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Abstract

We present a fully discrete approximation technique for the compressible Navier–Stokes equations that is second-order
ccurate in time and space, semi-implicit, and guaranteed to be invariant domain preserving. The restriction on the time step is
he standard hyperbolic CFL condition, i.e. τ ≲ O(h)/V where V is some reference velocity scale and h the typical meshsize.
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The objective of this paper is to present a fully-discrete approximation technique for the compressible Navier–
tokes equations that is implicit–explicit, second-order accurate in time and space, and guaranteed to be invariant
omain preserving. The restriction on the time-step size is the standard hyperbolic CFL condition, i.e., τ ≲ O(h)/V ,

where V is some reference velocity scale and h is the typical meshsize. To the best of our knowledge, this method
is the first one that is guaranteed to be invariant domain preserving under the standard hyperbolic CFL condition
and be second-order accurate in time and space.

Of course there are countless papers in the literature describing techniques to approximate the time-dependent
compressible Navier–Stokes equations, but there are very few papers establishing invariant domain properties.
Among the latest results in this direction we refer the reader to Grapsas et al. [1] where a first-order method using
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upwinding and staggered grid is developed (see Eq. (3.1) therein). The authors prove positivity of the density and
the internal energy (Lem. 4.4 therein). Unconditional stability is obtained by solving a nonlinear system involving
the mass conservation equation and the internal energy equation. One important aspect of this method is that it
is robust in the low Mach regime. A similar technique is developed in Gallouët et al. [2] for the compressible

arotropic Navier–Stokes equations (see §3.6 therein). We also refer to Zhang [3] where a fully explicit dG scheme
s proposed with positivity on the internal energy enforced by limiting. The invariant domain properties are proved
here under the parabolic time step restriction τ ≲ O(h2)/µ, where µ is some reference viscosity scale.

The key idea of the present paper is to build on [4,5] and use an operator splitting technique to treat separately
he hyperbolic part and the parabolic part of the problem. The hyperbolic sub-step is treated explicitly and the
arabolic sub-step is treated implicitly. This idea is not new and we refer for instance to Demkowicz et al. [6] for
n early attempt in this direction. The novelty of our approach is that each sub-step is guaranteed to be invariant
omain preserving. In addition, the scheme is conservative and fully-computable (e.g. the method is fully-discrete
nd there are no open-ended questions regarding the solvability of the sub-problems). One key ingredient of our
ethod is that the parabolic sub-step is reformulated in terms of the velocity and the internal energy in a way that
akes the method conservative, invariant domain preserving, and second-order accurate (see Section 5).
The remainder of the paper is organized as follows. We recall the compressible Navier–Stokes model and

ntroduce the notation in Section 2. The overall principle of the method is summarized in Section 3.3. As usual, the
evil is in the details: we discuss technical aspects of the hyperbolic substep and the parabolic substep in Section 4
nd Section 5, respectively. The key results of the two sections are Theorems 4.2 and 5.5. We discuss the full method
n Section 6. The main statement summarizing the results of the paper is Theorem 6.1. The method is illustrated
umerically in Section 7. Some conclusions and open problems are reported in Section 8.

. The compressible Navier–Stokes equation

In this section we define the notation and recall the Navier–Stokes equations.

.1. Notation

The fluid occupies a bounded, polyhedral domain D in Rd . The space dimension d is either 2 or 3 for simplicity.
he dependent variable is u := (ρ, m, E)T

∈ Rd+2, where ρ is the density, m the momentum, E the total mechanical
nergy. In this paper u is considered to be a column vector. The velocity is given by v := ρ−1m. The quantity
(u) := ρ−1 E −

1
2∥v∥

2
ℓ2 is the specific internal energy.

Given some Lipschitz flux f : Rd+2
→ R(d+2)×d , f(u(x)) is a matrix with entries fi j (u(x)), 1 ≤ i ≤ d+2, 1 ≤ j ≤

d and ∇·f(u(x)) is a column vector with entries (∇·f(u))i =
∑

1≤ j≤d ∂x j fi j (u(x)). For any n = (n1 . . . , nd )T
∈ Rd ,

e denote by f(u)n the column vector with entries
∑

1≤l≤d fil(u)nl , where i ∈ {1:d +2}. Given two integers m ≤ n,
he symbol {m :n} represents the set of integers {m, m +1, . . . , n}. Given two second-order tensors s and e in Rd×d ,
e denote the full tensor contraction operation by s:e :=

∑
i, j∈{1:d}

si jei j . As usual a·b :=
∑

i∈{1:d}
ai bi denotes

the Euclidean inner-product in Rd , and a ⊗ b is the second-order tensor with entries (ai b j )i, j∈{1:d}. For any smooth
vector field a : D ↦→ Rd , ∇a is the second-order tensor with entries (∂ j ai )i, j∈{1:d}. The Euclidean norm in Rd and
the Frobenius norm in Rd×d are denoted by ∥·∥ℓ2 .

2.2. Model description

Given some initial time t0 with initial data u0 := (ρ0, m0, E0), we look for u(t) := (ρ, m, E)(t) solving the
compressible Navier–Stokes system in some weak sense:

∂tρ + ∇·(vρ) = 0, (2.1a)

∂t m + ∇·
(
v ⊗ m + p(u)I − s(v)

)
= f , (2.1b)

∂t E + ∇·
(
v(E + p(u)) − s(v)v + k(u)

)
= f ·v, (2.1c)

here p(u) is the pressure, I ∈ Rd×d is the identity matrix, f is a prescribed external force, s(v) is the viscous
tress tensor and k(u) is the heat-flux. We assume that the fluid is Newtonian and that the heat-flux follows Fourier’s
aw, that is to say:

2µ)∇·vI, e(v) := ∇
sv :=

1(
∇v + (∇v)T)
s(v) := 2µe(v) + (λ − 3 2 ,

2
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k(u) := −c−1
v κ∇e.

The constants µ > 0 and λ ≥ 0 are the shear and the bulk viscosities, respectively. The constant κ is the thermal
conductivity and cv is the heat capacity at constant volume. We will assume throughout that the coefficient c−1

v κ is
constant and does not depend on the state u(t).

For the sake of completeness we recall the following standard result regarding the viscous stress tensor s(v).

Lemma 2.1. Let k := max(0, d
3 (1 −

3λ
2µ

)) ∈ [0, 1). Then the following holds true for all smooth vector fields v in
d :

s(v):∇v ≥ 2µ(1 − k)∥e(v)∥2
ℓ2 . (2.2)

Proof. We have s(v):∇v = 2µ∇
sv:∇

sv + (λ −
2
3µ)(∇·v)2 and

∇
sv:∇

sv =

∑
i, j∈{1:d}

|e(v)i j |
2

≥

∑
i∈{1:d}

|e(v)i i |
2

=

∑
i∈{1:d}

|∂ivi |
2

≥
1
d (∇·v)2.

he result follows readily. □

We assume that the pressure p(u) is derived from a complete equation of state. That is to say, introducing
he specific volume v := ρ−1, there exists a specific entropy σ (v, e) where σ : R+

×R+
→ R is concave. We

ssume that the differential of σ (v, e) is consistent with the Gibbs identity T dσ = de + p dv; therefore, setting
(ρ, e) := σ (v, e), we have T −1

:=
∂s
∂e , p := −ρ2T ∂s

∂ρ
, see Menikoff and Plohr [7], Harten et al. [8] for more details.

