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a b s t r a c t

A novel approximation technique using Lagrange finite elements is proposed to solve mag-
neto-dynamics problems involving discontinuous magnetic permeability and non-smooth
interfaces. The algorithm is validated on benchmark problems and is used for kinematic
studies of the Cadarache von Kármán Sodium 2 (VKS2) experimental fluid dynamo.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

This paper is the third part of a research program whose goal is to develop a solution method for solving the magneto-
hydrodynamic equations in heterogeneous axisymmetric domains. The computational domain is assumed to be composed of
non-conducting and conducting media. The electromagnetic field is represented by the pair H � /, where H denotes the
magnetic field in the conducting region and / denotes the magnetic scalar potential in the non-conducting region. The basic
ideas for approximating this class of problems have been introduced in [15]. Lagrange finite elements are used in the median
section and variations in the azimuthal direction are approximated with Fourier expansions. The approximation is discon-
tinuous across the interface separating the conducting and the non-conducting domains. This choice allows us to use
Lagrange elements. The coupling between the H and / representations is done by using an Interior Penalty technique
[2,3]. The method has been applied in [15] to the Maxwell equations forced by given velocity fields; this is the so-called kine-
matic dynamo problem. The solution method has been shown to be stable and convergent. In [16], the method has been gen-
eralized to the full magnetohydrodynamic (MHD) problems and has been shown to be capable of solving nontrivial nonlinear
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dynamo problems. The Navier–Stokes/Maxwell coupling together with details on a parallelization technique for the fast
Fourier transform (FFT) method are described in [16].

The main restriction of the method introduced in [15,16] is that the magnetic permeability must be smooth in the con-
ducting region. This is a major impediment since magnetic permeability heterogeneousness is suspected to play a key role in
the confinement of the magnetic field in some dynamo experiments (we refer in particular to the VKS2 (von Kármán Sodium
2) successful dynamo experiment [26]) and thus significantly lowers the dynamo threshold, [19]. The second restriction is
that our using Lagrange finite elements and penalizing the divergence of the magnetic induction in L2 requires all the inter-
faces to be either smooth or the convexity of the interfaces be oriented towards the non-conducting region. This geometrical
restriction is sometimes cumbersome. The objective of the present work is to address the two above issues. We show in the
present work that the approximation framework proposed in [15,16] can be generalized to account for magnetic permeabil-
ity jumps and possible lack of smoothness of the interfaces where the electric conductivity and the magnetic permeability
are discontinuous.

The paper is organized as follows. Notation and basic notions regarding the continuous problem are introduced and dis-
cussed in Section 2. The finite element approximation is presented in Section 3. In addition to accounting for discontinuous
magnetic permeability, the main novelty of the method is condensed in the bilinear form D in the weak formulation 3.11.
The new method is tested numerically on various academic benchmark problems in Section 4. The method is shown therein
to be robust with respect to geometric singularities and high magnetic permeability contrasts. The method is finally used in
Section 5 to explore various aspects of the VKS2 experiment. Our numerical results confirm the experimental observation
that using soft iron components in the VKS2 experiment significantly lowers the dynamo threshold.

2. Setting of the magnetic problem

The purpose of this section is to describe the PDE setting. We focus our attention on the magnetic features of the problem
since the main novelty that we are going to introduce with respect to [15,16] consists of accounting for the discontinuities of
magnetic permeability field. The Navier–Stokes part of the full MHD problem is thus not considered in this paper.

2.1. The geometric setting

We consider the MHD equations in a bounded axisymmetric domain X � R3 (X could be a truncated version of an un-
bounded domain). The boundary of X is denoted by C = oX and is henceforth assumed to be at least Lipschitz continuous.
X is assumed to be partitioned into a conducting region (subscript c) and an insulating region (subscript v) as follows:

X ¼ Xc [Xv ; Xc \Xv ¼ ;: ð2:1Þ

Xc is referred to as the conducting domain and Xv is referred to as the non-conducting domain. The interface between the
conducting region and the non-conducting region is given and denoted by

R ¼ @Xc \ @Xv : ð2:2Þ

The magnetic permeability, l, is assumed to be axisymmetric and piece-wise smooth over Xc. More precisely, we assume
that the conducting region, Xc, can be partitioned into subregions Xc1, . . . , XcN so that the restriction of l over each subre-
gion, Xc i; i 2 1;N, is smooth. In other words,

Xc ¼ Xc1 [ � � � [XcN; Xci \Xcj ¼ ;; 8i; j 2 1;N: ð2:3Þ

The interface between all the conducting subregions is also given and denoted by Rl,

Rl ¼ [i;j21;NXc i \Xc j: ð2:4Þ

The interfaces R and Rl are fixed and given; they correspond to changes of material properties and one side of these inter-
faces is always a non-deformable solid.

To easily refer to boundary conditions, we introduce

Cc ¼ C \ @Xc; Cv ¼ C \ @Xv : ð2:5Þ

Note that C = Cv [ Cc. Moreover, we denote by C0
v the connected component of oXv that contains Cv. We assume that oXv

has J + 1 connected components, say

C0
v ;C

1
v ; . . . ;CJ

v : ð2:6Þ

Observe that R ¼ ðC0
v n Cv Þ [ C1

v [ � � � [ CJ
v

The notation is illustrated in Fig. 1 on two examples. The vertical dashed line represents the symmetry axis. Only the
meridional section of each region is shown. The geometry shown in the left panel (a) has J = 2 (3 conducting torii), and
R ¼ ðC0

v n CvÞ [ C1
v [ C2

v . The conducting region is composed of 5 subregions. The geometry shown in the right panel (b)
has J ¼ 1;C0

v ¼ Cv ;Cc ¼ ;, and R ¼ C1
v . The conducting region is composed of 2 subregions of different electric conductivities

and magnetic diffusivities.
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2.2. The PDE setting

The conducting region is composed of fluid and solid domains, with conductivity and permeability jumps. The time evo-
lution of the magnetic and electric fields is modeled by the Maxwell equations. To simplify the presentation, we assume in
this paper that the velocity field of the fluid and that of the solid moving parts are known and we denote this quantity by ~u.
No notational distinction is made to separate the fluid and the solid regions.

The time evolution of the electromagnetic field is modeled as follows:

l@tH ¼ �r� E; in X

r�H ¼ rðEþ ~u� lHÞ þ js
; in Xc

0; in Xv

(
r � E ¼ 0; in Xv

E� njC ¼ a; Hjt¼0 ¼ H0; in XcR
Ci

v
E � n ¼ 0; 1 6 i 6 J

8>>>>>>>>><>>>>>>>>>:
ð2:7Þ

where n is the outward normal on C. The independent variables are space and time. The dependent variables are the mag-
netic field, H, and the electric field, E. The physical parameters are the magnetic permeability, l, and the electric conductiv-
ity, r. The data are H0, a and js: H0 is an initial data; a is a boundary data; js is an externally imposed distribution of current.
The initial magnetic induction field, lH0, is assumed to satisfy the compatibility condition r�(lH0) = 0.

Let U be the characteristic scale of ~u and let c be the speed of light. The MHD approximation consists of assuming that the
ratio U=c is extremely small. This hypothesis leads to neglect the displacement currents �@tE in the Ampère–Maxwell equa-
tion. Note however that the conditions r � EjXv

¼ 0 and
R
Ci

v
E � n ¼ 0;1 6 i 6 J are what is left from the Ampère–Maxwell

equation when passing to the limit to zero on the ratio U=c (assuming that the total electrostatic charge in each conducting
region is zero). These extra conditions ensure that E is uniquely defined, i.e., they have no effect on H. Note finally that the
condition

R
C0

v
E � n ¼ 0 needs not be enforced since it is a consequence of the J other conditions,

R
Ci

v
E � n ¼ 0; i ¼ 1; . . . ; J,

together with E being solenoidal. We refer to [5,1] for more details on the asymptotic analysis leading to (2.7).
When r is uniformly positive over X, i.e., Xc = X and Xv = ;, an evolution equation for H can be obtained after eliminating

the electric field. This shortcut is no longer possible when Xv is non trivial, and determining the complete solution, including
the electric field, is no longer straightforward.

We henceforth assume that the conductivity r is zero in Xv and is bounded from below and from above in Xc by positive
constants. We also assume that the restriction of l to Xv is a smooth function, and that l is piece-wise smooth on Xc, i.e.,
ljXc i

is smooth for all i = 1, . . . , N.

