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Abstract

A mixed Lagrange finite element technique is used to solve the Maxwell equations in the magneto-hydrodynamic
limit in an hybrid domain composed of vacuum and conducting regions. The originality of the approach is that no a
boundary condition is enforced at the interface between the conducting and the insulating regions and the non-co
medium is not approximated by a weakly conducting medium as is frequently done in the literature. As a first evaluatio
performance of the method, we study two-dimensional (2D) configurations, where the flow streamlines of the conduc
are planar, i.e., invariant in one direction, and either the magnetic field (“magnetic scalar” case) or the electric field (
scalar” case) is parallel to the invariant direction. Induction heating, eddy current generation, and magnetic field stret
investigated showing the usefulness of finite element methods to solve magneto-dynamical problems with complex i
boundaries.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

1.1. Introductory comments

Magneto-hydrodynamic (MHD) flows are usually involved in two well separated contexts: industrial applications
metallurgy, electromechanics) and astrophysical problems. The difference stems from the magnitude of the magnetic
number,Rm, which compares the magnetic diffusion typical time to the advection characteristic time. In industrial applic
Rm is well below unity so that the induced magnetic fields may be neglected, while, in astrophysics,Rm is much larger than
unity and conversion of kinetic energy into magnetic energy through the so-called dynamo action takes place. We
Moffatt [1] for a survey on the physical aspects of the dynamo action.

The equations that model the dynamo action are the incompressible Navier–Stokes equations and the Maxwell
with the displacement-currents neglected, the two sets of equations being coupled via the Lorentz force and the Ohm

The Maxwell equations involve four vector fields,E, H, D, andB, the electric field, the magnetic field, the electric inducti
and the magnetic induction, respectively. These four vector fields are related by two constitutive equations dependi
polarization properties of the material. Henceforth we assume linearity: the magnetic permeabilityµ = µ(x), the electric
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the electromagnetic field. Then, the electromagnetic field can be represented by two vector fields only: the electric fieE and
the magnetic fieldH.

The conducting fluid is assumed to be of unit density and the flow to be incompressible. We denote byu the velocity,p the
pressure andν the kinematic viscosity.

Being given source terms,f, j, and initial data,u0, andH0, the set of equations is as follows:


∂tu+ (u · ∇)u− νu+∇p = (∇×H)× µH+ f in Ωc,

∇·u= 0 in Ωc,

u|∂Ωc
= 0,

u|t=0= u0,

(1)




∂t (µH)=−∇×E in Ω,

∇×H= σ
(
E+ u× (µH)

)+ js in Ωc,

∇×H= 0 in Ωv,

∇·(εE)= 0 in Ωv,

H× n|Γ = 0,
E · n|Γv

= 0,
H|t=0=H0,

(2)

whereΩc denotes the domain occupied by the conducting fluid,Ωv is the domain of the non-conducting medium, a
Ω =Ωc ∪Ωv is the total domain. The subscriptsc andv stand for conductor and vacuum respectively. To refer to boun
conditions easily, we introduce

Γc = ∂Ω ∩ ∂Ωc, Γv = ∂Ω ∩ ∂Ωv, Σ = ∂Ωc ∩ ∂Ωv, Γ = ∂Ω = Γv ∪ Γc. (3)

Γ is the boundary ofΩ , n the outward normal toΓ , Σ the interface betweenΩc andΩv . Three possible partitions ofΩ
considered henceforth are shown on Fig. 1.

The boundary data are taken homogeneous for the sake of simplicity, but general inhomogeneous data can be acc
in the present framework by using appropriate liftings of the boundary data.

Although a coupled set of Partial Differential Equations is to be solved, the main numerical difficulty encounte
the astrophysical context does not come from the coupling but from the presence of the non-conducting medium w
conductivity is zero. In this region the magnetic fieldH must be curl-free (it derives from a scalar potential) and the ele
induction divergence-free (it derives from a vector potential). If it were not for this condition (in other words, ifΩ =Ωc), then
the electric field could be eliminated from the system of equations as is done in most industrial applications and the
equations would be parabolic, thus posing no particular difficulty to be approximated numerically (see, e.g., [2–4]).

Most of the existing numerical works dedicated to the dynamo problem either assume that the conducting region has
conducting walls (“ideal” boundary), or enforce anad hocboundary condition onH at the interfaceΣ , so that the problem ca
be restricted to the conducting region only. Few studies consider the MHD equations with “non-ideal” boundaries and
them are either restricted to steady situations (see, for example, [5] and the references therein), or consider simple g
for the conducting region, like infinite cylinders or spheres, so that the exterior problem can be solved analytically [
the stationary case with “non-ideal” boundary, the magnetic field is usually eliminated by means of the Biot–Savar
suggested in [5].

Industrial applications, usually characterized byRm � 1, generally involve complex boundaries. This has led to the b
development of Finite Element codes in this field. In astrophysical situations withRm � 1, the boundaries generally have
much simpler geometry than in the industrial cases, i.e., spherical symmetry or periodicity, so that the treatment of the
boundary/interface conditions remains analytically and numerically tractable. However, this trend is now changing. R
two experimental demonstrations of the dynamo effect have been performed in cylindrical containers using sodium flow

Fig. 1. Three possible settings for the domain.
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approximations of both the geometry and the experimental boundary conditions, and based on a schematic represent
flow field. Another experimental set-up at similar magnetic Reynolds numbers is currently operated in a turbulent swirl
of liquid sodium [13]. Numerical computations based on axially periodic flow have predicted the dynamo threshold atRm ≈ 70
[14], which is not reached in the present facility. The optimization of experiments of this type requires a proper treatme
boundary conditions and a better account of the non-conducting medium surrounding the containers. This is one of the
motivations of the present work.

Although the Finite Element Method (FEM) has proven its ability to solve the hydrodynamic equations in a large
of industrial configurations, it is only recently that it has been considered for solving the dynamo problem. For instanc
elements have been applied to the spherical dynamo problem by Chan et al. [15]. However, like most of the early at
solving the dynamo problem by using FEM, the method used in [15] is not completely satisfactory, since the insulatin
is modeled by a weakly conducting one. The aim of the present paper is to solve dynamo-like problems by accountin
for the insulating region without any sort of penalization.

1.2. Goals of the paper

In the present paper, we intend to use a recently proposed algorithm designed for solving confined MHD flows
magnetic Reynolds numbers. The mathematical properties of the algorithm in question have been analyzed in detail in
and in [17] in 3D. Our objective is to assess the performance of this new algorithm and to apply it effectively to some ph
relevant 2D flows, including the few for which analytical results are available, postponing all 3D applications (including d
action) to a further work.

The outline of the paper is as follows. We introduce the electric scalar and the magnetic scalar formulations in Secti
also give in this section details for building the corresponding finite element approximations. In Section 3, we study the
scalar case. Three configurations are investigated. We first evaluate the Ohmic decay in a circular cylinder. Then w
the time evolution of the patterns made by the magnetic lines in the case of impulsively started solid rotors embedded
insulating or conducting media. We finally study the shearing effects of eddies on the magnetic field. In Section 4, we s
magnetic scalar case. We consider four test cases: Ohmic decay; forced heating; eddy currents induced by magnet
currents flowing in a compound domain. In each case, numerical results are compared to analytic solutions when
Concluding remarks are reported in Section 5.

