
A domain decomposition method for simulating advection
dominated, external incompressible viscous ¯ows

J.-L. Guermonda,*, H.Z. Lub

aLIMSI, UPR-CNRS 3251, BP 133, 91403, Orsay, France
bLaboratoire de Chimie theÂorique, DeÂpartement de Chimie, Universite de Sherbrooke, 2500 Boulevard de l'UniversiteÂ

Sherbrooke, Quebec, Canada J1K 2R1

Received 23 October 1997; received in revised form 8 January 1999; accepted 29 March 1999

Abstract

We introduce a domain decomposition method for simulating 2D external, incompressible viscous
¯ows. In each subdomain that is close to a connected physical boundary, the velocity and the pressure
are approximated on a body ®tted, ®nite di�erence grid. In the subdomain that is far from the solid
boundary (i.e., the neighborhood of in®nity), we develop a characteristics method to approximate the
velocity and the vorticity on a Cartesian grid. The two methods are coupled by means of a Schwarz
type strategy. This method is tested by simulating the ¯ow past one or two cylinders. Some tests are
performed with moving cylinders. Comparisons with numerical and experimental data illustrate the
e�ciency of the method. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

One feature of external ¯ows is that a boundary condition at in®nity must be enforced.
When simulating such ¯ows on a ®xed computational grid, this condition is often
replaced by an arti®cial boundary condition which is imposed at the external limit of the
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simulation domain. Many arti®cial boundary conditions that minimize re¯ections at the
outer boundary have been proposed in the literature. However, all these techniques
assume that the arti®cial boundary is asymptotically far enough from the physical
boundary to guarantee accuracy. Hence, in practice it is di�cult to determine a priori
where to place the outer boundary (see, e.g., Deuring [8], Quarteroni [17], Charton±
Nataf±Rogier [6]).
Mesh adaptation is another issue related to the numerical simulation of advection dominated

external ¯ows. Since for such ¯ows the vorticity is generated in thin boundary layers located
near the solid boundary and concentrates further downstream in a wake, the outer ¯ow is
almost curl free. Hence, an adaptive method should naturally concentrate grid points in the
boundary layer and the wake. Moreover, if there are several obstacles immersed in the ¯uid
and if these obstacles are in relative motion, the grid generation of the shape changing ¯ow
domain may be a non-trivial task.
To cope with the numerical issues identi®ed above, a domain decomposition strategy

has been proposed by Cottet [5] and Guermond et al. [11]. This method consists in
adopting a domain decomposition strategy. The ¯uid domain is decomposed into a set of
subdomains. Small subdomains are composed of the immediate vicinity of the solid
boundaries, where the viscous e�ects ensure that the no-slip condition is satis®ed. The
complement of these small subdomains compose a large subdomain. In the small
subdomains that surround the solid boundaries, the Navier±Stokes equations are
formulated in the Eulerian coordinates and are solved by using standard ®nite di�erence
technique. In the large subdomain, the Lagrangian coordinates are adopted and the
numerical simulation is carried out by means of a vortex method (cf., e.g., Chorin [3] or
Rehbach [18] for details on this technique).
The goal of the present paper is to present a numerical method that follows these ideas.

However, the method presented hereafter di�ers from the one introduced in the references
above on three points. First, instead of using the stream-function and the vorticity in the inner
subdomains, we propose to solve the Navier±Stokes equations formulated in the primitive
variables. The motivation for this choice is that it yields the pressure at the boundary without
resorting to an auxiliary computation and the method can be extended in three dimensions
quite easily. Second, to avoid the hypothesis of hyperbolic degeneracy of the ¯ow near the
subdomains' interface that is made in [11], we adopt an overlapping strategy together with an
alternating Schwarz algorithm (cf. Lions [13]); as a result, the transmission condition that we
use does not require the viscous di�usion to be dominated by the advection. Third, to
guarantee the accuracy of the method, we approximate u±o in the external domain by using a
compound strategy combining a characteristics method and the Biot±Savart technique. This
approach di�ers from that of the references above where a classical, low order, vortex method
is used.
This paper is organized into ®ve parts. In Section 2, we set some notations and we introduce

the two formulations of the Navier±Stokes equations that we use, namely the u±p and the u±o
formulations. The time discretization is presented in Section 3. The spatial approximations
used in each subdomain is reviewed in detail in Section 4. We illustrate the present method and
we compare it to other techniques and experimental data in Section 5. Some conclusions are
drawn in the last section.
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2. Preliminaries