2.3. Non-dimensionalization of the equations

We now non-dimensionalize 2.7. We denote by L and U reference length and velocity scales, respectively. Our basic
assumption is that U � c, where c is the speed of light. The reference (advective) time scale is T :¼ L=U . The fluid density

Fig. 1. Examples of computational domains with various boundaries. The left line is the revolution axis. The shaded regions constitute the conducting
domain Xc, the non-shaded domain is vacuum Xv. The dashed subregions may have different electric conductivities and magnetic permeabilities.
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is assumed to be a constant q. The reference magnetic permeability and electric conductivity are denoted by l0 and r0,
respectively. We choose the reference scale for the magnetic field to be so that the reference Alfvén speed is one, i.e.,
H :¼ U

ffiffiffiffiffiffiffiffiffiffiffi
q=l0

p
. The reference scale for the electric field is set to be E :¼ l0HU. The source current js and the data H0, a are

non-dimensionalized by HL�1;H and H, respectively. This leaves one non-dimensional parameter which we refer to as
the magnetic Reynolds number, Rm, and which is defined as follows:

Rm :¼ ULr0l0: ð2:8Þ

Henceforth we abuse the notation by using the same symbols for the non-dimensional and the corresponding dimensional
quantities. The non-dimensional set of equations is re-written as follows:

l@tH ¼ �r� E; in X

r�H ¼ RmrðEþ ~u� lHÞ þ js
; in Xc

0; in Xv

(
r � E ¼ 0; in Xv

E� njC ¼ a; Hjt¼0 ¼ H0; in XcR
Ci

v
E � n ¼ 0; 1 6 i 6 J;

8>>>>>>>>><>>>>>>>>>:
ð2:9Þ

where r and l are the relative conductivity and permeability, respectively.

2.4. Introduction of / and elimination of E

In addition to the above geometrical hypotheses on X, we henceforth assume that the initial data H0 is smooth and is such
that r�(lH0)jX = 0 and r�H0jXv

¼ 0. We also assume that either Xv is simply connected or that the circulation of H along
any path in the insulating media is zero for all time. The conditionr�HjXv

¼ 0 together with the above assumption implies
that there is a scalar potential /, defined up to an arbitrary constant, such that HjXv

¼ r/. The same holds for H0, i.e., there is
/0 such that H0jXv

¼ r/0.
To clarify in which domain we work, we now define

H ¼ Hc in Xc

r/ in Xv ;

�
l ¼

lc in Xc

lv in Xv ;

�
ð2:10Þ

and we denote by nc and nv the outward normal on oXc and oXv, respectively. Similarly, to distinguish between the limits
limXc i3y!x and limXc j3y!x whenever x is on the interface Rl and x 2 Xc i \Xcj, we set

Hc
1ðxÞ ¼

lim
Xc i3y!x

HcðyÞ if i < j

lim
Xc j3y!x

HcðyÞ otherwise;

8><>: Hc
2ðxÞ ¼

lim
Xc j3y!x

HcðyÞ if i < j

lim
Xc i3y!x

HcðyÞ otherwise;

8><>: ð2:11Þ

and we have similar definitions for lc
1ðxÞ and lc

2ðxÞ. For any (scalar- or vector-valued) function f that is two-valued at
x 2 Xc i \Xcj we define the average of f at x as follows:

ffgðxÞ ¼ 1
2
ðf1ðxÞ þ f2ðxÞÞ: ð2:12Þ

Furthermore, we denote by nci(x) and ncj(x) the outward normal at x on oXci and oXcj, respectively. Assuming that i < j, we
set nc

1ðxÞ ¼ nciðxÞ and nc
2ðxÞ ¼ ncjðxÞ.

It is possible to eliminate the electric field from the problem (see e.g. [15] for the details), and once this is done we obtain:

lc@tH
c ¼ �r� ðR�1

m r�1ðr �Hc � jsÞ � ~u� lcHcÞ; in every Xc i; i 2 1;N
lv@tD/ ¼ 0 in Xv

R�1
m r�1ðr �Hc � jsÞ � ~u� lcHc

� �
� nc ¼ a on Cc

lv@nv ð@t/Þ ¼ �nv � r � ðnv � aÞ; on Cv

Hc
1 � nc

1 þHc
2 � nc

2 ¼ 0 on Rl

lc
1Hc

1 � nc
1 þ lc

2Hc
2 � nc

2 ¼ 0 on Rl

Hc � nc þr/� nv ¼ 0 on R

lcHc � nc þ lvr/ � nv ¼ 0 on R

Hcjt¼0 ¼ Hc
0; /jt¼0 ¼ /0:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð2:13Þ

The first equation in 2.13 is obtained by substituting the electric field in the Faraday equation in the conducting domain by
Ec :¼ ðR mrÞ�1ðr �Hc � jsÞ � ~u� lcHc. The second equation is obtained by taking the divergence of the Faraday equation in
the insulating region, lv@tr/ = �r � Ev. The third and fourth equations are the boundary condition on the electric field

6302 J.-L. Guermond et al. / Journal of Computational Physics 230 (2011) 6299–6319
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on Cc [Cv. The fifth, sixth, seventh and eighth equations require that the tangential component of the magnetic field and the
normal component of the magnetic induction are continuous across R [ Rl. Observe that the operator nv �r � (�) involves
only tangential derivatives; hence, it is meaningful to have it acting on the field nv � a which is only defined on C. Note also
that the two conditions (lcHc�nc + lvr/�nv)jR = 0 and ðlc

1Hc � nc
1 þ lc

2Hc � nc
2ÞjRl

¼ 0 express the continuity of the normal
component of the magnetic induction across R and Rl, respectively. These constraints are consequences of the continuity
of the tangential components of the electric field across R and Rl, respectively.

If the electric field is needed, it is computed in the conducting domain by using Ohm’s law, i.e., by setting
Ec :¼ ðR mrÞ�1ðr �Hc � jsÞ � ~u� lcHc. The electric field is computed in the non-conducting medium by solving the Cau-
chy–Riemann problem: r� Ev ¼ �lv@tr/;r � Ev ¼ 0;Ev � nv jR ¼ �Ec � ncjR;E

v � nv jCv
¼ a, and

R
Ci

v
Ev � nv ¼ 0;1 6 i 6 J.

Note that (2.13) does not involve the Ci
v ’s, 1 6 i 6 J, and whether l is continuous or not does not matter when computing

the electric field.

2.5. Weak formulation

A weak formulation of 2.7 with the electric field eliminated (i.e., 2.13) has been derived in [15] assuming that l is con-
tinuous. We handle the discontinuous situation similarly. For this purpose, we introduce the following Hilbert spaces:

L ¼ fðb;uÞ 2 L2ðXcÞ � H1R
¼0ðXvÞg; ð2:14Þ

X ¼ fðb;uÞ 2 HcurlðXcÞ � H1R
¼0ðXvÞ; ðb� nc þru� nvÞjR ¼ 0g ð2:15Þ

and we equip L and X with the norm of L2(Xc) � H1(Xv) and Hcurl(Xc) � H1(Xv), respectively. H1R
¼0ðXv Þ is the subspace of

H1(Xv) composed of the functions of zero mean value. The space Hcurl(Xc) is composed of the vector-valued functions
on Xc that are component-wise L2-integrable and whose curl is also component-wise L2-integrable. The space Hdiv(X) is
composed of the vector-valued functions on X that are component-wise L2-integrable and whose divergence is L2-integrable.
We recall that, for any field b in Hcurl(Xc), the tangential components of b are continuous across Rl, i.e.,
b1 � nc

1 þ b2 � nc
2 ¼ 0.

By proceeding as in [15] and taking inspiration from the so-called Interior Penalty method [2,3], we reformulate the prob-
lem as follows: Seek the pair (Hc,/) 2 L2((0,+1);X) \ L1((0,+1); L) (with @tHc and @t/ in appropriate spaces) such that for
all pairs (b,u) 2 X and a.e. t 2 (0,+1),

Hcjt¼0 ¼ Hc
0; r/jt¼0 ¼ r/0;R

Xc
lcð@tH

cÞ � bþ ððRmrÞ�1ðr �Hc � jsÞ � ~u� lcHcÞ � r � b
h i

þ
R

Xv
lvð@tr/Þ � ru

þ
R

Rl
ðRmrÞ�1ðr �Hc � jsÞ � ~u� lcHc
n o

� b1 � nc
1 þ b2 � nc

2

� �
þ
R

RððRmrÞ�1ðr �Hc � jsÞ � ~u� lcHcÞ � ðb� nc þru� nvÞ
¼
R

Cc
ða� nÞ � ðb� nÞ þ

R
Cv
ða� nÞ � ðru� nÞ:

8>>>>>>>>><>>>>>>>>>:
ð2:16Þ

The interface integrals over R and Rl are zero since b � nc +ru � nv = 0 and b1 � nc
1 þ b2 � nc

2 ¼ 0, but we nevertheless
retain these two integrals since they will not vanish when we construct the non-conforming finite element approximation,
see Section 3. In the same spirit, observe that the tangential components of the average of
fððR mrÞ�1ðr �Hc � jsÞ � ~u� lcHcÞg � nc

1 are equal to the average of the tangential components of the electric field. Since
the tangential components of electric field are continuous, the two terms composing the average across Rl are actually
equal. We nevertheless retain the average notation since this is the formulation that we shall use when we construct the
non-conforming finite element approximation, see Section 3.

The main novelty with respect to [15,16] is the presence in 2.16 of the boundary integral over Rl. It is this term that will
allow us to account for jumps on the magnetic permeability. The boundary integral over Rl appears when one tests the Far-
aday equation in 2.13 with a test function b that is piecewise smooth on Xc1, . . . , XcN but with discontinuous tangential
components across Rl, and when one integrates by parts over each Xci, i 2 1;N.

Showing that the problem 2.16 is well-posed under suitable assumption on the velocity field ~u is a standard exercise in
functional analysis; it is essentially a consequence of Lions’ theorem (see e.g. [p.218][6], [pp.253–258][22]). We refer e.g.
[1,5], [Thm 2.1][15] for more details on the well-posedness issue.