1.3. Notations

We denote the Cartesian coordinates inR
3 by (x, y, z) and the cylindrical coordinates by(r,ϕ, z). In the numerical

simulations presented hereafter we assume thatz is an invariant direction. We assume also that the velocity of the field flow,u, is
known and is everywhere normal to the invariant directionz, i.e.,u= (ux(x, y, t), uy (x, y, t),0). Using the Maxwell equations
the boundary conditions, and the initial data, it can be inferred that two classes of 2D solutions exist. EitherH= (0,0,H) and
Ez = 0, orE= (0,0,E) andHz = 0. The first case is henceforth referred to as the magnetic scalar situation, whereas the
case is referred to as the electric scalar configuration. In the first caseH is a scalar and∇·(µH)= 0 is automatically fulfilled.
In the second caseE is scalar and∇ ·(εE) = 0 is fulfilled trivially. These particular 2D cases may appear too restricted
academic with respect to the nonlinear dynamo problem. Nonetheless, they are related to interesting physical situa
they lead to nontrivial numerical problems. The algorithms for solving these problems are reduced versions of those
for the more general 3D formulation, thus their study is a prerequisite for the forthcoming unrestricted 3D case.

In all the numerical tests reported in Sections 3 and 4, we assumeε = µ= σ = 1.

2. The Finite Element Method (FEM) algorithm

In this section we introduce the electric scalar and magnetic scalar formulations together with their respective finite
approximation. Some details on the full 3D problem are also given.
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We start by describing the 2D Electric scalar formulation. In this situation, the set of Eqs. (2) simplifies as follows


∂t (µH)=−∇×E in Ω,

∇×H= σ(E + u× (µH))+ j in Ωc,

∇×H= 0 in Ωv,

H× n= 0 onΓ,

H=H0 at t = 0,

(4)

where we adopt the following notations:

∇×H= ∂xHy − ∂yHx, ∇×E = (∂yE,−∂xE), u× (µH)=µ(uxHy − uyHx). (5)

2.1.1. Stabilized weak formulation
To obtain a weak form of the system (4), we multiply the first equation by test functions and we integrate overΩ :

∇×H= (0,0, ∂xHy − ∂yHx), ∇×E = (∂yE,−∂xE,0), u× (µH)= (
0,0,µ(uxHy − uyHx)

)
, (6)

whereb are the test functions to be chosen later and(·, ·)Ω denotes theL2-scalar product onΩ . Now we integrate by parts th
second term in the equation and, by restricting the test functionsb to satisfy the same essential boundary condition asH, i.e.,
b× n|Γ = 0, we obtain

(µ∂tH,b)Ω + (E,∇×b)Ω = 0, ∀b s.t.b× n|Γ = 0. (7)

The second integral in this equation can be represented as a sum of integrals overΩc andΩv . Then taking into account that i
the conducting mediumΩc we have

E = 1

σ
(∇×H− j)− u× (µH), (8)

we obtain

(µ∂tH,b)Ω +
(

1

σ
∇×H,∇×b

)
Ωc

− (u×µH,∇×b)Ωc
+ (E,∇×b)Ωv

=
(

1

σ
j,∇×b

)
Ωc

, ∀b. (9)

Although it can be shown that this form of Ampère’s theorem yields a well posed problem, we can freely guarante
additional control on the curl ofH in the insulating region by adding the quantity(∇×H,∇×b)Ωv

to the above bilinear form
At this point we want to emphasize also that, contrary to what is sometimes claimed by some authors, the

∇ ·(µH) = 0 is not part of the original system (4). In other words, the constraint∇ ·(µH) = 0 need not be enforced for (4
to be well posed. This equation is just ana posterioriconsequence of (4) provided the initial data also satisfy this equa
Nevertheless, it is standard to incorporate this equation in stabilized formulations to have ana priori control on the divergenc
of µH. For instance we refer to [18] or [4] where this type of stabilization is used in conjunction with standard La
finite elements to solve MHD problems in conducting media with constant properties. Hence we can freely add the
(∇·µH,∇·µb)Ω to the weak form of Ampère’s theorem and still be guaranteed to solve the correct problem.

Let us defineσ̃ to be a smooth extension ofσ on the whole domainΩ so that for allx ∈ Ω , infy∈Ωc
σ (y) � σ̃ (x) �

supy∈Ωc
σ (y). We now define the following stabilized bilinear form

as(H,b)=
(

1

σ̃
∇×H,∇×b

)
Ω

+ (∇·(µH),∇·(µb)
)
Ω
− (

u× (µH),∇×b
)
Ωc

. (10)

Now, we weakly enforce the constraint∇×H= 0 in Ωv as follows

(∇×H, e)Ωv
= 0 ∀e. (11)

Finally we consider the following problem: forj given andH0 such that∇·(µH0)= 0,


Find H with H× n|Γ = 0 andE s.t.,
H|t=0=H0,

(µ∂tH,b)Ω + as(H,b)+ (E,∇×b)Ωv
=

(
1

σ
j,∇×b

)
Ωc

, ∀b with b×n|Γ = 0,

(∇×H, e)Ωv
= 0, ∀e.

(12)

This problem is shown to be well posed and equivalent to the original problem (4) in [16].



J.L. Guermond et al. / European Journal of Mechanics B/Fluids 22 (2003) 555–579 559

At this point it is worth noting that the presence of the insulating region gives to the problem a saddle point structure where
t seems
MHD

on each
ent

an

agnetic

for the

ackward

ent now

full 3D
n
we
the electric field in the insulating region is the Lagrange multiplier that enforces the magnetic field to be curl-free. I
that this structure, which is partly responsible for the numerical difficulties referred to in the introduction for solving the
equations with insulating regions, has been recognized only recently [16].

2.1.2. Finite element discretization
In this section we consider the finite element discretization of the formulation considered above. We shall denote by(Th)h>0

a family of regular meshes coveringΩ and composed of triangles.
We introduceXh the space of the vector-valued continuous finite element functions which are piecewise quadratic

triangle of the mesh and satisfybh × n|Γ = 0. We denote byMh the space of the scalar-valued continuous finite elem
functions which are piecewise linear.

Denoting byIh the Lagrange interpolation operator and bydt the finite difference temporal operator, we build
approximate solution to (12) as follows:



Find Hh ∈ C1(0, T ;Xh) andEh ∈ C0(0, T ;Mh) s.t.,

(µdtHh,bh)Ω + as(Hh,bh)+ (Eh,∇×bh)Ωv
=

(
1

σ
j,∇×bh

)
Ωc

, ∀bh ∈Xh,

(∇×Hh, eh)Ωv
= 0, ∀eh ∈Mh,

Hh|t=0= IhH0.

(13)

The saddle point structure of the problem is our main reason for choosing two different types of interpolation for the m
and the electric fields. In fact the problem is well posed if and only if there is a constantβ > 0 such that

∀eh ∈Mh, sup
bh∈Xh

(∇×bh, eh)Ωv

‖bh‖X
� β‖eh‖M, (14)

where we have defined the norms

‖b‖2
X =

∫
Ω

(
b2+ (∇×b)2

)
dx, ‖e‖2

M =
∫
Ω

e2 dx. (15)

It is shown in [16] that using piecewise quadratic polynomials for the magnetic field and piecewise linear polynomials
electric field guarantees that the above so-called inf-sup condition is satisfied withβ independent of the mesh size.

In the numerical tests reported in this paper, the time derivative is approximated by means of the second order B
Difference Formula (BDF2).

2.2. Magnetic scalar formulation and 3D formulation

Although in the numerical applications we shall restrict ourselves to the 2D magnetic scalar formulation, we pres
the complete 3D theory, since the 2D magnetic scalar formulation and the full 3D theory are almost identical.