2.1. Two formulations of the Navier±Stokes equations

Let us denote by O the ¯uid domain and B the boundary of a connected solid obstacle that
is immersed in the ¯uid (see Fig. 1). For the sake of simplicity of the presentation, we assume
that the ¯ow domain is one-connected; multiply connected domains can be handled similarly.
The normal on B and the tangent are denoted by n and ttt, respectively. The normal is oriented
so that it points inside the obstacle. We de®ne �i,j� an orthogonal normed basis of R2 and we
embed R2 into R3 so that �i,j,k� is an orthogonal normed basis of R3: The Cartesian
coordinates are hereafter denoted by (x, y, z ).
In two dimensions, the Navier±Stokes equations modeling the external incompressible

viscous ¯ow past one obstacle can be written in terms of velocity, u, and pressure, p, as
follows:

@u

@t
� rp� u � ruÿ nDu � 0 in O

r � u � 0 in O

u � a on B

u�x�4U1�t�i for jxj41

u�t � 0� � u0 �1�
where n is the kinematic viscosity of the ¯uid, U1i,a and u0 are the boundary and the initial
data. These data are assumed to satisfy the following compatibility conditions:

Fig. 1. Sketch of the domain decomposition: the shaded region is a rigid body.
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8>>><>>>:
u0 � ~n � a�t � 0� � ~n on B
u0�x�4U1�t � 0�i when jxj41�
B

a � ~n � 0:

�2�

An alternative formulation of the Navier±Stokes equations consists in adopting the velocity
and the vorticity �o� as dependent variables. This formulation is deduced from the primitive
one by applying the curl operator to the momentum equation:

@o
@t
� u � ro � nDo in O

o�t � 0�k � r ^ u0 �3�

r � u � 0 in O

r ^ u � ok in O

u�x�4U1�t�i when jxj41

u � a on B �4�
�
B

ttt �
�
@a

@t
� a � ru

�
dlÿ n

�
B

@o
@n

dl � 0 �5�

The equivalence of the above two formulations is well known; see, e.g., Daube et al. [7] for
other details. One important feature of the vorticity is that its support is almost compact,
whereas that of the velocity is unbounded. This argument supports the idea that the vorticity
can be used to simulate ¯ows in unbounded domains.

2.2. The domain decomposition method

In this work, we adopt a domain decomposition method with overlapping subdomains. The
geometrical decomposition of the ¯ow domain is illustrated in Fig. 1: the ¯ow domain O is
decomposed into two one-connected overlapping subdomains O1 [ O0; O1 is a neighborhood of
the physical boundary, whereas O0 is a neighborhood of in®nity.

3. The time discretization

Let T be a real positive number; we shall seek a semi-discrete approximation of the Navier±
Stokes equations in the time interval [0,T ] by means of a time-marching algorithm. We
introduce a time discretization as follows. Let N be a positive integer; we denote by dt � T=N
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the time step and we set tn � ndt, tnÿ1=2 � �nÿ 1=2�dt: Now assuming that �uk
1,p

kÿ1=2
1 �nk�0 and

�uk
0,o

k
0�nk�0 are known approximations of �u�tk�,p�tkÿ1=2��nk�0 and �u�tk�,o�tk��nk�0 in the

subdomains O1 and O0, we shall build approximations �un�1
1 ,pn�1=21 � and �un�1

0 ,on�1
0 � of

�u�tn�1�,p�tn�1=2�� and �u�tn�1�,o�tn�1�� in O1 and O0, respectively.

3.1. The approximation of �u�tn�1�,o�tn�1�� in O0

We use the u±o formulation (Eqs. (3)±(5)) to approximate �u�tn�1�,o�tn�1�� in O0: The
approximation on

0 being known only on O0, we extend on
0 to the whole ¯uid domain as

follows:

~on
0 �

�
on

0 in O0

on
1 in O1nO0

: �6�

With ~on
0 as an approximation of o�tn� in the whole ¯uid domain O, we can exploit Eq. (4) to

deduce an approximation of u�tn�: By introducing the Green function �G�x� � log�jxj�=2p� of
the Laplacian in two dimensions, we obtain:

Äun
0�x� � U n

1i�
�
O

~on
0�y�k ^ ryG�xÿ y� dy

�
�
B

ryG�xÿ y��n � a�y,tn�� dly; for x 2 O

ÿ
�
B

ryG�xÿ y� ^ �n ^ a�y,tn�
�

dly �7�

This formula is commonly referred to in the literature as the Biot±Savart law. An alternative
method of approximation of u�tn� consists in using the Biot±Savart integral only in O0 as
follows:

Äun
0�x� �

8>>>>>>>>>>><>>>>>>>>>>>:

un
1�x� for x 2 O12666666664

U n
1i�

�
O0

~on
0�y�k ^ ryG�xÿ y� dy

�
�
G0

ryG�xÿ y�
�
n � un

1�y�
�

dly

ÿ
�
G0

ryG�xÿ y� ^
�
n ^ un

1�y�
�

dly

3777777775
for x 2 O0nO1

�8�

Since Eq. (8) is cheaper to compute, it has been retained in the computer code that we have
developed to test the present method.
With initial data on the vorticity and the velocity ®eld de®ned everywhere in the ¯ow ®eld,

we can use a characteristic method to obtain an approximation of o�tn�1� in O0 from Eq. (3).
For instance, a ®rst-order approximation is given by:
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on�1
0 �x� � ~on