At this point it may not seem clear to the reader that the weak formulation (2.16) naturally enforces the interface condition
lc

1Hc
1 � nc

1 þ lc
2Hc

2 � nc
2 ¼ 0 across Rl. To see that this is indeed true, let us set Ec :¼ ðR mrÞ�1ðr �Hc � jsÞ � ~u� lcHc on Xc. By

using test functions compactly supported on Xc, one infers from 2.16 that Hc and Ec are related by Faraday’s law: lc@tHc = �r �
Ec (integrate by parts over Xc and apply a distribution argument). Similarly, by using test functions whose support is compact
on Xc and has a non-empty intersection with Rl, one infers from 2.16 that the tangential components of Ec are continuous
across Rl, i.e., Ec

1 � nc
1 þ Ec

2 � nc
2 ¼ 0 (integrate by parts over Xc1 and over Xc2). This immediately implies that

ðr � Ec
1Þ � nc

1 þ ðr� Ec
2Þ � nc

2 ¼ 0 across Rl, which, owing to Faraday’s law, implies @tðl1Hc
1 � nc

1 þ l2Hc
2 � nc

2Þ ¼ 0 across Rl.
One then concludes that l1Hc

1 � nc
1 þ l2Hc

2 � nc
2 ¼ 0 across Rl, since this relation holds at time t = 0, (recall that H0 is smooth

andr�(lcH0) = 0 in Xc).
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3. Approximation

The purpose of this section is to explain how (2.16) is discretized in space and time. We proceed as in [15,16], taking into
account that lc is discontinuous, but the divergence-free condition on the magnetic induction is treated differently so as to
handle quite general geometries.

3.1. The geometry

The algorithm that we propose takes advantage of the cylindrical symmetry of the domain X and the interfaces R and Rl.
The symmetry axis is denoted Oz and the cylindrical coordinates are denoted (r,h,z): r is the distance to the Oz axis; h,
(0 6 h 6 2p), is the angular coordinate; and z is the position along the Oz axis. We denote by X2D

v ;X2D
c and

X2D
ci ði ¼ 1; . . . ;NÞ, the meridional sections of Xv, Xc and Xci, respectively. We assume that Xv, Xc and Xci have piecewise qua-

dratic boundaries. These sections are meshed using quadratic triangular meshes.
We denote by F v

h

� 	
h>0; F

c
h

� 	
h>0 and F ci

h

� 	
h>0 the corresponding regular families of non-overlapping quadratic triangular

meshes. We assume for the sake of simplicity that, for every given mesh index h, F ci
h is a subset of F c

h. We denote by R2D
h and

R2D
lh the collection of triangle faces that compose the meridional section of R and Rl, respectively. The collection of cylindri-

cal surfaces generated by rotation around the symmetry axis by the faces in R2D
h and R2D

lh are denoted by Rh and Rlh, respec-
tively. For every cylindrical surface F in Rh [Rlh, we denote by hF the diameter of the triangle face that generates F.

For every element K in the mesh F v
h [ F c

h we denote by TK : bK ! K the quadratic transformation that maps the reference
triangle bK :¼ fðr̂; ẑÞ 2 R2;0 6 r̂; 0 6 ẑ; r̂ þ ẑ 6 1g to K, and we denote by hK the diameter of K. Finally, we denote by K3D the
volume generated by rotation around the symmetry axis by an element K.

3.2. Space discretization for the Maxwell equations

The electromagnetic part of the problem is approximated by using the technique introduced in [15]. The main feature of
the space approximation is that the method is non-conforming, i.e., the continuity constraint (b � nc +ru � nv)jR = 0 and
ðb1 � nc

1 þ b2 � nc
2ÞjRl

¼ 0 in X (see (2.15)) are relaxed and enforced by means of an interior penalty method.
Let ‘H and ‘/ be two integers in {1,2} with ‘/ P ‘H. We first define the meridional finite element spaces

XH;2D
h :¼ bh 2 L2ðXcÞ; bhjXc i

2 C0ðXciÞ; 8i ¼ 1; . . . ;N; bhðTKÞjK 2 P‘H ; 8K 2 F c
h

n o
; ð3:1Þ

X/;2D
h :¼ uh 2 C

0ðXvÞ; uhðTKÞjK 2 P‘/ ; 8K 2 F v
h

� 	
; ð3:2Þ

where Pk denotes the set of bivariate polynomials of total degree at most k, and Pk :¼ Pk � Pk � Pk. Then, using the complex
notation i2 = �1, the magnetic field and the scalar potential are approximated in the following spaces:

XH
h :¼ fb ¼

XM

m¼�M

bm
h ðr; zÞeimh; bm

h 2 XH;2D
h ;bm

h ¼ b�m
h ; k 2 0;Mg; ð3:3Þ

X/
h :¼ u ¼

XM

m¼�M

um
h ðr; zÞeimh; um

h 2 X/;2D
h ; um

h ¼ u�m
h ; m 2 0;M

( )
; ð3:4Þ

where M + 1 is the maximum number of complex Fourier modes.

3.3. Time discretization

We use the same time discretization as in [16]. We just recall the main steps without going through the details. The time
derivatives are approximated using the second-order Backward Difference Formula (BDF2). All the terms that are likely to
mix the modes are made explicit (e.g. cross products). Let Dt be the time step and set tn:¼nDt, n P 0. A first version of
the algorithm is written as follows: after appropriate initialization at t0 and t1, define the following fields for all n P 1

H� ¼ 2Hc;n �Hc;n�1 ð3:5Þ

DHc;nþ1 :¼ 1
2 ð3Hc;nþ1 � 4Hc;n þHc;n�1Þ;

D/nþ1 :¼ 1
2 ð3/nþ1 � 4/n þ /n�1Þ:

(
ð3:6Þ

The solution to the Maxwell part of the problem is computed in one step by solving for Hc,n+1 in XH
h and /n+1 in X/

h so that the
following holds for all b in XH

h and all u in X/
hZ

Xc

lc DHc;nþ1

Dt
� bþ

Z
Xv

lv rD/nþ1

Dt
� ruþ LððHc;nþ1;/nþ1Þ; ðb;uÞÞ ¼ Rnðb;uÞ; ð3:7Þ
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where we have defined the linear form Rn

Rnðb;uÞ :¼
Z

Cv

ða� nvÞ � ðru� nvÞ þ
Z

Cc

ða� ncÞ � ðb� ncÞ þ
Z

Xc

ððRmrÞ�1js þ ~u� lcH�Þ � r � b

þ
Z

Rl

fðRmrÞ�1js þ ~u� lcH�g � sb� ntþ
Z

R
ððRmrÞ�1js þ ~u� lcH�Þ � b� nc þru� nvð Þ

and sb � nt stands for b1 � nc
1 þ b2 � nc

2. The bilinear form L in (3.7) is defined by

LððHc;nþ1;/nþ1Þ; ðb;uÞÞ :¼
Z

Xc

ðRmrÞ�1r�Hc;nþ1 � r � bþ
Z

Rl

fðRmrÞ�1r�Hc;nþ1g � sb� nt

þ gððHc;nþ1;/nþ1Þ; ðb;uÞÞ þ
Z

R
ðRmrÞ�1r�Hc;nþ1 � ðb� nc þru� nvÞ

where g is defined by

gððHc;nþ1;/nþ1Þ; ðb;uÞÞ :¼ b2

X
F2Rlh

h�1
F

Z
F

sHc;nþ1 � nct � sb� nct

þ b1

X
F2Rh

h�1
F

Z
F
ðHc;nþ1 � nc þr/nþ1 � nvÞ � ðb� nc þru� nvÞ; ð3:8Þ

The purpose of the bilinear form g is to penalize the quantities Hc,n+1 � nc +r/n+1 � nv and sHc;nþ1 � nct across R and Rl,
respectively, so that they converge to zero when the mesh-size goes to zero. The coefficients b1 and b2 are user-dependent.
We usually take

b1 ¼ c1=ðRm min
x2Xc
ðrðxÞÞÞ; b2 ¼ c2=ðRm min

x2Xc
ðrðxÞÞÞ;

with c1 = c2 = 1. This scaling can be justified by arguments from the Interior Penalty theory [2,15,16].

3.4. Addition of a magnetic pressure

At this point, the only novelty with respect to [16] is that the approximate magnetic field is discontinuous across the
interface Rlh. This method has been proven to be convergent on finite time intervals, but it may fail to converge in the steady
state regime. Indeed, in the time-dependent case, taking the divergence of Faraday’s equation, we observe that provided the
initial magnetic induction is divergence-free, the following holds for all times

r � ðlHÞ ¼ 0:

Unfortunately, in the steady state case, this condition is a constraint that the above technique may fail to respect. We de-
scribe in this section the modifications we have made in order to enforce the divergence-free condition in both conducting
and insulating part, even in time-independent situations.