2.2.1. Stabilized weak formulation
We now consider the initial-boundary-value problem (2). Note that the equations∇×H|Ωv

= 0, ∇ · εE|Ωv
= 0, and

E · n|Γv
= 0 are the trace of Ampère’s theoremµε∂tE = ∇× (µH) whereε = 1/µc2, and the speed of lightc is assumed

to be much larger than the characteristic scale of the velocity fieldu (see [19,20] for more details).
To obtain a weak form of Ampère’s theorem we proceed as in the electric scalar case. Choosing test functionsb that satisfy

the same boundary condition asH onΓ , we obtain

(µ∂tH,b)Ω + as(H,b)+ (E,∇×b)Ωv
=

(
1

σ
j,∇×b

)
Ωc

. (16)

As for the electric scalar case, we can enforce weakly the constraint∇×H= 0 in Ωv as follows

(∇×H, e)Ωv
= 0, ∀e. (17)

It is at this very point that the 2D electric scalar situation differs from that of the 2D magnetic scalar and that of the
case. In the 3D case,E is still the Lagrange multiplier for the constraint∇×H = 0 in Ωv , but this multiplier must be chose
to satisfy the additional constraint∇ ·εE= 0 in Ωv . To account for this additional constraint on the Lagrange multiplier,
propose to enforce it in the least-squares sense by adding to the above equation the following bilinear form

ds(e, e′)= (∇·εe,∇·εe′)Ωv
. (18)
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(∇×H, e)Ωv
− δsds(E, e)= 0, ∀e, (19)

whereδs is a positive free parameter yet to be fixed.
Finally, the weak formulation of (2) is as follows. For a given currentj and an initial magnetic fieldH0 s.t.∇·(µH0)= 0,



Find H with H× n|Γ = 0 andE with E · n|Γv
= 0 s.t.,

H|t=0=H0,

(µ∂tH,b)Ω + as(H,b)+ (E,∇×b)Ωv
=

(
1

σ
j,∇×b

)
Ωc

, ∀b with b× n|Γ = 0,

(∇×H, e)Ωv
− δsds(E, e)= 0, ∀e with e · n|Γv

= 0.

(20)

2.2.2. Finite element discretization
Based on a finite element mesh(Th)h>0, we introduce two finite element spaces of vector-valued function:Xh andMh. Xh

is composed of continuous piecewise polynomials of degree two satisfying the boundary conditionbh × n|Γ = 0, whereasMh

is composed of continuous piecewise polynomials of degree one satisfying the boundary conditioneh · n|Γv
= 0.

Denoting again byIh the Lagrange interpolation operator and bydt the finite difference temporal operator, we build
approximate solution to (20) as follows:



Find Hh ∈ C1(0, T ;Xh) andEh ∈ C0(0, T ;Mh) s.t.,

(µdtHh,bh)Ω + as(Hh,bh)+ (Eh,∇×bh)Ωv
=

(
1

σ
j,∇×bh

)
Ωc

, ∀bh ∈Xh,

(∇×Hh, eh)Ωv
− δsds(Eh, eh)= 0, ∀eh ∈Mh,

Hh|t=0= IhH0.

(21)

The convergence analysis of this formulation, reported in [17], shows that the best convergence estimates are obta
free parameterδs is chosen to be equal to the mesh size,h. Hence, hereafter we chooseδs = h.

It is believed, though not yet proved completely, that the setting described above is such that an appropriate inf-sup
like (14) holds in the 3D situation; we refer to [17] for the mathematical details.

3. Electric scalar cases

We study configurations withEz �= 0 andHz = 0 in various geometries, where both the velocity and magnetic line
planar. To assess the performance of the finite element algorithm described in Section 2.1.2, we first compare analytic
and numerical computations in the case of ohmic decay and in the case of a circular rotating conductor embedded in
Situations with no analytic solutions are also investigated such as a square conductor and a circular conductor em
conducting regions. Then we consider cases where the magnetic field lines are stretched by the flow, which is one of
physical mechanisms involved in dynamo action.

3.1. Ohmic decay

We consider a solid conducting circular cylinder of radiusR = 1 embedded in vacuum,

Ω =R
2, Ωc =

{
(x, y) ∈R

2,

√
x2+ y2 <R

}
. (22)

A uniform magnetic field parallel to thex-axis is sustained in the whole domain fort � 0 and is turned off fort > 0. We study
the evolution of the magnetic field fort � 0.

3.1.1. Analytical computation
Let us briefly recall how the analytic solution to this problem can be found. It can be inferred from (2) that, in

dimensional units, the magnetic field is a solution to the following set of equations,

∂H
∂t
=H for r � 1, rot (H)= 0 for r > 1, and ∇·H= 0 in Ω, (23)

with H continuous acrossΣ and ‖H‖ → 0 for r →+∞. Using polar coordinates(er , eϕ, ez), the magnetic field may b
represented as

H(r,ϕ, t)=�
[∑

m

(
bmr (r, t)er + bmϕ (r, t)eϕ

)
exp(imϕ)

]
, (24)
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Table 1

lts
elements

in the

t
etries
m 1 2 3 4

λm 5.783 14.682 26.375 40.706

Table 2

Case λ1 Error (%) ne np h

1 5.678 1.82 2320 1201 0.15
2 5.776 0.12 7670 3916 0.15

wherem is the azimuthal wavenumber.H being solenoidal, we introduce the stream-functionψ such that∇×(ψez)=H, i.e.,

bmr = i
ψm

r
, bmϕ =−

1

m

∂ψm

∂r
. (25)

The continuity ofH at r = 1 forces the continuity ofψm and its derivative. After some calculations, the solution reads:

for r � 1


 bmr (r, t)= i Cm

√
λm

2m

[
Jm+1

(√
λmr

)+ Jm−1
(√

λmr
)]

exp(−λmt),

bmϕ (r, t)= Cm

√
λm

2m

[
Jm+1

(√
λmr

)− Jm−1
(√

λmr
)]

exp(−λmt),
(26)

for r > 1

{
bmr (r, t)= iCmr−m−1Jm

(√
λm

)
exp(−λmt),

bmϕ (r, t)=Cmr−m−1Jm
(√

λm
)
exp(−λmt),

(27)

whereCm is a constant,Jm are the Bessel functions of the first kind, andλm is determined byJm−1(
√
λm)= 0. Table 1 gives

some typical values ofλm.
The smallest rateλ1, corresponding to the decay time of the uniform initial magnetic fieldm= 1, is numerically computed

in the next section.

3.1.2. Numerical results
For numerical purposes the domainΩ is truncated. We consider the following two numerical domains,

Ω1,h =]−5R,+5R[2 (case 1), Ω2,h =]−10R,+10R[2 (case 2). (28)

In each case we enforceHh(t)× n to be zero at the boundary of the computational domain fort > 0. To evaluateλ1, we record
the time evolution of the total magnetic energy,

E(t)= 1

2

∫
Ω

µH2 dx, (29)

which decays asE(t = 0)exp(−2λ1t). A linear fit of the logarithm ofE(t) givesλ1, the decay rate. The numerical resu
obtained in the two cases are reported in Table 2. The three rightmost columns give, respectively, the number of finite
ne in each domain (i.e., the number of triangles used), the number of nodesnp used for the computation ofHh, and the typical
mesh sizeh in the vicinity of the interfaceΣ . The number of elements to represent the conducting region is kept constant
two simulations. We observe here that the larger the computational domain the more accurate the computation ofλ1.