0

ÿ
xxx�x,tn�1;tn�

�� ndtD ~on
0�x�, 8x 2 O0:

Here, xxx�x,t;s� is the solution of the ordinary di�erential equation:

dxxx
ds
� Äun

0�xxx�
xxx�x,t;t� � x

:

One simple approximation of xxx�x,tn�1;tn� is, for instance:
xxx�x,tn�1;tn� ' xÿ dt Äun

0�x�:
The method of characteristics is introduced in detail in Refs. [9,16]. To obtain second-order
accuracy in time we use the following approximation for all x in O0:

on�1
0 �x� �

4

3
~onÿxxx�x,tn�1;tn��ÿ 1

3
~onÿ1ÿxxx�x,tn�1;tnÿ1��� 2n

3
dtD

�
2 ~on

0 ÿ ~onÿ1
0

�
�x�, �9�

where xxx�x,t;s� is the solution of the ordinary di�erential equation:8><>:
dxxx
ds
� 2 Äun

0�xxx� ÿ Äunÿ1
0 �xxx�

xxx�x,t;t� � x

: �10�

As a result, one obtains the approximation on�1
0 of o�tn�1� in O0: Note that we have been

obliged to extend the de®nition of on
0 to the whole ¯uid domain (or at least in a domain

su�ciently larger than O0), so that the value of the vorticity can be de®ned at the foot of every
characteristics xxx�x,tn�1;tn�: Furthermore, the extension procedure allows us to treat the
boundary value problem for o0 in O0 as an initial value problem in a larger domain. It can be
shown that the error induced by the explicit treatment of the viscous di�usion is large only in a
numerical boundary layer located at the boundary of the extended computational domain;
hence, if O1%O0 is large enough, the numerical boundary layer is located outside of O0: In the
case of a moving obstacle, we have to set the time step dt small enough, so that the domain
where the method of characteristics is used is larger than O0 at tn�1: Clearly, there is no
di�culty to satisfy this condition if the domain O1%O0 is not too narrow.

3.2. The approximation of �u�tn�1�,p�tn�1=2�� in O1

Bene®ting from the possibility o�ered by domain decomposition methods to use di�erent
formulations and/or di�erent methods of approximation in each subdomain, we use the u±p
formulation (Eq. (1)) in the subdomain O1:
To restrict the system (1) to O1, we need to replace the condition at in®nity (1) by a

transmission condition on the interface G1: Assuming, for the time being, that such a boundary
condition �un�1

G1
� is given on the interface G1, we build the approximation �un�1

1 ,pn�1=21 � as
follows:
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un�1
1 ÿ un

1

dt
ÿ nD

un
1 � un�1

1

2
� rpn�1=21 � �u � ru�n�1=2 in O1

r � un�1
1 � 0 in O1

un�1
1 � a�tn�1� on B

un�1
1 � un�1

G1
on G1 �11�

where �f�1=2 denotes the second-order extrapolation 3
2f

n ÿ 1
2f

nÿ1:
Now, the problem reduces to obtaining an approximation of the transmission condition un�1

G1

on the interface G1: Two alternatives are possible: either we apply the Biot±Savart integral (7)
in the whole ¯ow domain O, or we restrict it to the external subdomain O0 by using Eq. (8) at
tn�1: Restricting the Biot±Savart integral to O0 may seem to be the cheapest alternative. In this
case we have

un�1
G1
�x� � U n�1

1 i�
�
O0

on�1
0 �y�k ^ ryG�xÿ y� dy

�
�
G0

ryG�xÿ y�
�
n � un

1�y�
�

dly 8x 2 G1

ÿ
�
G0

ryG�xÿ y� ^
�
n ^ un

1�y�
�

dly � O�dt�, �12�

where un
1 has been chosen as a O�dt� approximation of u1�tn�1� on G0: Clearly, this

approximation is ®rst-order accurate in time. Second-order accuracy might be obtained by
using 2un

1 ÿ unÿ1
1 as an approximation of u1�tn�1� on G0: We have not tested this possibility to

avoid extrapolating the velocity in time; hence, to have second-order accuracy in time, we have
chosen the ®rst alternative.
To apply the Biot±Savart integral (7) to the whole ¯uid domain, we need an extended

approximate vorticity ®eld ~on�1
1 : Since, on�1

0 is a good approximation on O0, we only need an
approximation of the vorticity at time tn�1 on the domain O1%O0: For this purpose, we
compute an approximate velocity ®eld as follows:

Ãun�1
1 �x� �

�
a�x,tn � 1� x 2 B
un
1�x� � dt

�
u1�x� � ru1�x� ÿ nDu1�x�

�n
x 2 O1:

�13�

Clearly, Ãun�1
1 �u1�tn�1�ÿdtrp1�tnÿ1��O�dt2�; as a result, r ^ Ãun�1

1 �x� is a O�dt2� approximation
of o1�tn�1�: Hence, by de®ning

~on�1
1 �x� �

(
on�1

0 �x� for x 2 O0,

r ^ Ãun�1
1 �x� for x 2 O1nO0,

�14�
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we obtain a O�dt2� approximation of o�tn�1�: As a result, the desired approximation of the
transmission condition �un�1

G1
� is given by:

un�1
G1
�x� � U n�1

1 i�
�
O

~on�1
1 �y�k ^ ryG�xÿ y� dy

�
�
B

ryG�xÿ y�
�
n � a�y,tn � 1�� dly for x 2 G1

ÿ
�
B

ryG�xÿ y� ^
�
n ^ a�y,tn � 1�� dly �15�

3.3. Flow chart of the algorithm

In this section we summarize the algorithm developed above.

1. Computation of on�1
0 in O0

(a) Evaluate ~on
0 (extension of on

0 to O� by means of Eq. (6), i.e.,
± Use on

0 in O0,
± Use r ^ un

1 in O1nO0:

(b) Computation of Äun
0 in O by means of Eq. (8), i.e.,

± Use un
1 in O1,

± Use Biot±Savart integral in O0nO1:

(c) Evaluate ~on�1
0 by using (Eq. (9)), i.e., apply the characteristics method + explicit

treatment of viscosity + truncate solution to O0:

2. Computation of �un�1
1 ,pn�1=21 � in O1

(a) Evaluate un�1
G1

± Evaluate ~on�1
1 (extension of on�1

0 to O� by using Eqs. (13) and (14).
± Compute un�1

G1
by means of the Biot±Savart integral (15).

(b) Compute the new solution �un�1
1 ,pn�1=2�, using the boundary value un�1

G1
and Eq. (11).

4. The spatial approximation

4.1. The hybrid approximation in O0

In this section, we describe the spatial approximation used in domain O0:
First, we build the hybrid approximation ~on

0 of o�tn� by means of Eq. (6). For this purpose,
we de®ne an arbitrarily large Cartesian grid covering the whole ¯uid domain (see Fig. 2) with
mesh-size h. The approximation on

1, de®ned on the ®nite di�erence grid in O1%O0, is
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transferred to the Cartesian grid by means of a high order Q2 interpolation. Since the
computer memory is ®nite, we only keep a list of the grid points where the vorticity is
signi®cantly large enough, say j ~on

0jrE ' h2dt: Let fPi g be the union of grid points where the
reconstructed initial approximation ~on

0 satis®es j ~on
0�Pi �jrE: At the next time step tn�1, if dt is

small enough, the possible grid points where jo�x,tn�1�jrE must be in fPi g or be neighboring
points of fPi g denoted by fQi g the union of these grid points. Hereafter, the cell to which Qi

belongs is denoted by Qi: For the sake of simplicity of the presentation, we assume that Qi�
fx 2 R2;kxÿQik1Rh=2g:
Second, we calculate a discrete approximation of Äun

0: For the grid points Qj in O1, we use the
Q1 interpolation of un

1 in O1: For the points Qj 2 O0%O1, we build quadrature formulas for the
integrals in Eq. (8). To minimize the interpolation error induced by the transfer of information
between O1 and G0 in Eq. (8), we assume that the interface G0 is a grid line of the ®nite
di�erence grid in O1: We denote by f�yi,li �g the partition of G0 induced by the trace of the ®nite
di�erence grid in O1 on G0: The length and the center of the ith segment are denoted by li and
yi, respectively. Finally, for all Qj in O0%O1 we approximate Äun

0�Qj � as follows:

~un
0

ÿ
Qj

� � U n
1i�

X
yi

rGÿQj ÿ yi
��

n � un
1

�
�yi�li ÿ

X
yi

rGÿQj ÿ yi
� ^ �n ^ un

1

�
�yi�li

X
Qi 6�Qj,Qi�O0

meas�Qi� ~on
0�Qi�k ^ rG

ÿ
Qj ÿ Qi

�

�
X

Qi 6�Qj,Qi\G0 6�b
meas�Qi \ O0� ~on

0�Qi�k ^ rG
�

Qj ÿ ÄQi

�
�16�

Here meas�Qi \ O0� is the surface of Qi \ O0: If Qi � O0, then meas�Qi � is equal to h2: If Qi \
G0 is not empty, we denote by ÄQi the geometrical center of Qi \ O0 (see Fig. 3). In principle we
should use ~o0� ÄQi � in Eq. (16); however, since we use a constant approximation of ~on

0 in each
cell, we are led to use ~on

0�Qi � in the place of ~on
0� ÄQi �:

If we calculate directly the velocity on fQj 2 O0%O1g by using Eq. (16), the operation count
is of order O�N2� with N being the number of points in fQj 2 O0%O1g: This computational

Fig. 2. The grid used in the case of two cylinders.
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cost is not acceptable for large values of N; in the calculations presented therein, we have
adopted a fast multipole version of Eq. (16). This procedure brings the computational cost to
O�N � (for more detail, see Refs. [2,19]).
Finally, an approximation of o�tn�1� is built on the set of points fQj 2 O0g by means of Eqs.