3.4.1. Motivation for a magnetic pressure
In [16], the solenoidality constraint is enforced by means of a penalty term added to the bilinear form L, namely

b0

Z
Xc

r � ðlcHc;nþ1Þ � r � ðlcbÞ;

where b0 = 0 or 1 depending on the regularity of the domain. Taking b0 = 1 requires that the approximate solution converges
to the exact solution in the Hcurl \ Hdiv norm. We point out the fact that we want to use H1-conforming Lagrange finite ele-
ments. It is known since the ground-breaking work of Costabel (cf. [7]) that, for non-smooth and non-convex domains (e.g. a
L-shape domain), H1 is a genuine closed subspace of Hcurl \ Hdiv. This means that one can find elements in Hcurl \ Hdiv that
cannot be approximated by elements of H1. We thus need to find another way to deal with the divergence-free constraint in
non-smooth domains.

3.4.2. In the conducting region
Taking inspiration from [4], we propose a non standard technique, which consists of replacing the induction equation in

the conducting part by

@tðlcHcÞ ¼ �r� Ec � lcrpc; ð�D0Þapc ¼ �r � ðlcHcÞ; pcj@Xc
¼ 0; ð3:9Þ

where a is a yet-to-be-chosen real parameter, D0 is the Laplace operator on Xc with zero Dirichlet boundary condition, and pc

is a new scalar unknown which we call magnetic pressure. A simple calculation shows that if the initial magnetic induction is
solenoidal, then pc � 0 so that (3.9) indeed enforces the condition r�(lcHc) = 0. Taking a = 0 in the above formulation
amounts to penalize r�(lcHc) in L2(Xc), as in the previous subsection. For a 2 ð12 ;1	, this new formulation can be shown
to be convergent, even if the domain is non-smooth and non-convex. We refer to [4] for the mathematical analysis of this
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method. Although a = 1 is a legitimate value when solving boundary value problems, it is shown in [4] that a should be taken
away from 1 when solving eigenvalue problems in non-smooth domains to avoid spurious eigenvalues. In practice, we use
a 2 [0.6,0.8] and we do not observe any significative dependence of the method with respect to a when the interfaces are
non-smooth. When the interfaces are smooth the method works properly for any value a 2 [0,1] both for boundary value
and eigenvalue problems.

3.4.3. In the vacuum
We proceed slightly differently in Xv. The induction equation is replaced by the following

@tðlvr/Þ ¼ �r� Ev � lvrpv ; Dpv ¼ D/; rpv � nv j@Xv
¼ 0; ð3:10Þ

where pv is a new scalar unknown, and lv is the magnetic permeability in the vacuum which we assume to be constant. Once
again, a simple calculation shows that if the initial magnetic induction is solenoidal, then pv � 0, so that (3.10) indeed en-
forces D/ = 0. Moreover, upon observing thatZ

Xv

rpv � ru ¼
Z

Xv

r/ � ru�
Z
@Xv

ðn � r/Þu; 8u 2 H1ðXvÞ

The weak formulation of (3.10) can be re-written as follows:Z
Xv

lvð@tr/Þ � ru ¼ �
Z

Xv

r� Ev � ru�
Z

Xv

lvr/ � ruþ
Z
@Xv

lvðn � r/Þu; 8u 2 H1ðXvÞ

so that pv is eliminated from the formulation.

3.4.4. Final algorithm
Finally, we have three unknown fields (one vector-field Hc, two scalar fields /,pc) instead of two (Hc,/).
We introduce a new finite element space to approximate the new scalar unknown pc:

Xp;2D
h :¼ ph 2 L2ðXcÞ=ph 2 C0ðXcÞ; phðTKÞ 2 P‘p ; 8K 2 F c

h; ph ¼ 0 on @Xc

n o
;

Xp
h :¼ p ¼

XM

m¼�M

pm
h ðr; zÞeimh=8m ¼ 1 . . . ;M; pm 2 Xp;2D

h and pm
h ¼ p�m

h

( )
:

Here ‘p is an integer in {1,2}.
The final form of the algorithm is the following: after proper initialization, we solve for Hc;nþ1 2 XH

h ;/
nþ1 2 X/

h and
pc;nþ1 2 Xp

h so that the following holds for all b 2 XH
h ;w 2 X/

h ; q 2 Xp
hZ

Xc

lc DHc;nþ1

Dt
� bþ

Z
Xv

lv rD/nþ1

Dt
� ruþ LððHc;nþ1;/nþ1Þ; ðb;uÞÞ þ Pð/nþ1;uÞ þ DððHc;nþ1;pc;nþ1Þ; ðb; qÞÞ ¼ Rnðb;uÞ

ð3:11Þ

where P denotes the stabilizing bilinear form defined by

Pð/;wÞ ¼
Z

Xv

lvr/ � rw�
Z
@Xv

lvwn � r/

and D is defined by

DððH;pÞ; ðb; qÞÞ :¼ b0

Z
Xc

lcrp � b�
Z

Xc

lcH � rqþ
X
K2F c

h

Z
K3D

h2ð1�aÞ
K rp � rqþ sðHc;nþ1;bÞ

0@ 1A;
where the last bilinear form s is defined by

sðH;bÞ :¼
X
K2F c

h

Z
K3D

h2a
K r � ðlcHÞr � ðlcbÞ:

P accounts for the addition of pv and D is a discrete approximation for the weak formulation of (3.9). Finally, s is a stabil-
ization term that makes the discrete formulation well-posed irrespective of the polynomial degree of the approximation
for pc. The coefficient b0 is scaled as follows:

b0 ¼ c0=ðRm min
x2Xc
ðrðxÞÞÞ;

with c0 = 1. This scaling can be justified by arguments from the Interior Penalty theory [2,15,16].
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4. Convergence tests

The new formulation 3.11 presents two major novelties with respect to that introduced in [16]: it now accounts for non-
smooth geometries and discontinuous magnetic permeability fields. The purpose of this section is to illustrate numerically
these new features on benchmark problems.

4.1. The L-shape domain

We first illustrate the positive effect of the magnetic pressure in the case of steady-state regime in a non-smooth and non-
convex domain. The setting is the following: we consider the conducting L-shape domain (two dimensional case)

X ¼ Xc ¼ ð�1;þ1Þ2 n ð½0;þ1	 � ½�1;0	Þ: ð4:1Þ

with no insulating region, Xv = ;, (cf. Fig. 2). We take l ¼ 1; ~u ¼ 0, and r = 1.

4.1.1. Boundary value problem
Consider the following boundary value problem in the above defined L-shape domain: find H such that

r�r�H ¼ 0; r �H ¼ 0; H� njC ¼ G� n; ð4:2Þ

where the Cartesian components of the boundary data G are given by

Gðr; hÞ ¼ 2
3

r�
1
3
� sin h

3

� �
cos h

3

� � !
ð4:3Þ

and (r,h) are the polar coordinates centered at the re-entrant corner of the domain. The solution to the above problem is
H =rw, where wðr; hÞ ¼ r

2
3 sinð23 hÞ.

Five quasi-uniform (non-nested) Delaunay meshes are considered of mesh-sizes h = 1/10, 1/20, 1/40, 1/80, 1/160, respec-
tively. The meshes are composed of triangles. Two types of approximation are tested; we use P1 elements in the first case
and P2 elements in the second case. The magnetic field and the magnetic pressure are approximated using equal order poly-
nomials in each case.

Denoting by Hh the approximate magnetic field, we report in Table 1 the relative errors kHh �HkL2=kHkL2 for a = 0.75 and
a = 1. Table 1 also shows the computed order of convergence (COC). Convergence is observed for the P1 and P2 approxima-
tions. The best possible convergence rate is 2

3 and this rate is achieved numerically when using P2 elements.

4.1.2. Eigenvalue problem
We now study Ohmic decay in the conducting L-shape domain. Assuming that the magnetic field has the following

behavior H(x, t) = H(x) e�kt, where k > 0, we are lead to consider the following eigenvalue problem: find (k,H) such that

r�r�H ¼ kH; r �H ¼ 0; H� njC ¼ 0; ð4:4Þ

Approximations of the first five eigenvalues with 10�11 tolerance are provided in [9]: k 1 
 1.47562182408,
k2 
 3.53403136678, k3 = k4 = p2 
 9.86960440109, and k5 
 11.3894793979. We solve 4.4 using ARPACK [20] with a
relative tolerance of 10�8.

Fig. 2. Two-dimensional L-shape domain with constant lc.
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Table 2 shows the first eigenvalue computed with a = 0.9 on five quasi-uniform (non-nested) Delaunay meshes of mesh-
sizes 1/10, 1/20, 1/40, 1/80, 1/160, respectively. As explained in [4], taking a close to 1 improves the convergence rate on the
first eigenvalue. The method is clearly convergent although the eigenvector has a strong unbounded singularity.

Table 3 shows the first five eigenvalues computed with a = 0.7 on five quasi-uniform (non-nested) Delaunay meshes of
mesh-sizes 1/10, 1/20, 1/40, 1/80, 1/160, respectively. Here again we observe convergence and there is no spurious eigen-
value. As expected the worst rate of convergence is observed for the first eigenvalue which corresponds to the most singular
eigenvector. The second eigenvector is in H1(X), the third and fourth eigenvectors are analytic, the fifth one has a strong
unbounded singularity. The theory developed in [4] shows that the accuracy of the method improves when a ? 1, but
the absence of spurious eigenvalues is assured only for a < 1. This phenomenon can be observed on the first eigenvalue
by comparing Tables 2 and 3. The COC stalls for the eigenvalues k3 and k4 using P2 since the accuracy of the computed eigen-
values is limited by the tolerance in ARPACK (10�8).