The admissible set of (2.1) is

A :=
{
u = (ρ, m, E) ∈ Rd+2

|ρ > 0, e(u) > 0
}
. (2.3)

his is to say, we expect any reasonable solution u(t) of (2.1) to stay in A. Following the terminology of Chueh
t al. [9] we say that A is an invariant domain of (2.1). Important properties we want to maintain at the discrete level
re thus the positivity of the density ρ ≥ 0 and the positivity of the specific internal energy e(u) = ρ−1 E −

1
2∥v∥

2
ℓ2 .

That the pressure p(u) is defined by a complete equation of state is essential for the splitting technique that we
are going to used later. We insist again that the source term f is assumed to be prescribed. If f were to depend
on the density (which would be the case for gravity in a star) or on the temperature (which would be the case of
the gray-radiation equations), then the handling of the source term would have to be modified accordingly and this
would entail additional difficulties. This type of problem is out of the scope of the present paper.

We conclude the section by briefly commenting on boundary conditions for system (2.1). For the sake of
simplicity and to avoid analytical technicalities we assume that the no-slip and the thermally insulating boundary
conditions are enforced on the entire boundary ∂ D:

v|∂ D = 0, k(u)·n|∂ D = 0. (2.4)

Notice that (2.4) closes the system (2.1), i. e., no further boundary condition has to be enforced. We refer the reader
to [4, §3.5], as well as Sections 4 and 5 for additional details. In principle it is possible to enforce numerous other
boundary conditions. A careful analysis of all of these alternative boundary conditions is beyond the scope of the
present paper.

3. Strang splitting and stability properties of the hyperbolic and parabolic limits

We will separate the parabolic part and the hyperbolic part of the compressible Navier–Stokes system (2.1)
by using Strang’s splitting. To this end, we first identify a hyperbolic (Section 3.1) and a parabolic (Section 3.2)
limit, then define the corresponding continuous solution operators S1 and S2, and finally identify associated stability
properties. Both operators are then combined to form a solution operator for (2.1); see Section 3.3. We make no
claim of originality about the operator splitting technique. The idea is not new and has been applied in the context
of the compressible Navier–Stokes equation by Demkowicz et al. [6] among others. The novel contribution of the
present work is the following:

(i) The construction of discrete solution operators S1,h and S2,h that when sequentially compounded yield con-
servation, preservation of the invariant domain properties of the continuous operators (stated Assumptions 3.1

and 3.2 in Sections 3.1 and 3.2), and satisfaction of a discrete energy balance.

3
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(ii) Specific choice of transformation of variables at the intermediate step making the analysis and an efficient
implementation possible.

3.1. Hyperbolic limit

The first asymptotic limit of (2.1) that we discuss is the vanishing viscosity limit, i.e., µ, λ → 0, with vanishing
external forces f . In this case the governing equations for u(t) reduce to

∂tρ + ∇·(vρ) = 0, (3.1a)

∂t m + ∇·(v ⊗ m + p(u)I) = 0, (3.1b)

∂t E + ∇·(v(E + p(u))) = 0, (3.1c)

v·n|∂ D = 0. (3.1d)

ere, in the vanishing viscosity limit, the no-slip boundary condition (2.4) is replaced by the slip condition (3.1d).
e assume in the following that there exists some Banach space B1 with sufficient smoothness so that, provided

u0 ∈ B1 ∩A, some reasonable notion of entropy/viscosity solution of (3.1) can be established for some time interval
(t0, t∗). Giving a precise definition of the functional-space B1 is beyond the scope of this manuscript and somewhat
irrelevant for our purpose. The reader is referred to Lions [10], Feireisl [11] for further insights on this very difficult
question. Here, by slight abuse of notation B1 ∩A shall mean {v ∈ B1|v(x) ∈ A for a.e. x ∈ D}. Let S1(·, t0) denote
he solution map to (3.1); that is, S1(t, t0)(u0) = u(t) for a.e. t ∈ (t0, t∗). We introduce a stability notion for the
olution map S1(·, t0):

ssumption 3.1 (Stable Hyperbolic Solution Operator). Let u0 ∈ B1 ∩ A. Recalling that s denotes the specific
ntropy, we set smin := ess infx∈D s(ρ0(x), e(u0(x))) and introduce the set:

C(u0) =
{
u = (ρ, m, E)|ρ > 0, e > 0, s(e, ρ) ≥ smin

}
. (3.2)

We make the following assumptions:

(i) The set C(u0) is invariant under S1(., t0) for all u0 ∈ A ∩ B1, i.e., we have S1(t, t0)(u0)(x) ∈ C(u0) for a.e.
x ∈ D and a.e. t ∈ (t0, t∗). We say C(u0) is an invariant domain of (3.1).

(ii) There exists a family of entropy pairs (η, q) (for instance a subset of generalized entropies, cf. Harten et al.
[8]) such that the following inequality holds in the distribution sense in D×(t0, t∗):

∂tη(S1(t, t0)(u0)) + ∇·(q(S1(t, t0)(u0))) ≤ 0.

.2. Parabolic limit

The second asymptotic regime of interest in this manuscript is the diffusive or parabolic regime. The limit is
ormally obtained by assuming dominant diffusive terms and dominant external forces in (2.1). Then, the governing
quations for u(x, t) reduce to

∂tρ = 0, (3.3a)

∂t m − ∇·(s(v)) = f , (3.3b)

∂t E + ∇·(k(u) − s(v)v) = f ·v, (3.3c)

v|∂ D = 0, k(u)·n|∂ D = 0. (3.3d)

ince (3.3a) implies ρ(x, t) = ρ0(x) for all x ∈ D, (3.3b) is equivalent to ρ∂tv − ∇·(s(v)) = f . Taking the
ot product of (3.3b) and v and subtracting the result from (3.3c) gives ∂t (E −

1
2ρv2) + ∇·k(u) − s(v):∇v = 0.

