunay
mesh generator [24]. The notation h that is used hereafter denotes the typical mesh size of meshes. The number
of triangles in meshes of typical meshsize h is roughly Oðh�2).

The time is approximated by using the backward difference formula of second-order (BDF2). The analysis
of the fully discretized method goes along the same line as that of the semi-discretized method and the same
estimates as those in (3.11), (3.12) can be obtained but for a Dt2 additional term in the right-hand sides. We
omit the details for brevity. The fully discretized problem yields two linear systems for each Fourier mode at
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each time step. The linear systems are preconditioned by sparse, thresholded, incomplete LU factorization and
are solved using the version of BiCG-stab which is implemented in the package splib [7].

4.2. Time-independent 2D convergence tests

We show in this section that the method converges as expected by solving a two-dimensional problem. To
focus on the approximation capability of the method with respect to space, we solve the following time-inde-
pendent problem
lcHc ¼ �r� Ec; r�Hc ¼ rðEc þ u� lcHcÞ þ js in Xc;

lvr/ ¼ �r� Ev; r � Ev ¼ 0 in Xv;

Hc � nc þr/� nv ¼ 0 Ec � nc þ Ev � nv ¼ 0 on R;

Ec � ncjCc
¼ a Ev � nvjCv

¼ a:

8>>><
>>>:

ð4:1Þ
Since the presence of the velocity field is inessential in the convergence analysis, we henceforth restrict ourselves
in this section to u = 0. We start with a two-dimensional situation, i.e., nothing depends on z. Moreover, we
assume that E points in the z-direction and the z-component of Hc is zero, i.e., E = (0, 0,Ez), Hc = (Hx,Hy,0).
The computational domain is X = (0,1)2 with Xc ¼ ð0; 1

2
Þ � ð0; 1Þ and Xv ¼ ð12 ; 1Þ � ð0; 1Þ. The interface between

Xc and Xv is R ¼ f1
2
g � ð0; 1Þ. We set r = 1,lc = l and lv = 1. The exact solution that we pick is
in Xv

Ez ¼ � cosðx� 1
2
Þe�y þ x2 � y2 þ 2xy � 1

4
;

/ ¼ � sinðx� 1
2
Þe�y þ 2xy � x2 þ y2;

(
ð4:2Þ

in Xc

Ez ¼ �e�y þ ðx� 1
2
Þ2 þ lð1þ 2yÞðx� 1

2
Þ þ y � y2;

Hx ¼ 1
l ð�e�y � 1þ 2yÞ � 2ðx� 1

2
Þ;

Hy ¼ 2
l ¼ 2

l ðx� 1
2
Þ þ ð1þ 2yÞ:

8>><
>>: ð4:3Þ
Then the current is set so that js = $ · Hc � rE. This solution is designed so that (lHx � ox/)jR = 0 and
(Hy � oy/)jR = 0. The normal component of the magnetic field is discontinuous across R when l 6¼ 1, i.e.,
(Hc � nc + $/ Æ nv)jR 6¼ 0, but the normal component of the magnetic induction is always continuous
(lcHc Æ nc + lv$/ Æ nv)jR = 0.

The above problem is solved using continuous P1 elements for Hc and continuous P2 elements for / on
meshes of meshsize in the range 1/160 6 h 6 1/10. The results are reported in Fig. 2 for three values of
l 2 {0.1, 1,10}. We show in this figure the relative error on Hc in the L2-norm, i.e., kHc �Hc

hkL2 , and in the
Hcurl-norm, i.e., ðkHc �Hc

hk
2
L2 þ kr � ðHc �Hc

hÞk
2
L2Þ

1
2. We also show in the figure the L2-norm of r �Hc

h

and the error on the scalar potential in the non-conducting medium measured in the H1-norm. All these errors
are normalized by the corresponding norm of the exact solution. For the three values of l tested, the error
measured on Hc in the L2-norm behaves like Oðh3

2Þ and when measured in the Hcurl-norm it behaves like
OðhÞ. The error on the divergence of the magnetic field is also OðhÞ. The rate of convergence on / in the
H1-norm is Oðh3

2Þ. All these rates confirm the theoretical estimates (3.14), (3.15) (note that the error analysis
for the time-dependent problem is almost identical to that of the time-independent problem and yields the
same error estimates. The details are omitted for brevity).