3.2. Reconnections of magnetic field lines and steady regime in solid rotors

We again considerΩ =R
2, and a uniform magnetic field parallel to thex-axis,He = ex , is applied in the whole domain a

t = 0 and at infinity fort > 0. We study the evolution of the magnetic field and the stationary regime for simple rotor geom
embedded in insulating or conducting regions. The characteristic lengthscale and velocity are denoted asR andU respectively.
Two timescales can then be constructed, the stretching timeτs = R/U and the diffusive timeτd = R2µσ .

3.2.1. Circular cylinder embedded in vacuum
We first consider a circular rotor of radiusR = 1

Ωc =
{
(x, y) ∈R

2,

√
x2+ y2 <R

}
. (30)
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Fig. 2. Streamlines of the magnetic field. First observed reconnections atωt = 4. Rotation is counter-clockwise.3

At t � 0 the cylinder is at rest; at latter times it rotates with the velocityu= ωez × r, wherer = (x, y,0) andez = (0,0,1).
This problem has been studied first in [21] and analytic solutions have been derived. A distinctive feature of this proble
the magnetic lines can reconnect to form closed loops during the transient regime.

The domain is truncated so that the actual computational domain is

Ω1,h =]−5R,+5R[2, (31)

whose numerical parameters are listed in the previous subsection:ne = 2320,np = 1201,h= 0.15. At t = 0 we setH0=He

and for t > 0 we enforceH × n|∂Ω1,h = He × n. We perform simulations with different magnetic Reynolds numb

Rm = µσωR2.
It is shown in [21] that no reconnection of the magnetic lines can occur ifRm < Rc

m, with Rc
m ≈ 15.46, and, for magnetic

Reynolds numbers slightly higher thanRc
m, one reconnection should occur at a timet such that 4� ωt � 5. Numerically

we observe no reconnection forRm = 15, whereas one reconnection pair is observed forRm = 16. These observations a
compatible with the value of the critical magnetic Reynolds number obtained by Parker. We illustrate this phenomenon
by showing the numerical magnetic lines atωt = 4 for the two casesRm = 15 andRm = 16.

In Fig. 3, we compare the analytic solution from [21] and the finite element one forRm = 100. For timesωt = 1,2, . . . ,6,
the analytic solution is on the left of the figure and the numerical one is on the right. The first set of reconnections is o
in the time interval 2� ωt � 4. Note that reconnections always occur in pairs.

As time goes to infinity, the solution reaches a steady state for which the magnetic lines cannot reconnect. We sh
of these steady states in Fig. 4 forRm = 10, 20, 40, and 100. We clearly observe in this figure the so-called skin effect: a
magnetic Reynolds number increases, the magnetic field is expelled from the conductor, and a boundary layer app
circumference of the cylinder. The skin width, or penetration length, is given by the formulaδ = √2π/µσω = R

√
2π/Rm.

For instance, atRm = 100 we haveδ/R = 0.25. Note that this ratio is significantly larger than the grid size,h = 0.15, at
the interfaceΣ ; hence, the computation atRm = 100 is meaningful. If the mesh size is too large with respect toδ/R, the
computation remains numerically stable, but the precision deteriorates; for instance, the divergence of the magnetic
longer of the order of the consistency error.

In Fig. 5, the total magnetic energy for the magnetic Reynolds numbersRm = 10, 20, 40, and 100 shows transie
oscillations due to the successive reconnections. In the steady regime, the energy is a decreasing function ofRm and saturates
at a level lower than the initial one due to expulsion of the magnetic field from the rotor. We clearly observe that t
dimensional reconnection time scales likeωτs = ωR/U = 1, while the non-dimensional time to reach steadiness scales
ωτd = ωR2µσ = Rm.

We observe that at steady state, the induced magnetic fieldHind=H−He outside the conductor is roughly that of a magne
dipole whose angle with respect to the vertical axis varies with the magnetic Reynolds number (see [22]). For examp
shows the lines of the induced magnetic field atRm = 10 andRm = 100. The angles of the dipole, counted from the vert
axis, are 61◦ and 89◦ respectively, in accordance with [22]. Expulsion of the magnetic field from the rotor is achieved
limit Rm→∞ as the angle of the dipole converges to 90◦.

As Rm increases, the dipole axis rotates and tends to align itself with the opposite direction of the external field,
intensity of the magnetic field inside the rotor approaches that of the external field. As a result, the magnetic energy in
decreases to zero since it is contained in a shell of width comparable to the skin depth.

3 The window size does not correspond to the computational domain in figures 2–4, 6, 10, 13, 19 in order to focus on the physical m
In each case, or the radius is unity, or the size of the conducting square is 2. Each integration domain is defined in the text.
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n is
Fig. 3. Streamlines of the magnetic field,Rm = 100. Analytical solution from [21] (gray lines), our computations (dark lines). Rotatio
clockwise.

Fig. 4. Streamlines of the magnetic field at steady state. Rotation is counter-clockwise. Note the skin effect.
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Fig. 5. Time evolution of the total magnetic energy forRm = 10, 20, 40, 100 in non-dimensional time unitωt for the rigid rotor in vacuum.

Fig. 6. Streamlines of the induced magnetic fieldHind = H − He showing a dipole structure atRm = 10 andRm = 100. Rotation is
counter-clockwise and the imposed external fluid isHe = ex .

3.2.2. Square cylinder embedded in vacuum
Keeping the same boundary conditions and initial data as in the previous example, we now consider a rotating co

cylinder of square section and of sideL= 2,

Ωc =
]
−L

2
,+L

2

[2
. (32)

There is no known analytic solution for this case. The interface between the insulating and the conducting media
dependent. To avoid rebuilding the grid at each time step, we change the frame of reference so that the conducting c
kept fixed in a uniform magnetic field rotating with the angular velocityω.

The numerical simulations are performed by using the following truncated domain

Ωh =
]
−5L

2
,+5L

2

[2
, (33)

at the boundary of which we enforceHh(t)× n= (cos(ωt)ex + sin(ωt)ey)× n for t > 0. The Reynolds number is defined
beRm = µσω(L/2)2.

The two main differences with the rotor of circular cross section are that, during the transient phase, the thresho
first reconnections is lowered and more than two reconnections can occur at a given time.

The lowering of the critical magnetic Reynolds number is illustrated in Fig. 7. We show the magnetic lines atωt = 2.7 for
Rm = 8 andRm = 9. Our numerical simulations show that no reconnection occur forRm = 8, whereas there is one pair f
Rm = 9 atωt = 2.7; these results suggest 8<Rc

m < 9.
To illustrate the fact that, whenΩc is a square, more than one pair of reconnections can occur at the same time, we s

Fig. 8 the magnetic lines atωt = 11 forRm = 20. Four reconnections are clearly visible.
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Fig. 7. Streamlines of the magnetic field. First observed reconnections atωt = 2.7.

Fig. 8. Streamlines of the magnetic field. Two pairs of reconnections atωt = 11,Rm = 20.

Fig. 9. Streamlines of the magnetic field at steady state. Note the skin effect.

As in the case of the circular cylinder, for a givenRm, reconnections cease whent →+∞, and the magnetic field i
progressively expelled from the conducting medium asRm increases. This skin effect is illustrated in Fig. 9 and qualitativ
resembles that observed for the rotor of circular cross section shown in Fig. 4.

3.2.3. Circular cylinder embedded in a conducting region
To demonstrate the ability of the FEM code to cope with various kind of boundary conditions, we have surroun

circular cylinder of radiusR = 1 with a cylindrical conductive shell of radiusa. Two cases are considered: a finite shell with
ratio a/R = 1.5 and an “infinite” shell witha/R→∞ (i.e., in this case the numerical domain is uniformly conductive). Th
two cases are compared with the reference situation corresponding to the ratioa/R = 1.
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Fig. 10. Magnetic lines showing a pair of reconnections atωt = 3 for Rm = 100. Rotation is counter-clockwise.