Consequently, (3.3) is equivalent to solving

ρ0∂tv − ∇·(s(v)) = f , v|∂ D = 0, (3.4a)

ρ0∂t e − c−1
v κ∆e = s(v):e(v), ∂ne = 0, (3.4b)

E := ρ0e +
1
2ρ0v

2. (3.4c)
4
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Notice that ∂t
∫

D E dx =
∫

D f ·v dx ; i.e., the variation of the total energy is equal to the power of the external
ources. Existence and uniqueness of (3.4) can be established via standard parabolic solution theory, Gilbarg and
rudinger [12]. For the sake of argument we will simply assume that there exists two Banach spaces B2 and B3 such

that the above problem is well-posed for all u0 ∈ B2 and all f ∈ B3. Similarly to the hyperbolic case, we introduce
the solution map S2(t, t0)(u0, f ) = u(t) to (3.3). Although the following assumption could easily be formulated
rigorously in form of a theorem by specifying B2 and B3, we prefer to make it an assumption to stay general and
avoid distracting technicalities.

Assumption 3.2 (Stable Parabolic Solution Operator). Let u0 ∈ A ∩ B2 and f ∈ B3. We define emin =

ess infx∈D e(u0(x)) and set

D(u0) :=
{
u = (ρ, m, E)|ρ > 0, e ≥ emin

}
. (3.5)

By possibly making t∗ smaller we assume that:

(i) The set D(u0) is invariant under S2(., t0) for all u0 ∈ A ∩ B2 and all f ∈ B3, i.e., S2(t, t0)(u0, f )(x) ∈ D(u0)
for a.e. x ∈ D and a.e. t ∈ (t0, t∗). We say D(u0) is an invariant domain for (3.3).

(ii) The functional setting defining S2(t, t0) is smooth enough such that∫
D

E(t) dx =

∫
D

E(t0) dx +

∫ t

t0

∫
D

f ·v dx . (3.6)

Our goal in the remainder of the paper is to construct a space and time approximation that is formally second-
rder accurate and complies in some reasonable sense with the stability properties stated in Assumption 3.1 and in
ssumption 3.2.

emark 3.3 (Vacuum). In this paper we assume that no vacuum forms. It has been established in Hoff and Serre
13, Thm. 2] that the compressible Navier–Stokes equation may lose continuous dependency with respect to the
nitial data when vacuum occurs. It is shown therein that one can construct initial data in one dimension such that
ontinuous dependency is actually lost. □

emark 3.4 (L p Estimates). Using ρ > 0 and the entropy η(u) = ρ in Assumption 3.1 we infer the estimate
∥ρ∥L∞(t0,t∗;L1(D)) ≤ ∥ρ0∥L∞(t0,t∗;L1(D)). Using ρ > 0, e > 0, (3.6) implies ∥ρe∥L∞(t0,t∗;L1(D))+

1
2∥ρv2

∥L∞(t0,t∗;L1(D)) =

ρ0e0∥L1(D) +
1
2∥ρ0v

2
0∥L1(D) +

∫ t
t0

∫
D f ·v dx . □

.3. Stability of Strang splitting

We propose to approximate (2.1) in time by using Strang’s operator splitting. To be able to do that without going
oo much into the functional analysis details, we add one more assumption which can always be shown to hold true
f u0 is smooth enough and t∗ is small enough.

ssumption 3.5 (Smoothness Compatibility). The following holds true for a.e. t ∈ (t0, t∗):

(i) For all u0 ∈ B1 ∩ A, S1(t, t0)(u0) ∈ B2.
(ii) For all u0 ∈ B2 ∩ A and all f ∈ B3, S2(t, t0)(u0, f ) ∈ B1.

Let τ ∈ (0, t∗
− t0] be some time step and let u0 ∈ B1 ∩ A be some admissible initial data at time t0. The

ersion of Strang’s splitting technique we consider in this paper consists of approximating the solution to (2.1) at
:= t0 + τ as follows:

S1(t0 + τ, t0 +
1
2τ ) ◦ S2(t0 + τ, t0) ◦ (S1(t0 +

1
2τ, t0)(u0), f ). (3.7)

The above operations are well-posed by virtue of Assumption 3.5. The following result is elementary but is essential
since it is the template for the approximation technique that we propose.

Lemma 3.6. The following holds true for all u0 ∈ B1 ∩ A, all f ∈ B3, all τ ∈ (0, t∗
− t0], and a.e. x ∈ D:

S1(t0 + τ, t0 +
1
2τ ) ◦ S2(t0 + τ, t0) ◦ (S1(t0 +

1
2τ, t0)(u0), f )(x) ∈ A.
5
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Proof. By Assumption 3.1(i) and of Assumption 3.5(i) we have S1(t0+
1
2τ, t0)(u0) ∈ B2∩C(u0) ⊂ B2∩A. Similarly,

y Assumptions 3.2(i) and 3.5(ii) it follows that S2(t0 + τ, t0) ◦ (S1(t0 +
1
2τ, t0)(u0), f ) ∈ B1 ∩ D(u0) ⊂ B1 ∩ A.

inally, the result follows by repeating the first argument. □

We now discuss the space and time approximation of the evolution operators S1 and S2. The two key difficulties
o overcome are to ensure that C(u0) remains invariant under the fully discrete version of S1, and D(u0) remains
nvariant under the fully discrete version of S2. We describe the discretization of the hyperbolic step (3.1) in
ection 4, then we describe the discretization of the parabolic step (3.3) in Section 5.

. Explicit hyperbolic step

In this section we describe the discrete setting that is used to approximate (3.1). The reader who is familiar with
he theory developed in Guermond et al. [4,5] is invited to skip this section and move on to Section 5.

.1. Discrete setting for the space approximation

For the explicit hyperbolic step we use the exact same setting as described in [4,5]. The method is discretization
gnostic and can be implemented with finite volumes, discontinuous finite elements, and continuous finite elements.
o avoid technicalities when approximating the parabolic problem, we are going to restrict the presentation to
ontinuous finite elements. We assume to have at hand a sequence of shape-regular meshes (Th)h∈H, where H is
he index set of the sequence. One may think of h as being the typical mesh-size. Given some mesh Th , we denote
y P(Th) a scalar-valued finite element space with basis functions {ϕi }i∈V . We assume that P(Th) ⊂ C0(D;R).

We restrict ourselves to continuous Lagrange finite elements for the sake of simplicity and we assume that ϕi ≥ 0
for all i ∈ V . We denote by V∂ the set of the degrees of freedom that are located on the boundary ∂ D. The
set V◦ is composed of all the interior degrees of freedom. We introduce the vector-valued approximation space
P(Th) := (P(Th))d+2. We set

mi j =

∫
D

ϕiϕ j dx, ci j =

∫
D

ϕi∇ϕ j dx, ni j :=
ci j

∥ci j∥ℓ2
, mi =

∫
D

ϕi dx .

he definitions of the coefficients mi j , ci j and mi for the case of finite volumes and discontinuous finite element
iscretizations can be found in [5, §4].