4.2. Induction in a composite sphere

We now turn our attention to three-dimensional induction problems with discontinuous permeability fields.

4.2.1. Description of the problem
The domain is X :¼ R3 and the conductor is composed of two concentric spheres centered at 0. The radius of the inner

sphere, say X1, is R1 and its magnetic permeability is l1. The radius of the outer conducting sphere, say X2, is R2 and its mag-
netic permeability is l2. This composite sphere is surrounded by vacuum of magnetic permeability l0. The magnetic field at
infinity is the vertical uniform field H0:¼H0ez. The magnetic field solves

r�H ¼ 0; r � ðlHÞ ¼ 0; lim
kxk!þ1

H0ðxÞ ¼ H0ez: ð4:5Þ

This problem has an analytical steady state solution which is derived in [10] and which we briefly recall for the sake of
completeness.

There is a scalar potential w so that H =rw in R3, and w solves r�(lrw) = 0 in R3 with rw ? H0ez at infinity. Using the
spherical coordinates (.,#,h), where . is the distance to the origin, # 2 [0,p] is the colatitude and h 2 [0,2p) is the azimuth,
the potential is given by

wð.; #; hÞ ¼

�A. cos#; for . 6 R1

� B.þ C R3
1

.2

� �
cos# for R1 6 . 6 R2

� D R3
1

.2 � H0.
� �

cos# for R2 6 .;

8>>><>>>: ð4:6Þ

where A, B, C and D are constants. The constants can be computed by enforcing w and l@.w to be continuous across Rl and
R, (the continuity of w guarantees that the tangential components of the magnetic field H are continuous and the continuity

Table 1
L2(X) relative errors and computed order of convergence for the boundary value problem (4.2) and (4.3) using P1 elements (2nd and 3rd columns) and P2

elements (4th and 5th columns) with a = 0.75 and a = 1; h is the typical diameter of the Delaunay meshes.

h P1 P2

a = 0.75 a = 1 a = 0.75 a = 1

Rel. Error COC Rel. Error COC Rel. Error COC Rel. Error COC

0.1 2.390 10�1 N/A 2.303 10�1 N/A 1.290 10�1 N/A 1.110 10�1 N/A
0.05 1.843 10�1 0.38 1.826 10�1 0.34 8.178 10�2 0.66 7.016 10�2 0.66
0.025 1.405 10�1 0.39 1.367 10�1 0.42 5.978 10�2 0.45 5.017 10�2 0.48
0.0125 1.031 10�1 0.45 1.010 10�1 0.44 3.759 10�2 0.67 3.191 10�2 0.65
0.00625 7.544 10�2 0.45 7.656 10�2 0.4 2.232 10�2 0.75 1.938 10�2 0.72

Table 2
Relative errors and COC for k1 using P1 elements and P2 elements with a = 0.9. The symbol ‘‘–’’ indicates that the pair (Linear Solver + ARPACK) did not converge
with the assigned tolerances.

h P1 P2

k1 Rel. Error COC k1 Rel. Error COC

0.1 1.555 5.256 10�2 N/A 1.508 2.192 10�2 N/A
0.05 1.541 4.353 10�2 0.27 1.493 1.167 10�2 0.9
0.025 1.522 3.094 10�2 0.49 1.487 7.371 10�3 0.66
0.0125 1.507 2.126 10�2 0.54 1.481 3.726 10�3 0.98
0.00625 1.497 1.465 10�2 0.54 – – N/A
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of l@. w guarantees that the normal component of the magnetic induction lH is continuous). To simplify the expressions of
A, B, C and D we assume that l1 = l0 and we abuse the notation by setting l:¼l2/l0. Then,

A ¼ � 9lH0

ð2lþ 1Þðlþ 2Þ � 2ðl� 1Þ2 R1
R2

� �3

D ¼
ð2lþ 1Þðl� 1Þ R2

R1

� �3
� 1


 �
H0

ð2lþ 1Þðlþ 2Þ � 2ðl� 1Þ2 R1
R2

� �3

B ¼ 1
3

2þ 1
l

� 
A; C ¼ 1

3
1� 1

l

� 
A:

The magnetic field in X1 is HjX1
¼ �Aez. Whether the spheres are composed of conducting material or not does not matter

since the conductivity coefficient does not appear in any formula. As a result, the inner sphere can be viewed from two dif-
ferent perspectives: we can either consider X1 to be part of the conducting medium (with l1 = l0), in which case
Xc = X1 [X2, or we can consider X1 to be part of the non-conducting medium, in which case Xc = X2. Both cases are
described by the same steady solution but the numerical approximations computed by our method are computed differently.

Note that A ? 0, B ? 0, C ? 0,D ? (R2/R1)3H0, and lB ? 3 H0/(1 � (R1/R2)3),lC ? 6H0/(1 � (R1/R2)3) when l ?1; as a
result, the magnetic field tends to zero in X1 [X2 but the magnetic induction converges to a non-zero limit in X2 when
l ?1. The magnetic field penetrates more or less in the spheres depending on the value of l, and it is completely expelled
from the spheres in the limit l ?1.

4.2.2. Case 1: Inner sphere is a conductor
We assume that Xc = X1 [X2, i.e., the conducting medium is composed of the inner and the outer spheres. We take

L :¼ R2 as reference length scale and we set R1 ¼ 1
2 R2. We set H :¼ H0 to non-dimensionalize the magnetic field since there

is no velocity to construct a reference magnetic field.
The infinite vacuum region is truncated at . = 10R2. We enforce the time-independent Dirichlet condition / = H0z:¼H0

.cos# at the outer boundary of the vacuum region, Cv. The steady solution is computed in one time step using Dt = 109. (Re-
call that the steady-state problem is now well-posed thanks to our introducing the magnetic pressure.).

The above problem is solved using various uniformly refined meshes and various values of l. The stabilizing exponent a is
equal to 0.75. The magnetic pressure is approximated using P1 elements, the magnetic field is approximated using P2

Table 3
First five eigenvalues using P1 elements and P2 elements with a = 0.7. The symbol ‘‘–’’ indicates that the pair (Linear Solver + ARPACK) did not converge with
the assigned tolerances.

h P1 P2

ki Rel. Error COC ki Rel. Error COC

0.1 1.930 2.668 10�1 N/A 1.707 1.452 10�1 N/A
0.05 1.845 2.224 10�1 0.26 1.623 9.522 10�2 0.61
0.025 1.765 1.788 10�1 0.32 1.586 7.240 10�2 0.4
0.0125 1.696 1.389 10�1 0.36 1.545 4.614 10�2 0.65
0.00625 1.644 1.080 10�1 0.36 - - N/A

0.1 3.573 1.101 10�2 N/A 3.537 8.266 10�4 N/A
0.05 3.551 4.716 10�3 1.22 3.535 2.380 10�4 1.8
0.025 3.540 1.578 10�3 1.58 3.534 6.640 10�5 1.8
0.0125 3.536 6.245 10�4 1.33 3.534 1.726 10�5 1.9
0.00625 3.535 2.768 10�4 1.17 - - N/A

0.1 5.450 5.770 10�1 N/A 7.828 2.307 10�1 N/A
0.05 7.852 2.277 10�1 1.34 9.870 3.799 10�7 19.21
0.025 9.873 3.075 10�4 2.89 9.870 3.856 10�8 3.3
0.0125 9.870 7.714 10�5 2.0 9.870 3.444 10�8 0.16
0.00625 9.870 1.934 10�5 2.0 – – N/A

0.1 5.455 5.761 10�1 N/A 7.841 2.291 10�1 N/A
0.05 7.858 2.270 10�1 1.34 9.870 4.712 10�7 18.9
0.025 9.873 3.100 10�4 9.52 9.870 3.856 10�8 3.61
0.0125 9.870 7.768 10�5 2.0 9.870 1.990 10�8 0.95
0.00625 9.870 1.935 10�5 2.0 – – N/A

0.1 5.506 6.964 10�1 N/A 7.903 3.614 10�1 N/A
0.05 7.877 3.646 10�1 0.93 11.39 2.374 10�5 13.89
0.025 11.39 4.326 10�4 9.72 11.39 7.786 10�6 1.61
0.0125 11.39 1.457 10�4 1.57 11.39 2.168 10�6 1.85
0.00625 11.39 5.303 10�5 1.46 – – N/A
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elements, and the scalar potential is approximated using P2 elements. For each computation we measure the relative error
on Hc, r� Hc, r�(lcHc) in the L2(Xc)-norm, and the error on / in the H1(Xv)-norm. The results are reported in Table 4. The
method converges well in the range l 2 [2,200].

Fig. 3 shows the computed solution for l = 200. We observe that the radial component Hc
r (panel (a)) is continuous at

(. = R1 and # = 0,# = p) and that the vertical component Hc
z (panel (b)) is continuous at (. = R1,# = p/2). This shows that

the IP method enforces well the continuity of the tangential component of the magnetic field. The panel (c) shows the mag-
netic field lines of Hc (0 6 . 6 R2) and those of r/ (R2 6 .). The magnetic lines in the vacuum region arrive nearly perpen-
dicularly at the ferromagnetic interface. This phenomenon is a feature of l ?1.