4.3. Time-independent 3D convergence tests

We still consider the time-independent problem (4.1) in this section but we now consider a three-dimen-
sional situation. The domain is a torus of square cross section of side 4 and of radius 3. Using cylindrical coor-
dinates (r,h,z), the exact definition of the computational domain is
X ¼ fðr; h; zÞ; 1 6 r 6 5;�2 6 z 6 2; h � ½0; 2pÞg; ð4:4Þ

Xc ¼ fðr; h; zÞ; ððr � 3Þ2 þ z2Þ
1
2 6 1; h � ½0; 2pÞg; ð4:5Þ

Xv ¼ X n Xv: ð4:6Þ
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Fig. 2. Time-independent two-dimensional convergence tests: top l = 0.1; bottom left l = 1; bottom right l = 10. Norms
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hkL2kHckL2 , and k/h � /kH1=k/kL2 as functions of the mesh-size h in log scales.
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We set the boundary data and the current so that the exact solution is
in Xv

Er ¼ 0;

Eh ¼ �ð13 r2 þ 1Þðcos hþ sin hÞ;
Ez ¼ zðr � r�1Þðcos h� sin hÞ;
/ ¼ zðr þ r�1Þðcos hþ sin hÞ;

8>>><
>>>:

ð4:7Þ

in Xc

H r ¼ zð1� r�2Þðcos hþ sin hÞ;
H h ¼ zð1þ r�2Þðcos h� sin hÞ;
H z ¼ ðr þ r�1Þðcos hþ sin hÞ;

8><
>: ð4:8Þ
and the magnetic permeabilities are lc = lv = 1 and we set r = 1. We make convergence tests with respect to
the meshsize using meshes with relative meshsize 1

160
6

h
4
6

1
10

(recall the width of the square cross section is 4).
The results are reported in Fig. 3. As in the two-dimensional case we observe Oðh3

2Þ convergence on the mag-
netic field in the L2-norm and OðhÞ convergence in the Hcurl-norm. The divergence of Hc converges like OðhÞ in
the L2-norm.
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4.4. Convergence tests on a 3D time-dependent problem

We finish this section by reporting convergence tests on the three-dimensional time-dependent problem.
The domain is the torus defined by (4.4)–(4.6). The boundary data and the current are set so that the exact

solution is
Fig. 4
k/h �
in Xv

Er ¼ 0;

Eh ¼ ð13 r2 þ 1Þðcos hþ sin hÞ sinðtÞ;
Ez ¼ �zðr � r�1Þðcos h� sin hÞ sinðtÞ;
/ ¼ zðr þ r�1Þðcos hþ sin hÞ cosðtÞ;

8>>><
>>>:

ð4:9Þ

in Xc

Hr ¼ zð1� r�2Þðcos hþ sin hÞ cosðtÞ;
H h ¼ zð1þ r�2Þðcos h� sin hÞ cotðtÞ;
Hz ¼ ðr þ r�1Þðcos hþ sin hÞ cosðtÞ:

8><
>: ð4:10Þ
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The magnetic permeability and conductivity are lc = lv = 1, r = 1.
We make convergence tests with respect to the meshsize using meshes with relative meshsize 1

128
6

h
4
6

1
8
. The

time step Dt = 2 · 10�3 is chosen to be small enough so that the time approximation error is negligible com-
pared to that induced by the space approximation.

The results are reported in Fig. 4. The figure shows kHc
h �HckL2=kHckL2 ; kr � ðHc

h �HcÞkL2=kHckL2 ;
kr �Hc

hkL2=kHckL2 and k/h � /kH1=k/kL2 at time T = 2. We observe Oðh2Þ convergence on the magnetic field
in the L2-norm both in Xc and Xv. The curl of Hc

h is OðhÞ accurate in the L2-norm. The divergence of Hc
h con-

verges to zero like OðhÞ in the L2-norm. We observe that these results are compatible with the theoretical error
estimates (3.11), (3.12). The estimates on the L2-norm of the magnetic field seems to be slightly super-conver-
gent by Oðh1