.2. Hyperbolic update

Let tn be some time and un
:= u(tn). We now explain how we approximate the update S1(tn+1, tn)(un). First,

et un
h :=

∑
i∈V Un

i ϕi ∈ P(Th) be a corresponding finite element approximation of un . We assume that un
h is an

dmissible state, i.e.,

Un
i ∈ A, ∀i ∈ V.

et τ be the current time step size and set tn+1 := tn + τ . Note that τ has to be chosen for each time step tn subject
o a suitable hyperbolic CFL condition; see (4.3)–(4.4) and Theorem 4.2. We now construct an approximation

un+1
h :=

∑
i∈V Un+1ϕi ∈ P(Th) for the new time step tn+1 by combining a low-order approximation and a high-order

pproximation through a convex limiting technique described in [4,5].
The low order update is obtained as follows:

Ui
L,n+1

:= Un
i +

τ

mi

∑
j∈I(i)

−f(Un
i )ci j +

τ

mi

∑
j∈I(i)\{i}

di j
L,n(Un

j − Un
i ),

here di j
L,n is defined by

d L ,n
i j := max

(̂
λmax(ni j , Un

i , Un
j )∥ci j∥ℓ2 , λ̂max(n j i , Un

j , Un
i )∥c j i∥ℓ2

)
. (4.1)

ere, λ̂max(n, UL , UR) is any upper bound on the maximum wave speed in the Riemann problem with left data Un
i ,

n
ight data U j , and flux f(v)ni j . One can use for instance the two rarefaction approximation discussed in Guermond

6
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and Popov [14, Lem. 4.3] (see also Toro [15, Eq. (4.46)]) or any other guaranteed upper bound. For all j ∈ I(i)\{i}
e introduce the auxiliary states

U
n
i j :=

1
2

(Un
i + Un

j ) − (f(Un
j ) − f(Un

i ))
ci j

2di j
L,n

. (4.2)

The following statement is a key result on which the convex limiting strategy is based.

Lemma 4.1 (Invariance of the Auxiliary States). Let U ⊂ A be any convex invariant domain for (3.1) such that
n
i , Un

j ∈ U . Then the state U
n
i j defined in (4.2) with di j

L,n as defined in (4.1) belongs to U .

A possibly invariant-domain-violating and formally high-order solution, uh
H,n+1, is obtained by appropriately

reducing the graph viscosity and replacing the lumped mass matrix by the full mass matrix (see, e.g., [4, §3.3-§3.4]
and [5, §6]). The final high-order invariant-domain-preserving update un+1

h is obtained by applying convex limiting
between the low-order solution Ui

L,n+1 and the high-order solution Ui
H,n+1 with relaxed bounds. The local bounds

are computed using the auxiliary states (4.2) (see e.g., [4, §4] and [5, §7]). In the numerical illustrations reported
at the end of the paper we limit the density from above and from below and the specific entropy from below. The
relaxation technique for the bounds is explained in [4, §4.7] and [5, §7.6]. For further reference we introduce

τ0(un
h) := min

i∈V

mi

2|di i
L,n|

, with di i
L,n

:= −

∑
j∈I(i)\{i}

di j
L,n. (4.3)

The ratio τ/τ0(un
h) is henceforth denoted CFL and called Courant–Friedrichs–Lewy number:

CFL :=
τ

τ0(un
h)

. (4.4)

Let S1h(tn + τ, tn) : P(Th) → P(Th) denote the nonlinear operator defined by setting S1h(tn + τ, tn)(un
h) := un+1

h .
The key result regarding the hyperbolic update is the following.

Theorem 4.2 (Invariance). Let un
h ∈ A and let C(un

h) be as defined in (3.2).

(i) If no relaxation is applied on the entropy bounds, then S1h(tn + τ, tn)(un
h) ∈ C(un

h) for all τ ≤ τ0(un
h). In other

words, C(un
h) is invariant under S1h(tn + τ, tn) if CFL ≤ 1.

(ii) In case of relaxation of the entropy bounds in the convex limiter, there exists c(h) with limh→0 c(h) = 1
and smin ≥ c(h)smin so that the same statement holds with the constraint s(ρ, e) ≥ smin in (3.2) replaced by
s(ρ, e) ≥ c(h)smin.

(iii) In both cases A is invariant under S1h(tn + τ, tn) provided that τ ≤ τ0(un
h).

emark 4.3 (Second-Order in Time). In practice the method is made second-order accurate in time by using a
trong stability preserving explicit Runge Kutta method. For instance it is sufficient to use SSPRK(2,2) (i.e., Heun’s
cheme) to achieve second-order accuracy in time. This is done as follows: one computes w1

h = S1h(tn + τ, tn)(un
h)

nd w2
h = S1h(tn + 2τ, tn + τ )(w1

h) and one sets un+1
h =

1
2 un

h +
1
2w2

h .

5. Implicit parabolic step

We now describe the discrete setting that is used to approximate the parabolic step (3.3). We use the same finite
element setting that was introduced in Section 4.1.

5.1. Density and velocity update

Let again un
h :=

∑
i∈V Un

i ϕi ∈ P(Th) be a finite element approximation of un . We assume that un
h is an admissible

state, i.e.,
n
Ui ∈ A, ∀i ∈ V. (5.1)

7
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Let τ be the chosen hyperbolic time step size (see Section 4) for tn . We now construct an approximation un+1
h =∑

i∈V Un+1
i ϕi of S2(tn + τ, tn)(un, f ) as follows. Since the evolution equation for the density in (3.3) is ∂tρ = 0,

the density is updated by setting

ϱn+1
i := ϱn

i , ∀i ∈ V. (5.2)

Next, the velocity vn has to be updated. For this, we introduce the bilinear form associated with viscous dissipation,

a(v, w) :=

∫
D
s(v):e(w) dx, v, w ∈ H1

0(D) := H 1
0 (D;Rd ). (5.3)

Let {ek}k∈{1:d} be the canonical Cartesian basis of Rd . For any i ∈ V and j ∈ I(i) we define the d×d matrix
Bi j ∈ Rd×d by setting

(Bi j )kl := a(ϕ j el , ϕi ek) :=

∫
D
s(ϕ j el):∇s(ϕi ek) dx, ∀k, l ∈ {1:d}. (5.4)

Let f
n+

1
2

h :=
∑

j∈V F
n+

1
2

j ϕ j ∈ P(Th) be an approximation of f (tn +
1
2τ ) (at least second-order accurate in time and

space). We use the Crank–Nicolson technique to compute un+1
h . More precisely we solve for the unknown Vn+

1
2

given by the following linear system:⎧⎨⎩ϱn
i mi Vn+

1
2 +

1
2τ

∑
j∈I(i) Bi j Vn+

1
2 = mi Mn

i +
1
2τmi F

n+
1
2

i , ∀i ∈ V◦

V
n+

1
2

i = 0, ∀i ∈ V∂ ,
(5.5a)

here Un
i =: (ϱn

i , Mn
i , En

i ), and set

Vn+1
i := 2Vn+

1
2 − Vn

i , Mn+1
i := ϱn+1

i Vn+1
i , ∀i ∈ V. (5.5b)

We then introduce v
n+

1
2

h :=
∑

i∈V V
n+

1
2

i ϕi and define

K
n+

1
2

i :=
1

mi

∫
D
s(vn+

1
2 ):e(vn+

1
2 )ϕi dx, ∀i ∈ V. (5.6)

Notice that
∑

i∈V mi K
n+

1
2

i = a(vn+
1
2 , vn+

1
2 ) owing to the partition of unity property. The main properties of the

above definitions are summarized in the following result.