The circular conducting region is then

Ωc =
{
(x, y) ∈R

2, r =
√
x2+ y2 < a

}
, (34)

and solid body rotation,u= ωez × r, is imposed within{r � R = 1}, such that the velocity is discontinuous atr = R. For all
ratiosa/R � 1, the stationary solution coincides with the analytic steady state solution corresponding toa/R = 1 described in
Section 3.2.1 as proved by [1], but the transient evolution fora/R > 1 can only be determined numerically.

The actual computational domain is

Ω1,h =]−5R,+5R[2, (35)

whose numerical parameters are:ne = 2320,np = 1201,h|r=R = 0.15. The numerical modeling ofa/R →∞ is done by
settingΩc =Ω1,h, and we henceforth refer abusively to this situation by using the notationa/R =∞.

The magnetic lines show similar reconnections in the three cases, and these reconnections are always located withi
Fig. 10 shows the magnetic lines forRm = 100 at the timeωt = 3, which corresponds to the first maximum of the magn
energy in the casea/R = 1.5.

The main qualitative difference we observe between the three cases considered is that, beyondr/R � 2, the magnetic lines
are curved in the reference casea/R = 1, whereas they are straight and parallel to the imposed external field outside th
in the two other cases. Since, at short times (ωt = 3∼ ωτs � ωτd ), the external induced field is restricted to a shell of wi
comparable to the skin depthδ, the external magnetic field beyondr � R + δ is very close to the imposed fieldHe. Significant
differences are also observed when looking at the time evolution of the total magnetic energy (Fig. 11). Due to the
stretching effects occurring atr = R, the amplitude of the oscillations induced by the reconnections increases signifi
with a/R. At the timeωt = 120, the energy fora/R = 1.5 differs from that fora/R = 1 by less than 0.1%, whereas the
energy fora/R =∞ decreases very slowly with time. The time for convergence to the common steady state is the d
timescaleωτd(a/R) = ωa2µσ = Rm(a/R)2. This time is 100× 52 = 2500 in the case we denote bya/R =∞, since in this
casea/R ≈ 5.

This example shows that enforcing inadequate artificial boundary conditions atr = R to model the external non-conductin
medium may have dramatic effects on the computed solution.

3.3. Stretching of magnetic field lines by eddies

Although 2D flows cannot lead to dynamo action, as is well known from anti-dynamo theorems [1], they nevertheles
the main fundamental MHD processes, such as transient enhancement and final dissipation of magnetic fields by d
rotation (the so-calledΩ effect), or amplification in a converging flow. Aside from a few analytic solutions of academic int
the numerical approach is mandatory to have access to the time-dependent solution of the induction equation.

The goal of this section is to study the effects of simple fluid eddies on an external uniform magnetic field. The do
Ω =R

2 andΩc is a circular cylinder of radiusR = 1 containing a conducting fluid.
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Fig. 11. Evolution of the total magnetic energy with respect to the non-dimensional timeωt for Rm = 100 anda/R = 1, 1.5,∞.

Fig. 12. Velocity vector fields forj−1 (left), j+1 (middle), andj2 (right).

3.3.1. The physical setting
To account for realistic flows, we henceforth choose velocity fields that are solutions to the 2D Euler equations.

coordinates, the velocity field assumes the following form:


ur =−m

r
Jm(λmr)sin(mθ),

uθ = λm
∂Jm

∂r
(λmr)cos(mθ),

(36)

for r � R = 1 whereJm are the Bessel functions of the first kind andλm is the first real root ofJm. DenotingUmax the
maximum flow speed, the magnetic Reynolds number is defined byRm = σµUmaxR and time is given in units of turn-ove
time τs = R/Umax for cases in Sections 3.3.2, 3.3.3, and 3.3.4.

We shall consider three cases: the first one,m= 1 andλ1≈ 3.83171, consists of two counter-rotating vortices (this field
hereafter referred to as thej−1 velocity field); the second one consists of two co-rotating vortices obtained by using thej−1 -flow

on the right half planex � 0 and thej−1 -flow reflected through the origin on the left half planex < 0 (it is hereafter referred to

as thej+1 field); the third one,m= 2 andλ2≈ 5.13562, consists of four counter-rotating vortices creating a stagnation po
the center of the cylinder (it is hereafter referred to as thej2 field). The three velocity fields are shown in Fig. 12.

The numerical simulations are performed in a truncated domainΩh which will be described in due time for eac
configuration. Two geometries for the imposed magnetic field are tested:He = ex and He = ey . At t = 0 we setH0 = He

and fort > 0 we enforceH× n=He × n at the boundary ofΩh.
We have also studied the velocity field (36) withm= 0 andλ0≈ 2.40483 (data not reported here), for which the orienta

of the applied uniform magnetic field is irrelevant. The time evolution of the magnetic energy and the patterns forme
magnetic lines are similar to those of a solid rotor surrounded by a conductive shell: the magnetic field is initially stret
the differential rotation term(H · ∇)u, and the magnetic energy settles to a value lower than the initial one.

3.3.2. Counter-rotating vortices
We first study the interaction between a horizontal magnetic fieldHe = ex and the pair of counter-rotating vorticesj−1 . The

numerical simulations are performed in the following truncated domain

Ω1,h =]−5R,+5R[2 (37)
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Fig. 13. Time evolution of the magnetic lines for counter-rotating vortices in turn-over time unitUmaxt/R; the imposed magnetic field i
He = ex . Left panels: Weiss’ results;Rm = 1000; a single band of counter-rotating vortices; one conducting periodic slab. Right pane
computations;Rm = 100; thej−1 flow embedded in vacuum.

whose numerical parameters are:ne = 2320,np = 1201,h= 0.15.
As time evolves, the applied uniform field is distorted by the velocity field and reconnections take place until a stea

is reached. A typical evolution of the magnetic lines is shown in the right panels of Fig. 13 forRm = 100.
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Fig. 14. Time evolution of the total magnetic energy in turn-over time unitUmaxt/R for Rm = 10, 20, 40, 100 for thej−1 case in vacuum
subjected to (a)He = ex , (b) He = ey .

To make qualitative comparisons with our computations, we consider the results published in [23]. In this refere
conducting domain is]−1

2,+1
2[2, boundary conditions are periodic atx =±1

2, and Dirichlet boundary conditions are enforc

aty =±1
2, i.e., there is no insulating domain and the magnetic field lines are frozen at the top and bottom of the numer

The velocity field is defined by∇×(ψez) with the streamfunctionψ = − 1
4π (1− 4y2)4 sin(4πx). The results correspondin

to these data (drawn from [23]) are shown on the left panels of Fig. 13 to be compared with ourj−1 -solution. Note that the
magnetic lines display similar patterns, although quantitative comparisons between our numerical results and Weiss’
question, for the geometries and the boundary conditions differ significantly.

The time evolution of the total magnetic energy is shown in Fig. 14(a). The energy amplification observed during
rotation period is due to the stretching term(H · ∇)u which induces reconnections of the magnetic lines in a way very sim
to what is observed in the rigid rotor case (see Section 3.2.3). As time increases, the magnetic field finally settles to
state. The final energy is a decreasing function ofRm.