4.2.3. Case 2: Hollow sphere
We use the same geometric setting as in case 1, but we now assume that the inner sphere is an insulator, i.e., Xc = X2. The

non-conducting medium, Xv, is composed of the inner sphere X1 plus the spherical annulus . 2 (R2,10R2). The exact
solution to this problem is the same as in case 1.

We repeat the same convergence tests as in case 1. The results are reported in Table 5. We observe that the method
converges well in the range l 2 [2,200] and that the convergence rates are almost identical to those shown in Table 4.

4.3. Induction in rotating devices

We test in this section the proposed method on rotating conductors embedded in a uniform external magnetic field. We
make two numerical tests: the first one assesses the robustness of the method with respect to geometrical singularities and
the second one assesses the robustness of the method with respect to high permeability contrasts. These tests have been
preformed with a = 0.7.

4.3.1. Induction in a finite rotating solid cylinder
Let Xc be a conducting cylinder of non-dimensional radius R = 1 and height Lc

z ¼ 1:6. This cylinder is embedded in vacuum
in R3 and rotates about the z-axis with angular speed - = 1. (The reference velocity U is equal to the product of the radius of
the cylinder and the angular velocity.) The non-dimensional conductivity is r = 1 and the magnetic Reynolds number is
Rm = 100. The non-dimensional magnetic permeability in the entire electromagnetic domain is constant and equal to one,
i.e., lc = lv = 1. The imposed magnetic field at infinity is H0ex. This is a benchmark test case thoroughly investigated in [31].

The time-dependent problem is solved with initial data H0 = H0 ex on a Delaunay mesh which is quasi-uniform in the con-
ducting region and of mesh-size h = 1/100. We use P2 elements for both the magnetic field and the magnetic potential. The
magnetic pressure is approximated using P1 elements. The time step is Dt = 5�10�2. The truncated numerical domain is
X = {r 2 (0,1.6),h 2 [0,2p],z 2 (�4,4)} and the non-conducting domain is Xv = XnXc. The imposed boundary condition on
Cv is /jCv

¼ H0r cos h. The only active Fourier mode is m = 1.
The time evolution of the magnetic energy is shown in Fig. 4a. The graph shows oscillations that correspond to reconnec-

tions of the magnetic lines. Fig. 4b shows the radial profile of Hz at z = 0.8 in the meridian plane h = 0 at steady state. Note
that the point r = 1, h = 0, z = 0.8 is located on the upper sharp edge of the cylinder. The profile is compared with that obtained
in [31]. The agreement is excellent considering that the gradient of the solution is discontinuous at the edges of the cylinder.

Fig. 5a,b show the contour lines of the m = 1 azimuthal Fourier mode of Hh at t = 100. Observe that Hh is symmetric with
respect to the equatorial plane. Plotting the contour lines of Hh emphasizes the skin effect. The lines shown in Fig. 5a, b are
very close to those reported in Fig. 5 from [31] even at the corners. Fig. 5c shows the streamlines of the Fourier mode m = 1 of
the electric current in the cylinder. The current is mainly contained in a thin layer (of the order of the skin depth). It varies

Table 4
Case 1, P2=P2; one iteration (Dt = 109); a = 0.75.

l h H, L2 COC r� H, L2 COC r�(lcHc), L2 COC /, H1 COC

2 0.16 1.688 10�3 - 7.328 10�3 - 2.665 10�2 - 9.536 10�5 -
0.08 2.691 10�4 2.65 2.094 10�3 1.81 1.068 10�2 1.32 2.018 10�5 2.24
0.04 3.898 10�5 2.79 4.889 10�4 2.10 3.831 10�3 1.48 3.431 10�6 2.56
0.02 7.088 10�6 2.46 1.239 10�4 1.98 1.480 10�3 1.37 5.945 10�7 2.53
0.01 1.363 10�6 2.38 3.114 10�5 1.99 5.980 10�4 1.31 1.032 10�7 2.53

20 0.16 8.044 10�3 - 3.729 10�2 - 1.314 10�2 - 3.218 10�4 –
0.08 1.004 10�3 3.00 6.180 10�3 2.59 6.699 10�3 0.97 7.065 10�5 2.19
0.04 1.089 10�4 3.21 4.273 10�4 3.85 1.845 10�3 1.86 1.253 10�5 2.50
0.02 2.048 10�5 2.41 4.570 10�5 3.22 4.856 10�4 1.93 2.220 10�6 2.50
0.01 3.832 10�6 2.42 1.069 10�5 2.10 1.310 10�4 1.89 3.885 10�7 2.51

200 0.16 1.067 10�1 - 3.728 10�1 - 3.876 10�3 – 3.984 10�4 –
0.08 2.439 10�2 2.13 9.239 10�2 2.01 2.620 10�3 0.57 8.331 10�5 2.26
0.04 4.321 10�3 2.50 1.571 10�2 2.56 1.076 10�3 1.28 1.444 10�5 2.53
0.02 6.547 10�4 2.72 2.233 10�3 2.81 4.114 10�4 1.39 2.577 10�6 2.49
0.01 9.008 10�5 2.86 2.956 10�4 2.92 1.223 10�4 1.75 4.536 10�7 2.51
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smoothly in the azimuthal direction and bends sharply at the corners. This behavior is a direct consequence of the presence
of the cylindrical interface with vacuum. The current creates the z-component of the magnetic field and is responsible for the
strong extremum of Hz at the sharp edges of the cylinder (r = 1,h 2 [0,2p],z = ±0.8).

4.3.2. Induction in counter-rotating disks made of soft iron
In order to measure the impact of soft iron disks on induction fields, we now consider two counter-rotating disks embed-

ded in a cylindrical conductor which is itself embedded in vacuum. This test case is a qualitative illustration of the Cadarache
VKS2 fluid dynamo studied in more details in Section 5.

The conducting domain is a cylinder of non-dimensional radius R = 1 and of rectangular cross section of non-dimensional
height L = 2.55: Xc = {(r,h,z); r 2 [0,1),z 2 (�1.275,1.275),h 2 [0,2p)}.Two counter-rotating disks, Xtop

c , Xbot
c , are embedded in

Xc. The upper rotating conducting disk is a cylinder whose cross section is defined as follows:

0:775 6 z 6 0:975 if r 6 0:65;
ðr � 0:65Þ2 þ ðz� 0:875Þ2 6 ð0:1Þ2 if r P 0:65:

�
The lower rotating conducting disk is the image by reflection about the equatorial plane z = 0 of the upper disk. There is no
analytical solution to this problem, but asymptotic solutions are given in [17] assuming that the disks are of rectangular
cross section. The upper and lower disks rotate with non-dimensional angular speed -top = �1 and -bot = 1, respectively.
The non-dimensional magnetic permeability and conductivity of the non-rotating solid container, Xc n ðXtop

c [Xbot
c Þ, are

l0 = 1 and r0 = 1, respectively. The non-dimensional magnetic permeability and conductivity of the two counter-rotating

Fig. 3. Steady solution for a composite sphere embedded in a vertical uniform magnetic field: (a-b) Hr and Hz for conducting inner and outer spheres with
relative permeability l = 200; (c) magnetic field lines.

Table 5
Case 2, P2=P2; one iteration (Dt = 109); a = 0.75.

l h H, L2 COC r� H, L2 COC r�(lcHc), L2 COC /, H1 COC

2 0.16 1.590 10�3 – 7.314 10�3 – 2.424 10�2 - 1.362 10�4 –
0.08 2.913 10�4 2.45 2.002 10�3 1.87 9.423 10�3 1.36 2.679 10�5 2.35
0.04 2.898 10�5 3.33 4.525 10�4 2.15 3.285 10�3 1.52 3.924 10�6 2.77
0.02 4.910 10�6 2.56 1.088 10�4 2.06 1.189 10�3 1.47 6.694 10�7 2.55
0.01 1.109 10�6 2.15 2.665 10�5 2.03 4.637 10�4 1.36 1.162 10�7 2.53

20 0.16 9.418 10�3 - 3.924 10�2 - 1.282 10�2 – 3.423 10�4 –
0.08 1.494 10�3 2.66 6.749 10�3 2.54 6.627 10�3 0.95 7.261 10�5 2.24
0.04 1.952 10�4 2.94 5.859 10�4 3.53 1.832 10�3 1.85 1.245 10�5 2.54
0.02 2.409 10�5 3.02 7.075 10�5 3.05 4.819 10�4 1.93 2.203 10�6 2.50
0.01 2.889 10�6 3.06 1.255 10�5 2.49 1.291 10�4 1.90 3.862 10�7 2.51

200 0.16 1.098 10�1 – 3.934 10�1 - 3.861 10�3 – 4.013 10�4 –
0.08 2.474 10�2 2.15 9.847 10�2 2.00 2.596 10�3 0.57 8.380 10�5 2.26
0.04 4.415 10�3 2.49 1.740 10�2 2.50 1.067 10�3 1.28 1.472 10�5 2.51
0.02 7.451 10�4 2.57 2.658 10�3 2.71 4.091 10�4 1.38 2.642 10�6 2.48
0.01 1.211 10�4 2.62 3.999 10�4 2.73 1.217 10�4 1.75 4.668 10�7 2.50
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disks, Xtop
c [Xbot

c , are ld and rd, respectively. The non-dimensional magnetic permeability of the vacuum is l0 = 1. The im-
posed velocity field in Xc is

~unþ1ðxÞ ¼
0 in Xc n ðXtop

c [Xbot
c Þ

-topez � x in Xtop
c

-botez � x in Xbot
c

8><>:
The device is placed in a transverse uniform magnetic field H0:¼H0ex = H0(cosher � sinheh) and we look for the steady state
solution in two cases: (a) ld = 200l0, rd = 1; (b) ld = 1, rd = 200r0. In both cases the effective magnetic Reynolds number is
the same for the disks Rdisks

m ¼ ldrd-botR
2 ¼ 200l0r0.