Lemma 5.1 (Velocity Update). (i) For every i ∈ V we have K
n+

1
2

i ≥ 0.
(ii) The following global energy balance holds true:∑

i∈V

1
2 miϱ

n
i (Vn+1

i )2
+ τa(vn+

1
2 , vn+

1
2 ) =

∑
i∈V

1
2 miϱ

n
i (Vn

i )2
+

∑
i∈V

τmi F
n+

1
2

i ·V
n+

1
2

i . (5.7)

Proof. (i) The inequality K
n+

1
2

i ≥ 0 is a consequence of (2.2) and ϕi ≥ 0. (ii) We take the dot product of (5.5a)

with 2V
n+

1
2

i and recalling that Vn+
1
2 =

1
2 (Vn+1

i + Vn
i ) we obtain for every i ∈ V◦

1
2 miϱ

n
i (Vn+1

i )2
+ τa(vn+

1
2 , V

n+
1
2

i ϕi ) =
1
2 miϱ

n
i (Vn

i )2
+ τmi F

n+
1
2

i ·V
n+

1
2

i .

For every i ∈ V∂ we have V
n+

1
2

i = 0, which in turn implies that Vn+1
i = −Vn

i , i.e., (Vn+1
i )2

= (Vn
i )2. Moreover, we

ave a(vn+
1
2 , V

n+
1
2

i ϕi ) = 0 and F
n+

1
2

i ·V
n+

1
2

i = 0. Hence, for every i ∈ V∂ we have

1
2 miϱ

n
i (Vn+1

i )2
+ τa(vn+

1
2 , V

n+
1
2

i ϕi ) =
1
2 miϱ

n
i (Vn

i )2
+ τmi F

n+
1
2

i ·V
n+

1
2

i .

Summing over i ∈ V and using the partition of unity property (
∑

i∈V ϕi = 1) yields (5.7). □

Remark 5.2 (Approximation Order). The update Vn+1
i constructed by (5.5) is formally second-order accurate in

time and space since (5.5a) is a Crank–Nicolson time step.
8
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5.2. Internal energy update (first-order)

The update of the internal energy entails some subtleties regarding the minimum principle when using the
econd-order Crank–Nicolson time stepping. Therefore, we first formulate the method with the backward Euler time
tepping. The second-order extension is presented in Section 5.3. Let us introduce the bilinear form associated with
he thermal diffusion

b(e, w) := c−1
v κ

∫
D

∇e·∇w dx, ∀e, w ∈ H 1(D).

For any i ∈ V and j ∈ I(i) we set

βi j := b(ϕ j , ϕi ). (5.8)

Notice that the partition of unity property implies that βi i = −
∑

j∈I(i)\{i} βi j . This implies in particular that for all
h :=

∑
j∈V V jϕ j ∈ P(Th) we have

b(vh, ϕi ) =

∑
j∈I(i)\{i}

βi j (V j − Vi ). (5.9)

This expression will be useful to prove the minimum principle on the internal energy. We further assume that

βi j ≤ 0, ∀i ̸= j ∈ V. (5.10)

This condition is known to be satisfied for meshes composed of simplices in two and three space dimensions under
the so-called acute angle condition, cf. e.g., Brandts et al. [16, §5.2], Xu and Zikatanov [17, Eq. (2.5)]. This is
in particular true for Delaunay meshes. Although it can be done, it is not the purpose of this paper to relax this
condition.

Recalling the viscous dissipation K
n+

1
2

i defined in (5.6), we now construct a low-order update of the internal
energy ei

L,n+1 as follows. For all i ∈ V first set en
i := (ϱn

i )−1 En
i −

1
2∥Vn

i ∥
2
ℓ2 , then solve the linear system

miϱ
n
i (ei

L,n+1
− en

i ) + τ
∑

j∈I(i)

βi j e j
L,n+1

= τmi K
n+

1
2

i , ∀i ∈ V. (5.11)

ecall that the boundary conditions (3.4b) together with the partition of unity property imply that∑
i∈V

miϱ
n
i (ei

L,n+1
− en

i ) = τ
∑
i∈V

mi K
n+

1
2

i = τa(vn+
1
2 , vn+

1
2 ). (5.12)

This identity is used in the proof of Theorem 5.5.

Lemma 5.3 (Minimum Principle). Let Un be an admissible state. Then for all τ > 0:

min
j∈V

e j
L,n+1

≥ min
j∈V

(en
j +

τ
ϱn

j
K

n+
1
2

j ) ≥ min
j∈V

en
j ≥ 0.

Proof. Recalling that
∑

j∈I(i) βi j = 0, we infer that

miϱ
n
i (ei

L,n+1
− en

i ) + τ
∑

j∈I(i)\{i}

βi j (e j
L,n+1

− ei
L,n+1) = τmi K

n+
1
2

i ,

Let i be the index in V where ei
L,n+1 is minimal. Then 0 ≥

∑
j∈I(i)\{i} βi j (e j

L,n+1
− ei

L,n+1) because we have

ssumed that βi j ≤ 0 for all j ∈ I(i)\{i}. Moreover, the definition of K
n+

1
2

i implies that K
n+

1
2

i ≥ 0 since we
assumed ϕi ≥ 0. All this implies that

miϱ
n
i (ei

L,n+1
− en

i ) ≥ miϱ
n
i (ei

L,n+1
− en

i ) + τ
∑

j∈I(i)\{i}

βi j (e j
L,n+1

− ei
L,n+1) = τmi K

n+
1
2

i ≥ 0.

n conclusion min j∈V e j
L,n+1

=: ei
L,n+1

≥ en
i +

τ
ϱn

i
K

n+
1
2

i ≥ min j∈V
(
en

j +
τ
ϱn

j
K

n+
1
2

j

)
. □
9
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5.3. Internal energy update (Second-order)

We now explain how to approximate the internal energy with a second-order Crank–Nicolson time stepping
cheme. This is done by combining the low-order update and the second-order update using flux-corrected transport
imiting (FCT); the reader is referred to e.g., Boris and Book [18], Zalesak [19], Kuzmin et al. [20].