2Þ.
5. Applications

We report in this section tests that we made to validate our code in three dimensions. In this entire section l
is assumed to be constant and lc = lv. All the computations reported have been done using P1 finite elements
in the conducting region and P2 finite elements in the non-conducting region.
5.1. Ohmic decay in a compact conducting domain

We set the velocity field to zero and we assume that l and r are constants. The MHD equations (2.5) then
reduce to the vector heat equation in the conducting region for Hc and to the Laplace equation in the non-
conducting region for the scalar potential:
otH
c ¼ DHc in Xc;

Dot/ ¼ 0 in Xv; /! 0 at infinity;

HcjR ¼ r/jR; Hcjt¼0 ¼ H0; /jt¼0 ¼ /0:

8><
>: ð5:1Þ
In the above equations, space and time have been non-dimensionalized using a reference length-scale L and
the diffusive time scale Td = lrL2. Searching for an exponentially decaying solution, Hc ¼ Hc

0 ¼ Hc
0ect, leads

to an eigenvalue problem. Analytic solutions to this eigenvalue problem are known only for some simple
geometries of the conducting domain. In the following, we denote by c the smallest (obviously real) corre-
sponding eigenvalue.

In this section we consider two types of conducting solids: a sphere and ellipsoids (prolate and oblate).
5.1.1. Ohmic decay in a sphere

We consider a sphere of radius R = 1 (i.e., the radius of the sphere is the reference length scale). The ohmic
decay in a sphere is a textbook diffusion problem [22]. The theoretical decay-rate is jcthj = p2 The correspond-
ing scalar potential in the non-conducting medium in cylindrical coordinates is the dipole field
/ ¼ �zq�3J 3=2ðpÞe�jcthjt where q = (r2 + z2)1/2 (the dipole moment being aligned with the z-axis). The corre-
sponding magnetic field in cylindrical coordinates is given by
H r ¼ sinðuÞBq þ cosðuÞBu; ð5:2Þ
H z ¼ cosðuÞBq � sinðuÞBu; ð5:3Þ
where cos(u) = z/q, sin(u) = r/q, and
Bq ¼ 2e�jcthjt cosðuÞJ 3=2ðpqÞq�3=2; ð5:4Þ
Bu ¼ e�jcthjt sinðuÞðJ 3=2ðpqÞ � pqJ 1=2ðpqÞÞq�3=2: ð5:5Þ
The above field is used as the initial condition in our tests. The outer boundary of the non-conducting med-
ium is the sphere of radius Rv = 10. We use meshes with meshsizes h = 1/10, 1/40, 1/80 to observe the conver-
gence with respect to the spatial resolution. The time step is taken to be Dt = 10�3.
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The time evolution of the magnetic energy and its instantaneous decay rate are shown in Fig. 5. More pre-
cisely, upon setting Emag ¼ 1

2

R
Xc
kHck2, we report Emag as a function of time t in Fig. 5a and dlog(Emag)/dt in

Fig. 5b. The decay rate reaches a plateau after a few time-steps for the three resolutions considered. The value
of the plateau c is recorded and its absolute value is reported in Table 1.

Note that after 8–10 Ohmic decay times (�Td/jcj), the computed decay rate increases and finally tends to
zero. This is a consequence of problem (5.1) not being well-posed at steady state. As a result, at steady state we
obtain a magnetic field whose amplitude is controlled by the divergence of the initial field. Since we use
Lagrange interpolants to initialize our computations, the divergence of our initial data is of order hk0 ¼ h2.
This leads to a non-dissipative magnetic energy at steady state. This residual magnetic energy, denoted by
Enoise, is reported in Table 1. Observe that Enoise goes to zero as h3.4! 0.

5.1.2. Ohmic decay in an ellipsoid
In order to measure the influence of the conductor geometry, we now study the ohmic decay in ellipsoids.

Recall that no analytical expression of the decay-rate is available in this case. Let us denote by a, b, c the semi-
axes, with a = b to enforce axisymmetry. We refer to a and c as the half-width and the half-height, respectively.
Letting V be the volume of the ellipsoid, the reference lengthscale is defined to satisfy 4

3
pL3 ¼ V , i.e., L is the

radius of the sphere having the same volume. Two cases are considered in detail: (1) an ‘oblate’ spheroid a = 2
and c = 0.25 and (2) a ‘prolate’ spheroid a = 0.75 and c = 1.78. Each ellipsoid is embedded in a non-conduct-
ing sphere of radius Rv = 10.