For computational purposes the vacuum region is truncated and restricted to the sphere of non-dimensional radius
Rv = 10. The time-independent Dirichlet condition / = H0x:¼H0rcosh is enforced at the outer boundary of the vacuum region,
Cv. The steady solution is computed by advancing 3.11 in time until convergence to steady state is reached. We use the
P2=P2 finite element pair for H and / and P1 elements for the magnetic pressure.

Some three-dimensional representations of the computed solutions are shown in Fig. 6. Panels (a) and (d) show some
magnetic field streamlines near the top disk seen from the side of the cylinder. Panels (b) and (e) show the same magnetic
field streamlines seen from the top of the cylinder. Panels (c) and (f) show the contour of the magnetic energy corresponding
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to 10% of the maximum energy. The top panels (a,b,c) correspond to the solution with ld = l0 and rd = 200r0 and the bottom
panels (d,e, f) correspond to the solution with ld = 200l0 and rd = r0. The two steady solutions are very different although
the two configurations have the same effective magnetic Reynolds number. When the disks are non-ferromagnetic, the mag-
netic field lines are distorted horizontally due to the eddy current in each disk. When the disks are ferromagnetic, the field
lines are distorted inside the disks but also outside as they connect nearly perpendicularly to the disks.

5. Kinematic dynamo

The kinematic code based on the new formulation 3.11 has been further validated on kinematic dynamo problems by
making comparisons with a finite-volume/boundary-element method code [13] using analytical axisymmetric flows. We
now illustrate the efficiency of the new method by applying it to VKS2-like kinematic dynamo problems. These tests have
been performed with a = 0.7.

5.1. The VKS2 experiment

The interest of the scientific community for dynamo action in liquid metals has been renewed since 2000 in the wake of
successful experiments [11,30,26]. We show in this section that the numerical method proposed in this paper is suitable, to
some extent, to model the Cadarache von Kármán Sodium 2 (VKS2) experiment [26] which has been done in liquid sodium.

The experimental set-up is schematically represented on Fig. 7 together with the simplified geometry that we use in the
numerical simulations. The ’bulk flow’, composed of liquid sodium, is contained in a cylinder of radius r = 206 mm, height
524 mm and thickness 5 mm. This cylinder is made of copper and is henceforth referred to as the envelope. The liquid
sodium is stirred by two counter-rotating impellers located at the top and bottom of the container. Each impeller is

Fig. 6. Steady solutions for two counter-rotating disks in a cylindrical vessel: (a,b,c) ld = l0 and rd = 200 r0; (c,d,e) ld = 200l0 and rd = r0; magnetic line
near the top disk seen from the side (a,d) and from the top (b,e); (c, f) contours corresponding to 10% of the maximum magnetic energy.
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composed of a supporting disk and eight curved blades. The impellers act on the liquid sodium as efficient centrifugal
pumps: the fluid is pumped in and expelled out radially, thus forming an helicoidal flow. The top and bottom flows recircu-
late alongside the envelope wall and meet at the mid-plane. This creates a strong azimuthal shear-layer between the two
toroidal recirculation flows. A layer of stationary liquid sodium is trapped between the envelope and the cooling system. This
stationary fluid zone is called ’side layer’. Due to experimental and technical constraints, two additional layers of liquid so-
dium exist between the impellers and the top and bottom lids of the copper container and are referred to as ’lid flows’.

Dynamo action was first observed in the VKS2 set-up once the two counter-rotating impellers, which were initially made
of stainless steel, were replaced by soft iron ones and the injected power was high enough [26]. Once dynamo action occurs,
the measured time-averaged magnetic field is that of a steady axisymmetric axial dipole with a strong azimuthal component
in the equatorial plane [25]. This contradicts the kinematic dynamo computations based on axisymmetric time-averaged von
Kármán flows reported in [23,28,29,18,21]. In these simulations the generated magnetic field is non-axisymmetric as a con-
sequence of Cowling’s theorem [8] (the Fourier mode m = 1 is always found to be the most unstable mode). Until now, there
is no satisfying explanation that could throw light on the generation of the mainly axisymmetric magnetic field which is ob-
served in the VKS2 experiment. Cowling’s theorem [8] implies that there exists a mechanism in the VKS2 experiment that
breaks the flow axisymmetry, and this mechanism has yet to be clearly identified. One possible scenario to explain this
behavior is that small scale helical turbulence may have induction effects via the so called a-effect. A source for the a-effect
could be the helical flow induced by the shear between outwardly expelled fluid trapped between the impeller blades and
the slower moving fluid in the bulk of the container [19,27,12].

Another possible scenario proposed in [14] is based on non-axisymmetric velocity fluctuations created by nonlinearities
on the induction equation.

Notwithstanding the above scenarii, recent experimental observations (F. Daviaud, private communication, 2010) have
shown that the role of moving ferromagnetic material is crucial. With the same available power, the dynamo effect has been
obtained only when at least one of the rotating impellers is made of soft iron. In particular, the following material substitu-
tions have led to subcritical behavior: (1) replacing the copper envelope by a soft iron one while using steel impellers, (2)
using steel impellers enclosed in a copper envelope and filling the space occupied by the ’lid flow’ with copper plates, (3)
using one non-rotating impeller (disk + blades) made of soft iron, the other rotating impeller being made of steel, and remov-
ing the envelope, (4) placing non-rotating soft iron disk behind the steel impellers and removing the envelope, (5) using two
rotating composite impellers (either composed of soft iron disks with steel blades or steel disks with soft iron blades) and
removing the envelope. The main conclusion of all these experiments is that at least one of the impellers (disk + blades) must
be made of soft iron and must rotate for the dynamo effect to be observed.

Obviously the experiment is quite complex. The purpose of the present study is not to explain the generation of the
observed axisymmetric magnetic field in the VKS2 experiment but rather to investigate the role played by the magnetic

Fig. 7. VKS design and mean-flow structure. Top: dimensions (in millimeters) and technical details of the set-up. Are represented the copper vessel with the
embedded cooling system, the thin copper envelope of radius r = 206 mm, height 524 mm and thickness 5 mm separating the flow and the stagnant liquid
sodium, the impellers (disks with attached blades), and the shafts (courtesy of the VKS team). Bottom: simplified geometry in non-dimensional units for
numerical simulations; the thickness of the copper envelope is zero.
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permeability of the impellers on the dynamo threshold for the m = 1 Fourier mode. That this mode has not been observed
may be related to the limited range of magnetic Reynolds numbers available in the VKS device (Rm 6 50).

5.2. Simplified model

Before going through the analysis of a VKS2-like device we investigate the effect of the ’side layer’ and compare the
so-called vanishing tangential field (VTF) boundary condition with the vacuum boundary condition. The VTF boundary con-
dition, H � njC = 0, models walls of infinite permeability.

We consider two simplified geometries of the VKS device. The first one (vessel Nb1) is a cylinder of rectangular cross
section ðr; zÞ 2 ½0;1:6R0	 � � 1

2 H0;
1
2 H0

� �
with H0 = 1.8R0. The moving fluid is contained in the cylinder of cross section

ðr; zÞ 2 ½0;R0	 � � 1
2 H0;

1
2 H0

� �
and the ’side layer’ is the torus of cross section ðr; zÞ 2 ½R0;1:4R0	 � � 1

2 H0;
1
2 H0

� �
. The outer part

of the vessel of cross section ðr; zÞ 2 ½1:4R0;1:6R0	 � � 1
2 H0;

1
2 H0

� �
is made of copper, cf. Fig. 8a. The second simplified vessel

(vessel Nb2) is a cylinder of rectangular cross section ðr; zÞ 2 ½0;R0	 � � 1
2 H0;

1
2 H0

� �
with H0 = 1.8R0 filled with moving fluid cf.

Fig. 8b. Note that the impellers are not accounted for in these two simplified models. The conductivity of the fluid is r0 and
that of copper is r = 4.5r0. The magnetic permeability is assumed to be uniformly constant, l0.

Three different kinematic dynamo scenarii with prescribed velocity field ~u are considered:

Case 1 The conducting region is vessel Nb1. The device is embedded in a truncated sphere of vacuum of radius 10R0. The
usual vacuum/conductor transmission conditions are enforced on the interface R which separate the conducting
material from the vacuum region (see 2.13).

Case 2 The conducting region is again modeled by the vessel Nb1, but in order to replicate the VKS2 experiment, we now
model the presence of soft iron impellers at the top and bottom of the moving fluid region by enforcing the infinite
permeability boundary condition H � n = 0 at z ¼ � 1

2 H0;0 6 r 6 R0
� 	

. The device is again embedded in a trun-
cated sphere of vacuum of radius 10R0. The usual vacuum/conductor transmission conditions are enforced on
the remaining part of the interface R where the VTF condition is not applied (see 2.13).