We start by defining the high-order update of the internal energy, ei
H,n+1, as follows: We first compute ei

H,n+
1
2

by solving

miϱ
n
i (ei

H,n+
1
2 − en

i ) +
1
2τ

∑
j∈I(i)

βi j ei
H,n+

1
2 =

1
2τmi K

n+
1
2

i , ∀i ∈ V. (5.13)

and then set

ei
H,n+1

= 2ei
H,n+

1
2 − en

i , ∀i ∈ V.

n general, positivity properties for the Crank–Nicolson scheme can only be guaranteed under highly restrictive
ime-step size constraints. We do not assume that such time-step conditions are met. We just assume that the time-
tep size is dictated by the CFL constraints of the hyperbolic part. We thus resort to flux-corrected transport limiting,
r alternatively convex limiting, to preserve positivity properties. Rewriting (5.13) by multiplying (5.13) by 2 and
eplacing ei

H,n+
1
2 by 1

2 (ei
H,n+1

+ en
i ) gives:

miϱ
n
i (ei

H,n+1
− en

i ) +
1
2τ

∑
j∈I(i)

βi j (e j
H,n+1

+ en
j ) = τmi K

n+
1
2

i , ∀i ∈ V. (5.14)

We then take the difference between (5.11) and (5.14) to obtain

miϱ
n
i (ei

H,n+1
− ei

L,n+1) = −
1
2τ

∑
j∈I(i)

βi j (e j
H,n+1

+ en
j − 2e j

L,n+1).

etting Ai j := −
1
2τβi j (e j

H,n+1
− ei

H,n+1
+ en

j − en
i − 2e j

L,n+1
+ 2ei

L,n+1), the above identity reads

miϱ
n
i (ei

H,n+1
− ei

L,n+1) =

∑
j∈I(i)\{i}

Ai j .

Introducing en,min
:= min j∈V e j

n we then define the FCT limiter coefficients as follows:

P−

i :=

∑
j∈I(i)\{i}

min(Ai j , 0), Q−

i := miϱ
n
i (en,min

− ei
L,n+1), (5.15a)

ℓ+

i = 1, ℓ−

i := min
(
1,

Q−

i
P−

i

)
. (5.15b)

ote that P−

i ≤ 0 and Q−

i ≤ 0 (owing to Lemma 5.3), therefore ℓ−

i ≥ 0. By virtue of the definition of ℓ−

i the
nequality ℓ−

i P−

i ≥ Q−

i always holds true:

ℓ−

i P−

i = min
(
1,

Q−

i
P−

i

)
P−

i = − min
(
1,

Q−

i
P−

i

)
|P−

i | = − min(|P−

i |, −Q−

i ) ≥ Q−

i (5.16)

he high-order update of the internal energy is now defined by setting

miϱ
n
i (ei

n+1
− ei

L,n+1) =

∑
j∈I(i)\{i}

ℓi j Ai j , ℓi j :=

{
min(ℓ+

i , ℓ−

j ), if Ai j ≥ 0,

min(ℓ−

i , ℓ+

j ), if Ai j < 0.
(5.17)

emma 5.4 (Minimum Principle). The quantity en+1 computed in (5.17) satisfies

min
j∈V

en+1
j ≥ en,min

:= min
j∈V

e j
n. (5.18)

roof. The above definitions imply

miϱ
n
i (ei

n+1
− ei

L,n+1) ≥

∑
ℓi j min(Ai j , 0) ≥ ℓ−

i

∑
min(Ai j , 0) = ℓ−

i P−

i ≥ Q−

i ,
j∈I(i)\{i} j∈I(i)\{i}

10
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where we have used that ℓi j ≤ ℓ−

i , the definition of P−

i , and the inequality (5.16). This shows that the limiting
nforces miϱ

n
i en+1

i ≥ miϱ
n
i en,min, i.e., en+1

i ≥ en,min. This in turn implies that mini∈V en+1
i ≥ en,min

=

in j∈V e j
n . □

.4. Total energy update

Once the internal energy is updated according to (5.17), the total energy can be updated by setting

En+1
i = ϱn+1

i en+1
i +

1
2ϱn

i ∥Vn+1
i ∥

2
ℓ2 , ∀i ∈ V. (5.19)

he main result of Section 5 is the following.

heorem 5.5 (Positivity and Conservation). Let Un be an admissible state. Let Un+1 be the state constructed by
5.2)–(5.5b)–(5.19), with the velocity update defined in (5.5) and the internal energy update defined in (5.17). Then,

n+1 is an admissible state, i.e., Un+1
i ∈ A for all i ∈ V and all τ , and the following holds for all i ∈ V and all τ :

ϱn+1
i = ϱn

i > 0, ∀i ∈ V, (5.20a)

min
j∈V

en+1
j ≥ min

j∈V
en

j > 0, (5.20b)∑
i∈V

mi En+1
i =

∑
i∈V

mi En
i +

∑
i∈V

τmi F
n+

1
2

i ·V
n+

1
2

i . (5.20c)

Proof. (i) Since by assumption Un
i ∈ A, we have ϱn

i > 0, whence ϱn+1
i > 0.

(ii) We have proved that min j∈V en+1
j ≥ min j∈V en

j ≥ 0 in Lemma 5.3.
(iii) We have established in (5.7) that∑

i∈V

1
2 miϱ

n
i (Vn+1

i )2
+ τa(vn+

1
2 , vn+

1
2 ) =

∑
i∈V

1
2 miϱ

n
i (Vn

i )2
+

∑
i∈V

τmi F
n+

1
2

i ·V
n+

1
2

i . (5.21)

Recalling that Ai j = −A j i and ℓi j = ℓ j i , we sum (5.17) over i ∈ V and obtain∑
i∈V

miϱ
n
i en+1

i =

∑
i∈V

miϱ
n
i ei

L,n.

nvoking the identity (5.12) shows∑
i∈V

miϱ
n
i en+1

i =

∑
i∈V

miϱ
n
i en

i + τa(vn+
1
2 , vn+

1
2 ). (5.22)

Adding (5.21) and (5.22) gives (5.20c). □

We introduce a discrete nonlinear solution operator S2h(tn + τ, tn) : P(Th)×P(Th) → P(Th) by setting

S2h(tn + τ, tn)(un
h, f

n+
1
2

h ) := un+1
h . Theorem 5.5 can then be rephrased as follows.

orollary 5.6 (Invariance). Let uh ∈ P(Th)∩A and let f
n+

1
2

h ∈ P(Th). Then D(un
h) is invariant under S2h(tn +τ, tn)

or all τ , i.e., S2h(tn + τ, tn)(uh, f
n+

1
2

h ) ∈ D(un
h) ⊂ A for all τ > 0.

Remark 5.7 (Definition of emin). The definition of emin in (5.15a) can be slightly strengthened. The lower
ound (5.18) holds for any number emin chosen in the interval [min j∈V en

j , min j∈V e j
L,n]. However, selecting emin

oo close to min j∈V e j
L,n degenerates the accuracy order of the method to O(τ ) in the L∞(D)-norm. The numerical

experiments reported in the paper are computed with emin
:= min j∈V en

j .