The initial magnetic field is chosen to be uniform and parallel to the z-axis. The corresponding magnetic
potential in vacuum is / = z. After t = 0, this field is gradually extinguished at Cv by enforcing:
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1
diffusion in a sphere

jcj Error (%) tnoise Enoise np(H) np(/)

9.9921 1.2 0.65 0.62 · 10�7 228 403
9.8741 0.05 0.9 0.51 · 10�9 3358 6508
9.8686 0.01 1 0.51 · 10�10 13,182 25,572

mesh size; jcj is the decay rate of the magnetic energy; ‘‘error’’ is the quantity j� p2 � jcjj/p2; tnoise is the characteristic time when
onential decay ends; Enoise is the residual magnetic energy; np(H) is the number of P1 nodes for the magnetic field in Xc; np(/) is the
r of P2 nodes for the magnetic potential in Xv.
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where text is the extinction time. Since we expect the decay rate to be of the same order as that of the sphere
(jcthj � p2), we set text = 10�2 and Dt = 5 · 10�4. This choice guarantees that text is significantly smaller than
the ohmic diffusion time.

The instantaneous decay-rates of the radial and vertical components of the magnetic field are displayed in
Fig. 6 for the two ellipsoids and two meshsizes (h = 1/20, 1/40). After a few time-steps, each decay rate reaches
a plateau, then increases and finally tends to zero like in the case of the sphere.

We observe that the decay-rate of the oblate spheroid is about �9.3 and that of the prolate spheroid is
about �13.4. In other words by denoting cobl, cpro, and csph the decay rates of the oblate ellipsoid, the prolate
ellipsoid, and the sphere, we have
-
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Fig. 6.
and th

Fi
jcoblj < jcsphj < jcproj:
We interpret this result as follows. Since in the sphere the decaying magnetic field is supported by an azi-
muthal current density that is maximum at r . 0.9R, it seems natural that oblateness allows for a larger effec-
tive radius for the current and consequently a longer decay time as long as the corresponding reduction of the
half-height c does not constrain too much the total current. In conclusion, the absolute value of the decay rate
decreases then increases as a goes from 0 to +1 as shown in Fig. 7 i.e., there exists an oblate ellipsoid for
a = 1.5 with a decay rate whose absolute value is minimum. This curve suggests that the ohmic decay rate
of astro-physical objects flattened by rotation may be different from that of similar undeformed objects.
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5.2. Kinematic dynamo

We now turn our attention to the dynamo action. For the time being we only consider the kinematic
dynamo, i.e., that for which the velocity field is prescribed and time-independent. Validation of the kinematic
code is a prerequisite for the full nonlinear dynamo problem, where the Navier–Stokes equations including the
Lorentz force are also solved. Henceforth our domain is composed of a solid component of constant conduc-
tivity rsolid and a fluid component of constant conductivity rfluid such that rsolid/rfluid = 5. The problem is
described by (2.3) where u is zero in the solid and u is prescribed in the fluid. The current js is set to zero
everywhere. Letting L be a reference length scale, the time is non-dimensionalized with respect to the diffusive
time, Td = lrfluidL2. Letting U be a reference velocity scale, we define the magnetic Reynolds number
Rm = lrfluidUL.

The configuration we want to model is inspired from the so-called Perm device [11,13]. This experiment
aims at generating the dynamo effect in a strongly time-dependent helical flow created in a toroidal channel
after impulsively stopping the fast rotating container. Two axisymmetric conducting media whose meridian
sections are shown in Figs. 8a and b are considered. The first case consists of a ring torus (i.e., of circular
cross-section) hereafter referred to as ‘torus’. The reference length scale is chosen so that the non-dimensional
mean radius of the torus (i.e., the distance between the z-axis and the center of the cross section) is R = 4. The
non-dimensional radius of the circular cross section is q1 = 1.6. The inner part of the torus, 0 6 q < q0 = 1.2, is
occupied by the conducting fluid and is referred to as the fluid channel. The outer part of the torus,
q0 < q < q1, is occupied by the conducting solid. The second case consists in a variation of the torus geometry
where the conducting domain includes flat equatorial protuberances. The second setting is hereafter referred
to as the ‘Perm’ case, since it is closer to the real experimental geometry.