We have also studied the interaction of a vertical magnetic fieldHe = ey with the j−1 flow embedded in vacuum. Th
numerical simulations are performed in the following truncated domain

Ω2,h =]−2R,+2R[2 (38)

whose numerical parameters are:ne = 2610,np = 1332,h= 0.075. The spatial resolution is refined in this case to asce
accuracy. The time evolution of the total energy corresponding to this situation is presented in Fig. 14(b). We observe
types of features as those obtained by applying the horizontal magnetic field.

However, when comparing the magnetic fields at steady state, we observe significant differences. ForHe = ex (Fig. 13), the
magnetic lines exhibit cusp-like points, while, forHe = ey , the magnetic field settles to a relatively smoother steady state
Fig. 15 forRm = 100) with a significant amplification in the converging part of the flow (nearx = 0, y = 0.6). In both cases
the magnetic field is expelled from the vicinity of the two elliptic points of the flow.

To gain more insight on the amplification of the magnetic field that we observe at steady state in the region aro
point x = 0, y = 0.6, whenHe = ey , we represent in Fig. 16 theHy -component of the magnetic field along the liney = 0.6
for Rm = 10, 20, 40, 100. As the skin depthδ = R

√
2π/Rm is the relevant lengthscale, we plot both the unscaled pro

Hy(x, y = 0.6) and the rescaled onesHy(x
√
Rm,y = 0.6). We observe that the maximum amplitude of the field does not s

like
√
Rm as obtained by Weiss in a periodic flow. BetweenRm = 10 and 100, this quantity shows no power law depende

with Rm but seems to saturate as the magnetic Reynolds number increases, as already noted in the rotor case (see Se
This should be confirmed by runs at higherRm on finer grids.

3.3.3. Co-rotating vortices
In this section we study the interaction of thej+1 -flow with the enforced magnetic fieldHe = ey . Let us recall that the

j+1 -flow is obtained by keeping thej−1 flow in the half planex � 0, and by completing it in the half planex < 0 by reflection
through the origin. The resulting vector field is solenoidal, and its tangential component along thex = 0 axis is discontinuous
(see the middle panel in Fig. 12).

The stretching term is locally diverging, but the FEM weak formulation allows for a discontinuous velocity field.
we want to compare the FEM solution with a case considered by Weiss [23], the conductivity is assumed to be eq
everywhere; i.e., we set

Ωc =Ω2,h =]−2R,+2R[2 (39)
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Fig. 15. Magnetic lines at steady state for thej−1 case in vacuum,Rm = 100, andHe = ey .

(a) (b)

Fig. 16. Magnetic field profilesHy(x,y = 0.6) (a) andHy(xs = x
√
Rm,y = 0.6) (b) for thej−1 -flow in vacuum andHe = ey .

(with ne = 936,np = 495,h= 0.15). At t = 0 we setH0 =He and fort > 0 we enforceH× n=He × n at the boundary o
Ω2,h. The magnetic lines at steady state forRm = 100 are shown in Fig. 17. We observe that magnetic lines cross thex = 0 axis
which is compatible with the symmetry of the velocity field. Indeed, asu(x, y, t) = −u(−x,−y, t) (central symmetry), then
H(x, y, t)=+H(−x,−y, t) with the appropriate boundary and initial conditions that we have used. Note that this crossi
occurs in the rotor case (see Section 3.2.1).

Weiss [23] has considered a similar case (referred to as “single eddy”) with a velocity jump using a finite difference
and a spatially periodic flow. The flow is defined by the streamfunctionψ = (−1/π)(1− 4y2)4 cosπx. To keep clear of the
divergence of the stretching term, the discontinuity of the velocity field is made to coincide with the periodic bound
x =±1/2. The computational domain is fully conducting and Dirichlet conditions are imposed at the top and bottom of
merical box,y =±1/2. In contrast to our solution, the magnetic lines in Weiss’ computation (see for example his Fig. 2)
parallel to the vertical lines of discontinuity (x =±1/2 corresponding tox = 0 in our case) and do not cross it. Once again,
example illustrates the fact that inadequate artificial boundary conditions may have important effects on the computed

The time evolution of the magnetic energy forRm = 10, 40, 100 is shown in Fig. 18. The results are similar to those obta
previously with the double vortexj−1 flow.

3.3.4. Stagnation point
We finally consider thej2-flow embedded in vacuum. This flow exhibits a stagnation point. This configuration is

studied in 3D for its ability to amplify the magnetic field. The numerical simulations are performed in the following trun
domain

Ω1,h =]−5R,+5R[2 (40)
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Fig. 17. Streamlines of the magnetic field atRm = 100 in the steady state for thej+1 flow in a conducting domain andHe = ey .

(a) (b)

Fig. 18. Time evolution of the total magnetic energy in turn-over time unitUmaxt/R: (a) 0� Umaxt/R � 30; (b) until convergence;Rm = 10,
40, 100;j+1 -flow in a conducting medium;He = ey .

whose numerical parameters are:ne = 2320,np = 1201,h = 0.15. We setHe = ey , H0 = He at t = 0, and fort > 0 we
enforceH × n = He × n at the boundary ofΩ1,h. Our solution obtained withRm = 100 is shown in Fig. 19 (bottom
right panel). We compare the magnetic lines to that of [23] atRm = 1000 where the flow is defined by the streamfunct
ψ = 1

4π sin2πx sin 4πy if |y| � 1
4 andψ = 0 otherwise. The flow is shown in the top panel in Fig. 19, and the magnetic

are shown in the bottom left panel. In both cases, inspection of the magnetic lines shows that inside the conducting r
magnetic flux is expelled from the vicinity of the four elliptic points and concentrate within tubes of width comparable
skin depth. Note that in contrast to thej−1 -configuration, the converging region whose axis is perpendicular to the ex
magnetic field is inefficient (see Fig. 13).

3.4. Scaling laws for the internal magnetic energy

For all the preceeding velocity flows, the total magnetic energy at steady state decreases withRm. This is in contrast with
Weiss’ results which requires some discussion. Since the vortices of Weiss are periodic, the final concentration of the
field in tubes of transverse size scaling like 1/

√
Rm enforces the magnetic field to scale like

√
Rm, which is verified by Weiss

solutions. In the present work, we have considered isolated vortices and have verified that the 1/
√
Rm skin depth scaling is

valid. However, the magnetic flux concentrated in a tube with a minimal width comparable to the skin depth stems
boundary strip which varies withRm, so that the flux tube argument used for the periodic flow cannot be invoked in the c
isolated eddies.

The internal magnetic energyEmi at steady state is a function ofRm which can be computed numerically. In the so
rotor case, we expect thatEmi scales like 1/

√
Rm since the maximal field saturates and is concentrated in a shell of w
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Fig. 19. Top: velocity lines for the double band of counter-rotating vortices considered by Weiss [23]. Bottom left: magnetic lines at ste
in the conducting periodic slab considered by Weiss,Rm = 1000. Bottom right: magnetic lines at steady state using thej2-flow embedded in
vacuum,Rm = 100. In both cases the imposed magnetic field isHe = ey .

Fig. 20. Scaling lawsR−β
m of the internal magnetic energyEmi for different 2D flows as indicated: RR for rigid rotor,βRR= 0.38; j0 for the

j0-flow, βj0 = 0.37; j1m for thej−1 -flow, β
j−1
= 0.35; j1p for thej+1 -flow, β

j+1
= 0.28 and j2 for thej2-flow, βj2 = 0.31.

comparable to the skin depth. Fig. 20 shows thatEmi scales likeR−β
m for five different flows: solid rotor,j0, j+1 , j−1 andj2

for 10� Rm � 100. The slopesβ vary between 0.28 and 0.38 for the truncated domainΩ1,h. The departure fromβrotor= 0.5
can be due to truncation discretization or to the narrow range of magnetic Reynolds numbers studied. In any case, t
suggest thatEmi is always a decreasing function ofRm for any 2D flow. This conjecture can be considered as a generaliz
of the anti-dynamo theorem for planar flows submitted to an external field.