Remark 5.8 (Energy). Lemma 5.4 establishes that the minimum of the internal energy grows monotonically and
Theorem 5.5 states that the temporal variation of the total energy is equal to the power of the sources. This implies
in essence that a fully discrete counterpart of (3.6) holds true, which is exactly what one should expect.
11



J.-L. Guermond, M. Maier, B. Popov et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 113608

e
t

P

R
s
u
p

7

b

7

T

c
b
t
i
s
T
o
o

p
T

7

v

6. Complete method

We now put all the pieces together and state the main result of the paper. Let S(2)
1h be a version of S1h that is

at least second-order accurate in time as discussed in Remark 4.3. Let un
h ∈ P(Th) be an admissible state and let

f
n+

1
2

h ∈ P(Th). Let us fix some number CFL > 0, which we call Courant–Friedrichs–Lewy number, and let τ0(un
h)

be defined in (4.3). The time step τ is chosen by setting

τ := CFL×τ0(un
h). (6.1)

The update un+1
h ∈ P(Th) is computed as follows:

un+1
h = S(2)

1h (tn + τ, tn +
1
2τ ) ◦ S2h(tn + τ, tn) ◦ (S(2)

1h (tn +
1
2τ, tn)(un

h), f
n+

1
2

h ). (6.2)

Theorem 6.1 (Invariance). Let un
h ∈ P(Th) ∩ A and f

n+
1
2

h ∈ P(Th). Then un+1
h ∈ A provided CFL is small

nough. Moreover, the mass is conserved
∑

i∈V miϱ
n+1
i =

∑
i∈V miϱ

n
i and, under the assumption that f ≡ 0, the

otal energy is also conserved
∑

i∈V mi En+1
i =

∑
i∈V mi En

i .

roof. From Theorem 4.2 we infer that S(2)
1h (tn +

1
2τ, tn)(un

h) ∈ A if CFL is small enough. For example, for
the SSPRK(2,2) and SSPRK(3,3) methods this holds with CFL = 2. From Corollary 5.6 we infer that wh :=

S2h(tn + τ, tn)
(
S(2)

1h (tn +
1
2τ, tn)(un

h, f
n+

1
2

h )
)

∈ A without any further restriction on τ . Using again Theorem 4.2 we
infer that S(2)

1h (tn + τ, tn +
1
2τ )(wh) ∈ A provided τ

2 ≤ τ0(wh), i.e., CFL ≤ 2τ0(wh)/τ0(un
h). □

emark 6.2 (CFL). Showing that Theorem 6.1 holds with a CFL number that is uniform with respect to the mesh
ize, i.e., τ0(wh)/τ0(un

h) can be bounded uniformly, would necessitate to prove some uniform bounds on wh . Except
nder very restrictive smallness assumptions on data, to the best of our knowledge this is a very challenging open
roblem that is well beyond the scope of the present paper.

. Numerical illustration

We illustrate the approximation technique with a number of convergence tests and a computation of a shocktube
enchmark problem.

.1. Implementation details

All the tests reported below are done with the ideal gas equation of state, s(ρ, e) = log(e
1

γ−1 ρ−1), with γ = 1.4.
his in turn implies that p = (γ − 1)ρe, as well as cp =

γ

γ−1 , and cv =
1

γ−1 . We also assume that the ratio
µcp
κ

=: Pr , called Prandtl number, is constant. Hence c−1
v κ = P−1

r
cp
cv

µ =
γ

Pr
µ. The bulk viscosity λ is set to 0.

All the computations are done with continuous P1 elements. The high-order method uses the entropy viscosity
ommutator described in [4, (3.15)–(3.16)] with the entropy ρs. Upper and lower bounds on the density are enforced
y using the method described in [4, §4.4]. The relaxation of the bounds on the density is done by using the
echnique described in [4, §4.7]. The minimum principle on the specific entropy exp((γ − 1)s) ≥ exp((γ − 1)smin)
s enforced by proceeding as in [4, §4.6] with the constraint Ψ (U) := ρe − ϱminργ

≥ 0. The lower bound on the
pecific entropy for all i ∈ V is set with ϱmin

i := min j∈I(i) ρ
n
i en

i /(ρn
i )γ and further relaxed by using [4, Eq. (4.14)].

he positivity of the internal energy is guaranteed by the minimum principle on the specific entropy, i.e., no limiting
n the internal energy is done. High-performance implementations of the hyperbolic solver are available in form of
pen source software documented in Maier and Kronbichler [21], Maier and Tomas [22].

The demonstration code used here has not been parallelized. The linear system are solved by using the
reconditioned CG version of PARDISO (phase = 23). The solution tolerance is set to 10−10 (parm(4) = 102).
he reader is referred to Petra et al. [23].

.2. 1D convergence tests

We estimate the convergence properties of the method on a smooth solution. We consider a one-dimensional

iscous shockwave problem that has an exact solution which is described in Becker [24]. A partial English

12
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Table 1
1D Viscous shockwave, P1 uniform meshes, Convergence tests, t = 3, CFL = 0.4.

I δ1(t) Rate δ2(t) Rate δ∞(t) Rate

50 5.85E−02 – 3.11E−01 – 8.28E−03 –
100 2.50E−02 1.23 1.91E−01 0.71 2.82E−03 1.55
200 4.83E−03 2.37 3.27E−02 2.54 5.13E−04 2.46
400 1.07E−03 2.17 9.79E−03 1.74 9.32E−05 2.46
800 2.52E−04 2.09 2.29E−03 2.10 2.02E−05 2.21

1600 6.20E−05 2.02 5.76E−04 1.99 4.89E−06 2.05
3200 1.55E−05 2.00 1.46E−04 1.98 1.23E−06 1.99

translation of [24] and other exact solutions are found in Johnson [25]. The Navier–Stokes system (2.1) is solved
over the real line with no source term, f = 0.

One key assumption of [24] is that the Prandtl number Pr :=
µcP
κ

is fixed and equal to 3
4 . Recall that µ is the

shear viscosity and κ is the thermal conductivity. The bulk viscosity λ is set to 0.
We first construct a steady state solution. Let ρ(x) be the density, v(x) the velocity, and e(x) the internal energy.