(9) and (10). First, we calculate an approximation of the foot of each characteristic by
integrating Eq. (10) by means of a second-order Runge-Kutta approximation and the Q1

interpolation of ~un0 and ~unÿ10 on the grid points fQi g: Once the foot of each characteristics is
evaluated, we calculate ~o0�xxx�Qi,tn�1;tn�� by using the Lagrange interpolation of order 2 in the
space P2 � f1,x,y,xy,x2,y2g on the closest neighboring points as depicted in Fig. 4. Whenever
we need the value of ~on

0 �or ~onÿ1
0 � at a grid point, we search in the list that keeps track of the

points where the vorticity is signi®cantly large; if the point is not in the list, we assume the
vorticity to be zero. The Laplace operator in Eq. (10) is approximated by the usual second
order centered ®nite di�erence scheme.
Without any di�culty, di�erent Cartesian grids in di�erent regions can be used as it has

been done in the numerical cases presented hereafter (see Fig. 2).

Fig. 3. Intersection of a cell Qi with the interface G0:

Fig. 4. The Lagrange interpolation for the method of characteristics. Qi is a grid point, xxx�Qi,tn�1;tn� is the foot of
the characteristics, the circles denote the nodes on which the P2 Lagrange interpolation is performed.
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4.2. The ®nite di�erence approximation in O1

The ®nite di�erence approximation of u�tn�1� and p�tn�1� in O1 is carried out in two steps.
First, we evaluate the transmission condition (15), then we discretize the system (11).
The ¯ow subdomain O1 is discretized by means of a semi-staggered grid. The set of the grid

cells is denoted by fCi g; with each cell center we associate its center Ci: The partition of the
solid boundary B induced by the trace of the grid in O1 is denoted by f�yi,li �g: The interface G0

is de®ned as being a grid line of the grid in O1: The velocity degrees of freedom are located at
the cell vertices, whereas those of the pressure and the vorticity are located at the cell centers.
First, we evaluate ~on�1

1 by using the discrete counterparts of Eqs. (13) and (14). The
Laplacian Dun

1 is approximated by means of centered second-order ®nite di�erence, whereas the
advection term �un

1 � run
1� is approximated by upwind third-order ®nite di�erence. The curl of

the velocity, r ^ Ãun�1
1 , is evaluated at the cell center by second-order ®nite di�erence. Second,

we approximate the transmission velocity un�1
G1

given by Eq. (15) as follows:

un�1
g1
�x� � U n�1

1 i�
X

yi

rG�xÿ yi�
�
n � an�1

�
�yi�li

ÿ
X

yi

rG�xÿ yi� ^
�
n ^ an�1

�
�yi�li

�
X

Cj2O1O0

meas
ÿ
Cj

�
~on�1
1

ÿ
Cj

�
k ^ rGÿxÿ Cj

�

�on�1
0 �Qi�k ^

� �
Qi

rG�xÿ y� dy

�
X

x=2Qj�O0

meas
ÿ
Qj

�
on�1

0

ÿ
Qj

�
k ^ rGÿxÿ Qj

�

�
X

x=2Qj, Qj\G
0=2b

meas
ÿ
Qj \ O0

�
on�1

0

ÿ
Qj

�
k ^ rG

�
xÿ ÄQj

�
�17�

where x belongs to G1 and the cell Qi: The cell Qi is singled out since, to guarantee the
accuracy, we use the analytical calculation of the integral

� �
Qi
rG�x ÿ y� dy (which is not

di�cult to evaluate because of the simplicity of the integrated function �rG� and of the
integration domain (the square Qi)).
Finally, the velocity and the pressure are approximated in O1 by means of a discrete

counterpart of Eq. (11) that we present now. To avoid the complexity induced by the coupling
of the pressure and the velocity, we adopt a fractional step projection method (see Refs. [3,20]).
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8>>>><>>>>:
Äun�1
1 ÿ un