This section shows that accounting properly for vacuum and enforcing proper boundary conditions is important in the
of the dynamo problem.

4. Magnetic scalar cases

We study configurations withH=Hzez andEz = 0 in various geometries, where both the velocity and the current fiel
planar. To assess the performance of the finite element algorithm described in Section 2.2.2, we first compare analytic
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magnetic Reynolds number of order unity. Finally we study the electric current flowing in a compound domain.

4.1. Ohmic decay

A constant magnetic field parallel to thez-axis is sustained in the whole domain,Ω = R
2, for t � 0 and is switched off a

t > 0. Conducting media subjected to this type of condition develop Ohmic currents which control the decay of the m
field. To illustrate this effect, we consider the case of a conducting circular cylinder of radiusR = 1 embedded in vacuum,

Ωc =
{
(x, y) ∈R

2,

√
x2+ y2 < 1

}
. (41)

The analytic solution to this problem can easily be calculated. DefiningH= (0,0, b), assuming axisymmetry, and recallin
that the magnetic field is the solution to problem (23), we obtain

b(r, t)=
{
J0

(√
λ0r

)
exp(−λ0t) for r � 1,

0 for r � 1,
(42)

where
√
λ0 is the first root of the Bessel functionJ0, leading toλ0≈ 5.783.

The numerical simulations are performed in two truncated domains

Ω0,h =]−2R,+2R[2 (case 1), Ω1,h =]−5R,+5R[2 (case 2). (43)

At t = 0 we setH0= ez, and fort > 0 we set the magnetic field to zero at the external boundary, i.e.,H× n|∂Ωh
= 0.

To evaluate the decay rateλ0, we record the magnetic energy in time,E(t), then, assuming the decayE(t = 0)exp(−2λ0t),
we perform a linear fit of the logarithm ofE(t). The results are reported in Table 3.

Table 3

Case λ0 Error (%) ne np h

1 5.882 1.72 424 239 0.3
2 5.812 0.50 2320 1201 0.15

As expected, the computed value ofλ0 in the second case is the closest to the analytic solution, since in this case the e
boundary is farther from the interfaceΣ than in the first case, and the mesh is twice as fine. This conclusion is the same
we have derived for Ohmic decay in the scalar electric case in Section 3.1.2.

4.2. Induction heating

It is well known that externally controlled time varying magnetic fields induce currents and Ohmic heating in cond
bodies. As an example of this phenomenon, we consider an harmonic magnetic field heating a circular cylinder of radiR = 1

Ω =R
2, and Ωc =

{
(x, y) ∈R

2,

√
x2+ y2 < 1

}
. (44)

Denoting byHe exp(iωt) the external magnetic field, settingH= (0,0, b), and assuming the solution to be harmonic in tim
the analytic solution to this problem is

b(r, t)=

 He

be(r
√

2π/δ)

be(
√

2π/δ)
exp(iωt), for r � 1,

He exp(iωt), otherwise,
(45)

whereδ =√2π/µσω and be(r)≡ ber(r)+ i bei(r)= J0((−1+ i)r/
√

2) is the Kelvin function (see [19] for more details).
The numerical simulation is performed on the truncated domain

Ω0,h =]−2R,+2R[2. (46)

The initial data is zero. The frequency of the external oscillating magnetic field is chosen to beω = 2π . For this frequency, the
skin depthδ = 1 is of the same order asR = 1, and one consequently expects only a moderate attenuation of the magnet
within the conducting cylinder.

In Fig. 21, we have plotted the real amplitude of the numerical solution atr = 1, i.e.,bnum(1, t), as a function of that a
r = 0, i.e.,bnum(0, t), for 0� t � 2. It is clear that the transient regime does not last more than one period.

Defining φ(r) to be the ratio of the complex amplitude of the magnetic field at radiusr to that at radiusr = 0 as
t →+∞, our numerical solution givesφnum(1) ≈ 1.51exp(i 1.29). This function compares very well with the analytic o
φ(1)= be(

√
2π)≈ 1.52exp(i 1.31).
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Fig. 21. Time evolution of the magnetic field at the conductor circumference as a function of the magnetic field at the centre. Aftert > 1, the
forced steady regime is reached.

4.3. Eddy currents

Important industrial applications of magneto-dynamics consist of braking or driving bodies, either in solid or fluid s
applying magnetic fields to conducting materials. In the present preliminary study, we illustrate the value of the FEM a
by showing a few academic 2D examples in this spirit.

An external static magnetic field is applied within a cross section only partially covering a moving conductor. Eddy c
are thus generated, and the corresponding Lorentz force acts against the movement. When the interface between the
and insulating media is close to the domain where the magnetic field is enforced, the eddy currents are influenced
effects, and in this case the numerical approach proves to be very convenient. Denoting byHe the enforced external fiel
and h the induced magnetic field, the total magnetic field isH = h + He. This decomposition is inserted into the we
formulation (20) to obtain the evolution equation forh. The external magnetic field is then accounted for as an external s
currentjs = µσ(u×He).

Let us consider a semi-infinite conducting plane,{x < 4}, moving with a rectilinear velocity,v, in the direction of they-axis.
The truncated computational domain is the sum of the conductor,

Ωc,h =
{
(x, y) ∈R

2, −4 � x < 4, −4 � y � 8
}

(47)

and of the vacuum,

Ωv,h =
{
(x, y) ∈R

2,4 � x � 12,−4 � y � 8
}
. (48)

The integration domain is shown on Fig. 22(a).
The external magnetic field,He, is applied inside a circle of radiusR1= 1 centred atxc = 1.5, yc = 0. It follows that in this

area, there is an external source current,js =µσ(vey ×He). Since the eddy currents must flow freely fromΓc , we enforce the
following natural boundary conditions onΓc ,

(∇×h)× n|Γc
= 0, (49)

which, in the scalar magnetic case, amounts to∂nh|Γc
= 0.

Let us now give some details on how to enforce this boundary condition naturally. The PDE’s we want to solve are


∂t (µh)=−∇×E in Ω,

∇×h= σ
(
E+ u× (

µ(h+He)
))

in Ωc,

∇×h= 0 in Ωv,

∇·E= 0 in Ωv,

h× n|Γv
= 0, (∇×h)× n|Γc

= 0,
E · n|Γv

= 0,
h|t=0= h0.

(50)
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Fig. 22. Integration domains for the semi-infinite sheet (a) and disk case (b). The imposed magnetic fieldHe is limited to an excentred disk o
radiusR1= 1 centred at (1.5;0) for (a) and (0;−2) for (b).

Taking the scalar product of Faraday’s law with a test functionb and integrating by parts, we obtain

(µ∂th,b)Ω +
(

1

σ
∇×h,∇×b

)
Ωc

− (u×µh,∇×b)Ωc

+ (E,∇×b)Ωv
+

∫
Γ

(E× n) · b= (u×µHe,∇×b)Ωc
, ∀b. (51)

By taking test functions that satisfyb× n|Γv
= 0, and by using Ohm’s law together with the fact thatHe|Γc

= 0 (localization
hypothesis) and(∇×h)× n|Γc

= 0, the remaining surface integral reduces to∫
Γ

(E× n) · b=−
∫
Γc

(
(u×µh)× n

) · b. (52)

In conclusion, the weak equations to be solved are


(
µ∂th,b

)
Ω
+

(
1

σ
∇×h,∇×b

)
Ωc

− (u×µh,∇×b)Ωc
+ (E,∇×b)Ωv

−∫
Γc

(
(u×µh)× n

) · b= (u×µHe,∇×b)Ωc
, ∀b,

(∇×h, e)Ωv
− δsds(E, e)= 0, ∀e,

h|t=0= h0, E · n|Γv
= 0, h× n|Γv

= 0.