Case 3 The conducting region is modeled by the vessel Nb2. The infinite permeability boundary condition H � n = 0 is
enforced on the entire boundary of the vessel. This boundary condition is expected to model an envelope made
of soft iron in the VKS2 experiment. There is no insulating region.

The velocity field ~u that has been chosen for these tests is the axisymmetric time-averaged flow field measured in a water
experiment which is documented in [28]. The flow is interpolated on the finite element grid and normalized by the maxi-
mum of the euclidian norm of the velocity, Umax. Henceforth we use L ¼ R0 as reference length scale and U ¼ Umax as refer-
ence velocity scale. The magnetic Reynolds number is

Rm ¼ l0r0UmaxR0: ð5:1Þ

From Cowling’s theorem [8], only magnetic fields with Fourier modes m P 1can be generated by a prescribed axisymmetric
velocity field. Furthermore, the azimuthal modes are uncoupled since r� ð~u�HcÞ cannot transfer energy between the

Fig. 8. Two simplified domains where the thickness of the copper envelope is zero.
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azimuthal modes of Hc. It is also known that the Fourier mode m = 1 is the most unstable one [28,24,29,18]; therefore, we
investigate only this mode. We denote Hc(m = 1) the Fourier mode m = 1 of Hc.

The above three problems are solved by advancing 3.11 in time using a small random divergence-free magnetic field as
initial data. The magnetic energy of Hcðm ¼ 1Þ; 1

2

R
X2D

c
kHcðm ¼ 1Þk2dx, is recorded as a function of time for various magnetic

Reynolds numbers Rm 2 [25,100]. The critical magnetic Reynolds number Rmc corresponds to zero growth rate. The critical
magnetic Reynolds numbers for the three cases defined above are reported in Table 6. By comparing cases 1 and 2, we ob-
serve that the critical magnetic Reynolds number decreases when the VTF condition is used to model the soft iron impellers,
thereby confirming that using soft iron impellers may indeed help to lower the dynamo threshold in the VKS2 experiment.
The results of the third experiment (Case 3) show that using an envelope made of soft iron to confine the magnetic field
within the ’bulk flow’ region is counter-productive. Another interpretation of this result is that the presence of the ’side layer’
may help the dynamo effect in the VKS2 experiment.

5.3. More realistic models

We now model the VKS2 experiment with more realistic geometries, electric conductivities, and magnetic permeabilities
(see Fig. 7).

The conducting domain is partitioned into a moving region (comprising the ’bulk flow’, ’lid flows’, and the ’disk flows’) and
a stationary region (comprising the ’side layer’ and the copper vessel), see Fig. 9.

The moving fluid region is (r,z) 2 [0,R0] � [�1.275,1.275] and the stagnant sodium ’side layer’ is r 2 [R0,R1], R1 = 1.4 R0.
The moving fluid region is divided into the ’bulk flow’ subregion (r,z) 2 [0,R0] � [�0.9,0.9], the ’disk flows’ subregions
(r,z) 2 [0,R0] � [�0.975, � 0.9] [ [0.9,0.975], and the ’lid flows’ subregions (r,z) 2 [0,R0] � ([�1.275,� 0.975] [
[0.975,1.275]). The purpose of the ’disk flows’ is to model the two impellers and the fluid moving between the blades. To
account for the presence of solids of various material properties in the ’disk flows’ subregions, we also introduce two ’flat
disks’ of width Hi = 0.075R0, radius Ri = 0.75R0 and round edges.

The copper walls of the device are (r,z) 2 [R1,R2] � [�1.475,1.475], R2 = 1.6R0. Other geometrical dimensions are reported
in Fig. 7.

The fluid is assigned the conductivity of liquid sodium r0, (r1 = r0). The outer wall of the device is assigned the conduc-
tivity of copper, r2 = 4.5r0. The magnetic permeability of every component of the device is equal to that of the vacuum l0

except for the two ’flat disks’. Two different material compositions are tested for the ’flat disks’. In what we hereafter refer to
as Case 1’ and Case 2’ the ’flat disks’ are made of stainless steel, ri = 0.14r0 and li = l0, but in Case 3’ and Case 4’ the ’flat
disks’ are made of soft iron, ri = r0 and li = 60l0.

Table 6
Critical magnetic Reynolds number for Cases 1 to 3.

Case Boundary condition Rmc

1 Vacuum transmission condition 45
2 VTF at z ¼ � 1

2 H0; 0 6 r 6 R0 40

3 VTF everywhere 52

Fig. 9. Simplified VKS2 setting and imposed axisymmetric velocity field ~u for Case 2’ and Case 4’.
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The prescribed axisymmetric velocity field ~u is defined separately in the ‘bulk flow’, ’disk flow’, and ’lid flow’ regions. In
the ’bulk flow’ region ~u is modeled as in the previous section by using the axisymmetric time-averaged flow field measured
in a water experiment which is documented in [28]. The flow is interpolated on the finite element grid and normalized by the
maximum of the Euclidian norm of the velocity, Umax. The quantity Umax is chosen to be the reference velocity scale,
U :¼ Umax. Let us denote by u0(r,z)eh the axisymmetric ’bulk flow’. Then the flow in the top ’disk flow’ region is defined to
be equal to u0(r,0.9)eh and the flow in the bottom ’disk flow’ region is defined to be equal to u0(r,� 0.9)eh. Finally, two dif-
ferent models are tested for the ’lid flow’. In the first model the top ’lid flow’ velocity field is defined to be the linear inter-
polation with respect to z between u0(r,0.9)eh and the zero, and the bottom flow is defined similarly. The ’lid flow’ thus
defined is denoted ulin

h . In the second model the ’lid flow’ velocity is defined to be the sum of ulin
h and 10% of an analytical

poloidal recirculation flow upol that has been introduced in [24]. The flow upol is normalized so that the maximum of Carte-
sian norm of upol is Umax.

We use ulin
h in the ’lid flow’ region in Case 1’ and Case 3’, and we use ulin

h þ 10�1upol in the ’lid flow’ region in Case 2’ and
Case 4’. The three components of the velocity field ~u which is used in Case 2’ and Case 4’ are shown in Fig. 9. The velocity has
a continuous azimuthal component and shows a small recirculation in the ’lid flow’ region.

The critical magnetic Reynolds numbers are computed in the four cases defined above by solving 3.11 for various
Reynolds numbers and evaluating the growth rate of the magnetic energy in each case. The critical magnetic Reynolds
number Rmc corresponds to zero growth rate. The results are reported in Table 7.

When comparing Case 1 from Table 6 with Case 1’ from Table 7, one realizes that adding counter-rotating disks (modeled
by the ’disk flows’) and purely azimuthal ’lid flows’ dramatically increases the dynamo thresholds; Rmc goes from 45 to 82.
The adverse effect of the ’lid flows’ was first demonstrated in [29]. Adding a poloidal component to the ’lid flow’ with 10%
recirculation intensity (Case 2’) lowers the threshold from 82 to 75 which is still larger than 45. Hence, changing the

Fig. 10. Magnetic field in two perpendicular azimuthal planes in Cases 2’ and 4’.

Table 7
Critical magnetic Reynolds number for the Fourier mode m=1 in VKS2 simplified setting.

Case Composition of disk Lid flow Rmc

1’ Stainless steel ulin
h

82

2’ Stainless steel ulin
h þ 10�1upol 75

3’ Soft iron ulin
h

66

4’ Soft iron ulin
h þ 10�1upol 64
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magnetic permeability has more effect than tweaking the ’lid flow’. The threshold goes further down to Rmc = 65 ± 1 in both
Cases 3’ and 4’.

We show in Fig. 10 the two unstable modes of the magnetic field corresponding to Cases 2’ and 4’. They look similar in the
’bulk flow’ region. There is an equatorial dipole and two vertical structures of opposite sign. Noticeable differences become
apparent when observing the magnetic lines close to the counter-rotating disks as shown in Fig. 11.

The general conclusion of this parametric study is that ferromagnetic disks have a measurable impact on the dynamo
threshold, which is crucial since the experimental magnetic Reynolds number is constrained to be below 50 in the VKS2
experiment. A provisional result about ferromagnetic disks is that they may screen the ’bulk flow’ from the influence of
the ’lid flow’, thereby lowering the dynamo threshold for the Fourier mode m = 1 of the magnetic field. These numerical
experiments also confirm the importance of moving soft iron material in the VKS2 dynamo. This may be one piece of the
big maze that constitutes the VKS2 experiment, but more experimental and numerical investigations need to be done to fully
understand this experiment. This illustrates clearly the unending interplay between MHD experiments and simulations.

6. Conclusion

We have developed a novel approximation technique using Lagrange finite elements for solving magneto-dynamics prob-
lems involving discontinuous magnetic permeability and non-smooth interfaces. The method has been applied to model the
VKS2 experiment in a kinematic dynamo context. In the future, we will investigate nonlinear regimes with the full MHD
equations in a VKS2 set-up using impellers modeled by flat disks together with an axisymmetric volume forcing term acting
at the location of the blades.
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