The flow velocity is assumed to have a uniform azimuthal component that we henceforth denote by Ua. The
reference velocity U is chosen to be U = Uaq0 so that the magnetic Reynolds number can be rewritten as
Rm = lrfluidUa(q0L). The non-dimensional helical flow in the fluid channel is then defined in cylindrical coor-
dinates by
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Fig. 8. Schematic representation of the two tori configurations, (a) and (b) are cross-sections in the meridian plane; (c) and (d) are three-
dimensional renderings, (a)–(c) correspond to the ‘Torus’ case and (b)–(d) to the ‘Perm’ case.
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ur ¼ �v 1
q0

Rz
q0r ;

uh ¼ 1
q0
;

uz ¼ v 1
q0

Rðr�RÞ
q0r ;

8>>><
>>>:

ð5:6Þ
where v is a constant hereafter referred to as the poloidal to toroidal velocity ratio. We choose v = 1 as in [11],
where the case of the straight cylinder (R =1) is studied in details. This flow is unphysical since it slips on the
shell, but our goal is to mimic the classical steady Ponomarenko flow in the torus geometry. Recall that the
Ponomarenko flow is defined in a straight cylinder. This test is meant to compare the thresholds between our
curved pipes and the Ponomarenko case. More realistic simulations are currently being done and will be re-
ported elsewhere [19]. Since the flow u is axisymmetric, the term $ · (u · Hc) cannot transfer energy between
the azimuthal modes of Hc, i.e., the azimuthal modes are uncoupled; therefore, the initial magnetic field in the
conductor is set to contain all the azimuthal modes that we want to test. To achieve this goal, the simulations
are initialized as follows. The magnetic field is set to zero at t = 0, then we impose an azimuthal current on the
modes m 2 1, . . . , 5 for 0 < t 6 text = 0.01, i.e., after text the current is set to zero. We use meshes with meshsize
h = 1/20 and a time step Dt = 5 · 10�4.

The magnetic energy on every mode is recorded as a function of time for various magnetic Reynolds num-
bers Rm 2 [10, 30]. Fig. 9a shows the magnetic energy as a function of time for the ‘Perm’ case at Rm = 30.
After thorough investigations, we have found that m = 3 is the critical mode corresponding to the lowest crit-
ical magnetic Reynolds number in both the ‘Perm’ and the ‘Torus’ cases. More precisely we have determined
Rc

m(Perm) .16 ± 0.5 and Rc
m(torus) .17.5 ± 0.5 (see Fig. 9b).

The above thresholds are lower than the threshold Rc
m ¼ 22:8 found in [11] with the ratio (q1 � q0)/

q0 = 0.33 in the case of a straight pipe (i.e., a torus with R/q0!1). Curvature effects seem to be solely
responsible for this difference, since all cases have an envelope with the same radius and the same fivefold
increase of conductivity. We show in Fig. 10 the Hh-component of the unstable mode for the ‘Perm’ case
at Rm ¼ 17 > Rc

m(Perm). Observe that the support of this unstable eigenmode is localized close to q 	 q0,
i.e., in the region of maximum shear. This eigenmode has a double helix shape and has the same helicity sign
as that of the velocity field. By recording the time evolution of the magnetic field at various fixed points in the
fluid domain, we observe that each signal is composed of a growing exponential envelope and of a periodic
component. At every point, we observe that the period of the periodic component is Tperiod 	 4 related to
the angular frequency x = 2p/Tperiod. The phase speed associated with an m = 3 mode is by definition x
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Fig. 10. Perm dynamo at Rm=17: iso-surfaces of the Hh component of the m = 3 mode; Hh = 25% of the minimum value (black) and
Hh = 25% of the maximum value (white) at (a) t=1 and (b) t ¼ 2 ’ 1þ 1