1

dt
ÿ nD

un
1 � Äun�1

1

2
� rn�1=2

p1
� �u � ru�n�1=2 in O1

Äun�1
1 � a�tn�1� on B

Äun�1
1 � un�1

G1
on G1

�18�

8>>>>>><>>>>>>:

un�1
1 ÿ Äun�1

1

dt
� r

�
pn�1=21 ÿ pnÿ1=21

�
in O1

r � un�1
1 � 0 in O1

n � un�1
1 � n � a�tn�1� on B

n � un�1
1 � n � un�1

G1
on G1

�19�

This scheme has been proposed by Van Kan [21]. An analysis of convergence of this type of
scheme can be found in Guermond [10]. The discrete counterpart of Eq. (18) is obtained by
replacing the di�erential operators by ®nite di�erences. The velocity is approximated at the cell
vertices, the pressure is approximated at the cell centers. The gradient �rp� and the Laplacian
�Du� are approximated by means of centered second-order ®nite di�erences, whereas the
advection term �u � ru� is approximated by upwind third order ®nite di�erence. The linear
system associated with Eq. (19) is solved by means of a multigrid technique.
There are many ways to solve the projection step (19). The most common one consists in

applying the divergence operator to Eq. (19) to obtain a Poisson equation that controls
�pn�1=21 ÿ pnÿ1=21 ). See Ref. [14] for other details.

5. Numerical results and comparison

In this section, we report on the numerical performance of the present domain
decomposition method. We compare the results obtained by the present technique with
experimental data and other numerical results.

5.1. Results for one circular cylinder

To assess the accuracy of the present domain decomposition method we have tested it on the
impulsively-started circular cylinder problem. The velocity scale is the velocity at in®nity U1
and the length scale is the cylinder radius r. The Reynolds number is de®ned as follows: Re �
U12r=n
The objective of the ®rst set of tests is to show that the results of the present domain

decomposition method are consistent with those of a more standard single-domain technique.
The benchmark, single-domain, method is the ®nite di�erence technique that is used in O1

assuming the radius of O1 to be equal to 20 cylinder radius and enforcing the velocity at the
outer boundary to be equal to the irrotational one. For the domain decomposition method, we
de®ne O1 as being a ring whose inner radius is r and whose outer radius is 2r (i.e., the interface
G1 is a circle of radius 2r ). The interface G0 is a circle of radius 1.5r. We have made tests for
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two values of the Reynolds number: Re � 3000 and 10,000. We used dt � 0:01 in the ®rst case
and dt � 0:005 in the second case. We have reported in Fig. 5 the streamline patterns of the
¯ow at times t � 1, 2, 3, 4, and 5. The results for Re � 3000 are on the left and those for Re �
10,000 are on the right. On each ®gure we compare the results from the present domain
decomposition method with those from the single-domain computation. The results of the
domain decomposition method are at the bottom of the ®gures whereas the single-domain
results are at the top. The agreement between the two series of calculations seems to show that
the domain decomposition technique has the same accuracy as that of the single-domain
method.
To further assess this statement we have compared the vorticity and the pressure

distributions on the solid cylinder given by the two methods for Re � 3000: The results are
reported in Fig. 6. The results from the present domain decomposition method (DEC-lines) are
compared with those of the single-domain, ®nite-di�erence method (FD-symbols). The very
close agreement between the two series of results con®rms that, at least in O1, the domain
decomposition method has the same accuracy properties as those of the single-domain
technique.
To go beyond the self-consistency tests, we have compared the results of the present

technique with other published results. In Ref. [12], the vorticity distribution on the cylinder
for 1RtR6 and Re � 3000 is reported. From a global point of view, the vorticity distribution
plotted in Fig. 6 is very much alike that reported in Ref. [12]. A precise comparisons for t � 1,
t � 2 and t � 4 is made in Table 1. In this table, we compared the location and strength of the
maximal value of the vorticity on the cylinder in the aft recirculation region, the secondary
eddy and the fore boundary layer (the upper part of the cylinder corresponds to 0RyRp). This
comparison shows a pretty good agreement between our results and those of Ref. [12].

Table 1
Comparison of location and strength of the maximal value of vorticity on the cylinder in the aft recirculation region,
the secondary eddy and the fore boundary layer (on the upper part of the cylinder), Re � 3000

Aft recirculation Secondary eddy Fore boundary layer

t � 1

y (present) 2.04 0.54
y [12] 2.09 0.56
o (present) ÿ85.0 26.0

o [12] ÿ84.0 29.0
t � 2
y (present) 2.08 0.77 0.50

y [12] 2.11 0.80 0.53
o (present) ÿ81.0 ÿ4.7 92.0
o [12] ÿ86.0 ÿ11.0 118.0

t � 4
y (present) 2.20 0.83 0.31
y [12] 2.21 0.84 0.32
o (present) ÿ73.0 ÿ37.0 50.0

o [12] ÿ78.0 ÿ43.0 57.0
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Fig. 5. Streamline patterns about an impulsively-started cylinder at times t � 1, 2, 3, 4 and 5 (from top to bottom)
for Re � 3000, dt � 0:01 (left) and Re � 10,000, dt � 0:005 (right). On each ®gure we compare the results from the
present domain decomposition method (bottom of ®gure) with those from the single-domain computation (top of