(53)

It is the presence of the boundary integral in this weak formulation that enforces naturally the boundary condition(∇×h)×
n|Γc

= 0.
The contours of the induced magnetic field are represented in Fig. 23, where it can be seen that the larger the

velocity the longer the wake.
We have performed a parametric study of the Lorentz force as a function of the magnetic Reynolds number,Rm = µσvR1.

The Lorentz force has a dominating braking component,Fy , while the horizontal component,Fx , is induced by the presenc
of the insulating medium. Fig. 24(a) shows the asymptotic value ofFy for t →+∞ as a function ofRm. It is clear from this
figure thatFy is a linear function ofRm for Rm � 0.1. This linearity can be shown using the dynamo equation

∂th= Rm∇×
(
u× (h+He)

)+∇2h (54)

scaled with the ohmic diffusion timeτd = µσR2
1. For Rm � 1, |h| � |He|, then|h| and |j| scale likeRm|He|. The Lorentz

force Fy = −µjx(h + He) ∼ −µjxHe is then linear inRm. At greater magnetic Reynolds numbers, the induced mag
field cannot be neglected with respect to|He| and linearity inFy is lost. Note that slow convergence toward the steady sta
observed in the time evolution ofFx as shown in Fig. 24(b) for variousRm. This effect is the manifestation of the competiti
between induction and diffusion.

To be closer to real devices, we consider now a conducting circular cylinder of radiusR2 = 4 embedded in vacuum an
rotating with the counter-clockwise angular velocityω. The source is modelled by a constant magnetic fieldHe parallel to the
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Fig. 23. Contours of the induced magnetic field in the half plane.He is limited to a disk of radiusR1 = 1 centred at (1.5;0). The thick solid
line is the frontier between the conductor and the vacuum. Solid (dashed) lines correspond to positive (negative) values. The impos
is (a)v = 0.1 and (b)v = 1.

(a) (b)

Fig. 24. Lorentz force: (a)Fy component as a function ofRm, (b) time evolution ofFx component as a function ofRm (from top to bottom at
short times,Rm = 0.025, 0.05, 0.075, 0.1, 0.5, 1.0).

z-axis and applied within a disk of radiusR1 = 1 centred atxc = 0, yc =−2. The integration domain is shown in Fig. 22(b
Note that no natural boundary condition need be enforced sinceΓc = ∅.

The circulation of the eddy currents is limited to the circular region of radiusR2. For small magnetic Reynolds numbe
Rm = µσR2

2ω, the contours of the induced magnetic field are approximately symmetric with respect to the vertical diam
can be seen in Fig. 25(a) forω = 0.1 (Rm = 1.6). This distribution compares well with analytic results from [24] (not sho
here).

At low magnetic Reynolds numbers, which is the case of practical applications, the induced field remains small c
to the applied field. If the latter is symmetric with respect to the meridian planex = 0, see Fig. 25(a), then the induc
field is antisymmetric, that is,hz(x, y, t) = −hz(−x, y, t). At higher magnetic Reynolds numbers, the induced field beco
significant; therefore, the total magnetic field, which is the source term of the induced field (through the termσu× (h+He)),
is the sum of fields with different symmetry properties. This explains why the induced field represented in Fig. 25(b)
symmetry and has a wake-like shape instead.

4.4. Current flowing in a compound domain

In the preceding examples, the external magnetic field parallel to thez-axis was piecewise uniform and no imposed curr
was flowing. If the enforced external magnetic field has a constant gradient in a direction normal toOz, then a uniform density
current flows in the direction orthogonal to this gradient and orthogonal toOz. We examine here the effect of an insulati
obstacle on such a current.

To be more specific, a magnetic field parallel to thez-axis, of intensity−2 aty =−4 and+2 aty = 4, constant in time, is
applied on a square domain of sideL= 8,

Ω =]−4,+4[2. (55)
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Fig. 25. Contours of the induced magnetic field in a domain consisting of a circular conductor of radiusR2 = 4 (thick solid line) embedded in
vacuum. The imposed magnetic fieldHe is limited to a disk of radiusR1 = 1 centred at (0;−2). Solid (dashed) lines correspond to posit
(negative) values. The imposed rotation rate is (a)ω= 0.1 and (b)ω= 1. Rotation is counter-clockwise.

Fig. 26. Streamlines of the electric field in a domain composed by a circular conductor of radiusR1= 1 embedded in vacuum ofR2= 4 limited
by a conducting square of sideL= 8. Note the discontinuity of the normal component of the electric field at the interfaces.

Homogeneous Neumann conditions are enforced on the external vertical sidesx =±4. This boundary condition implies that
current intensity+4 is flowing in thex-direction through the section (y, z) of the domain. To demonstrate the ability of the FE
code to cope with successive matching conditions, a circular cylinder of radiusR2 = 2 centered at(0,0) forms an insulating
obstacle to this current, and a conducting circular cylinder of radiusR1 = 1 is set in the middle of the insulating region. T
streamlines of the steady electric field simulated numerically are shown in Fig. 26.

Due to the presence of the non-conducting cavity, the current streamlines are deviated. Surface charges app
boundary-vacuum interface, atr = R2 = 2, such that the tangential component of electric field is continuous but its no
component is discontinuous. The presence of a conducting material without current at the centre forces the electr
be zero in this region, i.e., forr � R1 = 1. Continuity of the tangential component of the electric field across the inte
r = R1 = 1 forces the electric field to be normal there. The discontinuities of the normal component of the electric fi
clearly apparent in Fig. 26.
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We acknowledge the support of the ASCI laboratory (CNRS) where this work was initiated. We have tested nume
new finite element technique for solving the Maxwell equations in the MHD limit in presence of conducting and non-con
media. Contrary to penalization techniques (see [15]), we have accounted exactly for the insulating medium.

The limitation of our codes is that the boundary conditions at infinity are imposed at finite distance as in man
numerical studies. For practical purposes, we have seen that by using a sufficiently large integration domain, truncat
can be reduced significantly (less than1

2% for an integration domain five times larger than the conductor).
We have preferred Lagrange finite elements to edge elements (the so-called Whitney elements) for their simplicity a

Lagrange finite elements are natural candidates for solving the Navier–Stokes equations, we have preferred to restric
to these elements. We are aware that this choice may be restrictive in some circumstances. For instance, if simu
the conductor/insulator interface is not smooth and ifµ is discontinuous then it may happen that the Lagrange finite ele
solution does not converge to the exact solution of the problem (see [25]). However, we do not expect this situation to
the dynamo context.

We have studied two families of 2D problems, where either the magnetic field or the current field is coplanar with t
with magnetic Reynolds numbers up to 100. We have successfully compared our numerical results with some analytic
We have also investigated physically relevant problems such as magnetic flux expulsion, magnetic field stretching,
current generation. In each case, we have demonstrated the ability of the FEM formulation to compute physically c
electric and magnetic fields in realistic domains.

The investigation of 3D cases using the algorithm described in [17] is currently in progress with a particular focus
nonlinear dynamo action.
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