4
T period, where Tperiod is the period.
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By taking two snapshots of the magnetic field at two times t1, t2 such that t2 � t1 ¼ 1
4
T period, the angular dis-

placement between these two snapshots should be
x
3

1

4
T period 	

1

6
p ¼ 30



;

which is exactly the angular displacement that is observed in Figs. 10a and b.
In the above discussion we have assumed that the flow is steady. In the Perm experiment, this is definitely not

the case since high magnetic Reynolds numbers are generated by impulsively braking the container. Before
doing simulations with time-dependent flows, which could be done in principle with our code, it is thus wise
to verify that the time interval where Rm stays above critical (estimated from experiments using water models)
is indeed larger than the dynamo growth time Tgrowth. Let us consider the growth time at Rm = 30, i.e. about
twice the critical value. Below Rm = 30 we have found that the real part of the growth rate c is quasi-linear with
respect to Rm: RðcÞ ¼ aðRm=Rc

m � lÞ with a . 2.24. At Rm=30, the characteristic growth time is thus about
Tgrowth 	 Td/(a(30/16 � 1)) 	 0.51Td, which must be compared with the life time of the flow at Rm P 30, which
is about 10 rotation periods according to [13], i.e., Tflow = 10(2pR)/Ua. This leads to the following estimation
T flow

T growth

	 20pR

0:5lrfluidL2U a

¼ 2pq0RL�1

0:5Rm
	 20
which is hoped to be sufficient for the dynamo action to settle in the Perm experiment. This conjecture how-
ever deserves more detailed examination by taking into account the effective time history of the magnetic Rey-
nolds number.

6. Conclusion

The Maxwell equations in the MHD limit in heterogeneous domains are solved by using the magnetic field
Hc in the conducting regions and the magnetic scalar potential / in the non-conducting regions. We use
Lagrange finite elements and enforce continuities across interfaces using an interior penalty technique à la Nit-
sche/Dupont–Baker. The method is shown to be stable and convergent. In axisymmetric domains, finite ele-
ments are used in the meridian plane and Fourier expansions in the azimuthal direction. Lagrange elements of
degree 1 to approximate Hc in the conducting region and Lagrange elements of degree 2 to approximate / in
the non-conducting-region lead to Oðh3=2Þ error in the L2-norm of the magnetic field.

Our algorithm is limited to simply connected non-conducting domains for the time being or tori with zero
net current. Actually, using a scalar potential / to represent the external magnetic field is possible as soon as
the circulation of the magnetic field vanishes around every closed path in the vacuum. This is indeed the case
for time-dependent dynamo computations starting with a potential initial magnetic field. In this case the
induced fields and currents are on mode m 6¼ 0, and the net current on mode m = 0 stays equal to zero. Thus,
although the present algorithm is not yet capable of simulating tokamak MHD problems (which have net
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toroidal currents), it can be used for simulating conducting flows in a torus like we did for the Perm device
[11]. Note also that the algorithm can deal with spatial distributions for r and l and that opens new perspec-
tives for studying more realistic configurations.

We have studied Ohmic decay in axisymmetric compact conducting regions such as a sphere and ellipsoids.
The algorithm may also be directly used for a much larger variety of applications of practical interest, after
proper selection of the boundary conditions and adapting the mesh to the topology of the problem. For exam-
ple, computations of induction in a rotating infinite or finite cylinder are reported in [20]. This code is also able
to describe the kinematic dynamo acting in axisymmetric finite containers as presented in Section 5.2, includ-
ing conductivity jumps.

After coupling the present code with its FEM hydrodynamical counterpart, which is now available, we will
be ready to examine nonlinear MHD phenomena occurring in realistic configurations.
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[23] Ilaria Perugia, Dominik Schötzau, The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations,
Math. Comp. 72 (243) (2003) 1179–1214 (electronic).

[24] S. Rebay, Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer–Watson algorithm, J. Comput.
Phys. 106 (1993) 125–138.


	An interior penalty Galerkin method for the MHD equations in heterogeneous domains
	Introduction
	Introduction

	The continuous problem
	The setting
	Introduction of  phi  and elimination of E
	Weak formulation
	Stabilized weak formulation

	Finite element approximation
	The interior penalty Galerkin approximation
	Error analysis

	Convergence tests
	Implementation details
	Time-independent 2D convergence tests
	Time-independent 3D convergence tests
	Convergence tests on a 3D time-dependent problem

	Applications
	Ohmic decay in a compact conducting domain
	Ohmic decay in a sphere
	Ohmic decay in an ellipsoid

	Kinematic dynamo

	Conclusion
	Acknowledgments
	References