®gure).
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To further evaluate the method, we have made comparisons on the radial velocity on the
symmetry axis behind the cylinder for times t � 1, 2, 3, 4, and 5 for Re � 3000: The results are
reported in Fig. 7, There are three sets of results: the experimental results from Loc±Bouard [1]
(EXP-symbols), the results obtained by the present method (DEC-dashed lines), and the results
of the single-domain technique (FD-solid lines). We remark that the velocity obtained by our
domain decomposition technique is continuous at the interface G1 (circle of radius 2) and the
domain decomposition technique is consistent with the single-domain method. Note also that

Fig. 6. Comparison between domain decomposition method (lines) and the single-domain method (symbols) for the

vorticity (left) and pressure (right) distribution on the cylinder, Re � 3000:

Fig. 7. Comparison between experimental results (symbols), present results (dashed lines) and the ®nite di�erence
results (solid lines) for radial velocity on the symmetry axis behind the cylinder, Re � 3000:
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there is a noticeable di�erence between the numerical results and the experimental ones. To
settle this matter we have made comparison with results published in Ref. [4]. We have
reported in Table 2 the radius where the radial velocity is minimal together with the value of
the velocity for t � 2, 3, 4, and 5. There is a pretty good agreement between the three sets of
results on the location of the minimum velocity, but the three references disagree on the
minimal value of the velocity. Note though, that our results are between those of Refs. [1] and
[4]. Finally, this test indicates that for this problem a precise numerical benchmark is needed.
In conclusion, the present results are in excellent coincidence with that of the single-domain

®nite di�erence method. Furthermore, a good agreement between the present results and other
numerical or experimental results is observed.

5.2. Flow past two cylinders in tandem

In practice there may be several obstacles in the ¯ow. To illustrate the ¯exibility of the
present method, we simulate the ¯ow past two circular cylinders in tandem. For each cylinder,
O1 and the interface G0 are the same as in the previous example: O1 is a ring of external radius
2r and G0 is a circle of radius 1.5r.
The ¯ow con®guration is complex due to the interaction between the two wakes. It is well

known that the spacing between the two cylinders greatly in¯uences the ¯ow structure. In the
following we restrict ourselves to a Reynolds number equal to 200. The time step is set to 0.03.
We compare the results obtained by the domain decomposition technique with experimental
data for di�erent cylinder spacings. We denote by L the distance between the centers of the
two cylinders, and D � 2r is the diameter of the cylinders.
As usual, to accelerate the onset of instabilities and reduce the time of simulation, we have

perturbed the symmetric ¯ow. Here, we have chosen to rotate the downstream cylinder on
itself for a short period of time after t � 0:
In Fig. 8, we show the instantaneous iso-vorticity lines for four di�erent cylinder spacings:

L=D � 2, L=D � 3:5, L=D � 3:75, and L=D � 4: We clearly observe that there are mainly two
¯ow patterns:

. For small relative spacings �L=D < 3:625), there is no vortex street behind the upstream
cylinder, whereas one is created behind the downstream one.

. For large relative spacings �L=D > 3:625), vortex streets appear behind both cylinders.

Table 2
Comparison of the minimal radial velocity on the symmetry axis behind the cylinder, Re � 3000: First column: nu-
merical results from [4]; second column: present method; third column: experimental results from [1]

Ref. [4] Present Ref. [1]

t r umin r umin r umin

2 1.131 ÿ0.121 1.147 ÿ0.155 1.151 ÿ0.164
3 1.249 ÿ0.259 1.248 ÿ0.328 1.249 ÿ0.379
4 1.497 ÿ0.724 1.477 ÿ0.810 1.507 ÿ0.948
5 1.654 ÿ1.112 1.642 ÿ1.207 1.628 ÿ1.250
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To further illustrate the change of the ¯ow pattern as the relative spacing between the cylinders
increases, we have plotted in Fig. 9 the time variation of the drag and lift coe�cients on the
two cylinders for L=D � 2, 3.5, 3.75, and 4. We observe that the upstream cylinder has a
higher drag coe�cient than the downstream one. Note also that the lift amplitude on the
downstream cylinder is larger than that on the upstream one; the reason for this being the
interaction of the downstream cylinder with the wake of the upstream one. It is clear on this
®gure that there is a dramatic change of the ¯ow pattern for 3:5RL=DR3:75:
The change of the ¯ow pattern with respect to the cylinders' relative spacing can also be

studied by looking at the vortex shedding frequency. We have calculated this frequency for
2RL=DR10: Each time the upstream cylinder has been observed shedding vortices, the
shedding frequencies of the upstream and the downstream cylinders have been observed to be
equal. In Fig. 10, we have plotted the ratio of the Strouhal number St of the downstream
cylinder to that of a single cylinder S0 as a function of the relative spacing L=D: This ®gure
clearly shows a discontinuous change of the Strouhal number which occurs for
3:62RL=DR3:67: In this ®gure we also compare our numerical results with numerical results

Fig. 8. Two types of ¯ow patterns depending on the value of relative cylinder spacing L=D (iso-vorticity lines).

From top to bottom L=D � 2 (t=148), 3.5 (t=138), 3.75 (t=140), and 4 (t=138). Re � 200 and dt � 0:03:
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from Wang [22] that have been obtained by means of an integral-characteristics method. A
similar discontinuous behavior is observed in Ref. [22]. We have also reported in Fig. 10
experimental data from Ohmi et al. [15] that have been obtained at a slightly lower Reynolds
number: Re � 120: Even though the numerical and the experimental Reynolds numbers are
di�erent, we observe a good qualitative agreement between the experimental data and the
present numerical results.

5.3. Two cylinders in relative motion

To illustrate the ¯exibility of the present domain decomposition technique, we study the ¯ow
around two obstacles in relative motion. The domain decomposition that is adopted in the
reference frame of each cylinder is the same as in the case of two ®xed cylinders: O1 is a ring
of external radius 2r and G0 is a circle of radius 1.5r. In general, this problem is di�cult to be
handled by the numerical methods that are based on a single domain approximation, since for

Fig. 9. Time variation of drag and lift coe�cients on the two cylinders for di�erent cylinder spacings L=D: (top left)
lift coe�cients on upstream moving cylinder; (top right) lift coe�cients on downstream ®xed cylinder; (bottom left)

drag coe�cients on upstream cylinder; (bottom right) drag coe�cients on downstream cylinder.
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this type of methods, the ¯ow domain needs to be remeshed at each time step. For the present
method no remeshing is needed. With the present domain decomposition method, we have
simulated the ¯ow past two tandem cylinders in relative motion for the Reynolds number
equal to 200. The time step is set to 0.02. A vertical oscillation is enforced on the upstream
cylinder, whereas the downstream one is ®xed. The amplitude of the oscillations is equal to r/2
and the frequency f is set to be equal to the vortex shedding frequency that is observed when
the two cylinders are ®xed.
If Fig. 11, we have plotted instantaneous iso-vorticity lines for the cases L=D � 2
�f � 0:0623), L=D � 3 �f � 0:0672� and L=D � 4 �f � 0:0905). We observe a fully developed
vortex shedding behind the upstream cylinder for the three di�erent cylinder spacings
considered. This is in contrast with the case of two ®xed cylinders studied above where almost
no shedding occurred for L=D � 2: Furthermore, the intensity of the vorticity behind the
downstream cylinder is more important than that observed in the case of two ®xed cylinders.
Note also that the ¯ow pattern is more complex.
In Fig. 12, the time variation of the drag and lift coe�cients on the two cylinders is shown.

As in the case of two ®xed cylinders, the results reveal a sharp variation of the coe�cients with
respect to the cylinders' relative spacing. Furthermore, this ®gure shows more clearly than
Fig. 11 that a vortex shedding occurs behind the upstream cylinder for all the cylinders'
spacings, though the shedded vorticity decreases with the cylinder spacing. Because of the
important vortex±obstacle interaction induced by the enforced movement of the upstream
cylinder, the time evolution of the drag and lift is more irregular than in Fig. 9. This e�ect is
ampli®ed when the cylinders are close.

Fig. 10. Strouhal number vs. relative spacing of cylinders. DEC: present results, Re � 200; MC: results of an

integral-characteristics method by Z.T. Wang [22], Re � 200; EXP: experimental results of K. Ohmi et al. [15]
Re � 120:
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6. Conclusions

We have presented in this paper a domain decomposition method for simulating two-
dimensional external incompressible viscous ¯ows. The method consists in using formulations
and numerical techniques that are adapted to the ¯ow structure in each subdomain. The
subdomains overlap and are coupled by means of a Schwarz type strategy. One feature of the
method consists in treating the initial-boundary-value problem in the external subdomain as an
initial-value problem by bene®ting from the overlapping of the subdomains.
The next step consists in extending the present method to three dimensions. This work is

currently being developed.
We ®nish this paper by addressing the complexity issue. It is clear that the proposed domain

decomposition technique is more complex than the ®nite di�erence, single-domain method
when the shape of the computational domain is ®xed in time. On the other hand, the present
method may be useful for computational domain that vary in time; for instance, the present
method accounts quite easily for moving obstacles as shown in Section 5.3. Furthermore, the
DDM has proved to be faster, in terms of CPU, than the single domain method, provided the

Fig. 11. Iso-vorticity lines for two cylinders in relative motion for di�erent cylinder spacings L=D: From top to

bottom L=D � 2 �t � 128�, 3 �t � 128�, and 4 �t � 138�: Re � 200, dt � 0:02
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computation of the velocity at the Cartesian grid points in o0 is performed by means of a fast
multipole technique.
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