Let v0 be the velocity at infinity on the left (v0 := limx→−∞ v(x)) and let v1 be the velocity at infinity on the
right (v1 := limx→+∞ v(x)). We assume that v0 > v1. We define v01 :=

√
v0v1. Let ρ0 be the density at infinity

n the left. Since the solution is time-independent, the momentum is constant, say m0. In the context of the above
ssumptions, it is shown in [24, Eq. (30.a)] (see also [25, Eq. (3.6)]) that the velocity profile R ∋ x ↦→ v(x) is
efined implicitly as the solution to the following equation:

x =
2

γ + 1
κ

m0cv

{ v0

v0 − v1
log

(v0 − v(x)
v0 − v01

)
−

v1

v0 − v1
log

(v(x) − v1

v01 − v1

)}
. (7.1)

This equation is solved numerically to high accuracy by using a Newton technique. Notice that by convention, (7.1)
implies that v(0) = v01. Once v(x) is known, the density and the internal energy at x are given by

ρ(x) =
m0

v(x)
, e(x) =

1
2γ

(γ + 1
γ − 1

v2
01 − v2(x)

)
. (7.2)

To obtain a time-dependent solution, which is computationally more challenging than solving a steady state solution,
we construct a moving wave as follows. We first introduce the constant translation velocity v∞ and we define

u(x, t) :=

⎛⎝ ρ(x − v∞t)
ρ(x − v∞t)(v∞ + v(x − v∞t))

ρ(x − v∞t)(e(x − v∞t) +
1
2 (v∞ + v(x − v∞t))2)

⎞⎠ . (7.3)

The field u solves (2.1) for any v∞ since the Navier–Stokes equations are Galilean invariant. This solution is used
for instance in Dumbser [26] for verification purposes.

We now compare the above solution to numerical simulations using the following parameters γ = 1.4, µ = 0.01,
∞ = 0.2, v0 = 1, ρ0 = 1. This gives m0 = 1. Instead of enforcing v1, we choose the pre-shock Mach number

M0 = 3, which then gives v1 =
γ−1+2M−2

0
γ+1 ; see [25, Eq. (2.10)]. Notice that κ =

µcp
Pr

with Pr =
3
4 . We use the

truncated domain [−1, 1.5] (the larger the domain the higher the accuracy that can be reached on extremely fine
grids). Inhomogeneous Dirichlet boundary conditions are enforced on all conserved quantities u = (ρ, m, E) at the
left and right boundary (see Section 2). The simulations are run until t = 3. The distance traveled by the shock is
0.6. For q ∈ {1, 2, ∞}, we compute a consolidated error indicator at the final time by adding the relative error in
the Lq -norm of the density, the momentum, and the total energy as follows:

δq (t) :=
∥ρh(t) − ρ(t)∥Lq (D)

∥ρ(t)∥Lq (D)
+

∥mh(t) − m(t)∥Lq (D)

∥m(t)∥Lq (D)
+

∥Eh(t) − E(t)∥Lq (D)

∥E(t)∥Lq (D)
. (7.4)

e show in Table 1 the results for 7 uniform grids. The coarsest grid has 50 grid points and the finest has 3200
rid points. The number of grid points is denoted by I . We observe second-order convergence in time and space in
ll the norms, as expected.
13
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Table 2
2D Viscous shockwave, P1 nonuniform Delaunay meshes, t = 3, CFL ∈ {0.4, 0.9}.

CFL I δ1(t) Rate δ2(t) Rate δ∞(t) Rate

0.4

4458 8.99E−03 – 1.49E−02 – 1.20E−01 –
17 589 1.35E−03 2.76 3.04E−03 2.31 3.23E−02 1.91
34 886 5.19E−04 2.80 1.47E−03 2.13 1.44E−02 2.36
69 781 2.45E−04 2.17 7.20E−04 2.05 7.93E−03 1.72

139 127 1.04E−04 2.47 3.71E−04 1.93 3.27E−03 2.56

0.9

4458 6.99E−03 – 2.03E−02 – 1.58E−01 –
17 589 9.51E−04 2.91 3.39E−03 2.61 3.61E−02 2.15
34 886 3.98E−04 2.54 1.60E−03 2.20 1.55E−02 2.47
69 781 1.79E−04 2.30 7.54E−04 2.17 8.23E−03 1.83

139 127 8.17E−05 2.28 3.67E−04 2.09 3.28E−03 2.67

7.3. 2D convergence tests

We use again the exact shockwave solution described in Section 7.2 to verify the method in two-space dimensions.
his test is also meant to verify that the method is genuinely second-order accurate on non-uniform meshes.
ere we use nonuniform Delaunay triangulations. The convergence tests are done in the truncated domain D =

(−0.5, 1)×(0, 1). In addition to inhomogeneous Dirichlet boundary conditions on the left and right sides we enforce
periodic boundary conditions on {y = 0} and {y = 1}. The length of the domain in the x-direction is slightly smaller
han for the one-dimensional tests reported above. We do not expect to saturate the relative error indicators δ1, δ2 and
∞ due to boundary effects in this smaller computational domain since we restrict the meshsize not to be smaller than
/425. We use 5 meshes. These meshes are not nested to eliminate the risk of observing super-convergence effects.
his makes having consistent convergence rates more difficult and therefore tests the robustness of the method.
he meshsizes for these meshes are approximately 0.02, 0.01, 0.0707, 0.05, 0.003536. The results are reported in
able 2 for the two CFL numbers 0.4 and 0.9. We observe that the method is second-order accurate both in time
nd space, for both CFL numbers, and in all error norms.

.4. 2D shocktube test

As a final numerical test we simulate the interaction of a shock with a viscous boundary layer. The test case
e consider has been introduced in the literature by Daru and Tenaud [27] and is further documented in Daru and
enaud [28]. It is essentially a shocktube problem. The tube is the square cavity D = (0, 1)2 with a diaphragm at
x =

1
2 } separating it in two parts. The fluid is initially at rest. The state on the left-hand side of the diaphragm is

ρL = 120, vL = 0, pL = ρL/γ . The right state is ρR = 1.2, vR = 0, pR = ρR/γ . We use the ideal gas equation
of state p = (γ − 1)ρe with γ = 1.4. The bulk viscosity is set to 0. The Prandtl number is Pr = 0.73. The
no-slip and the thermally insulating boundary conditions (2.4) are enforced throughout. The diaphragm is broken at
t = 0. A shock, a contact and a rarefaction wave are created. The viscous shock and the contact move to the right.
The rarefaction wave moves to the left. As the shock and the contact waves progress to the right they create thin
viscous boundary layers on the top and the bottom walls of the tube. The shock hits the right wall at approximately
t ≈ 0.2 and is then reflected. The shock interacts with the contact discontinuity on its way back to the left. Complex
interactions occur and the contact discontinuity stays stationary close to the right wall thereafter. The shock wave
then continues its motion to the left and interacts with the viscous boundary layer which it created while moving
to the right. This interaction is very strong and a lambda shock is formed as a result. We refer to [27, §6] and
[28, §5&§6] for full descriptions of the various mechanisms at play in this problem.

The computations reported in this paper are done in the half domain (0, 1)×(0, 1
2 ). Symmetry with respect to

the horizontal axis {y =
1
2 } is obtained by enforcing the slip boundary condition instead of the no-slip boundary

condition (2.4). This is achieved algebraically by simply replacing the homogeneous Dirichlet condition V
n+

1
2

i = 0

in (5.5) by n·V
n+

1
2

i = 0 at {y =
1
2 }. The weak bilinear form (5.3) then enforces the tangential trace of the normal

viscous stress to be zero. In strong form these two conditions amount to enforcing the normal component of the
14
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Fig. 1. 2D shocktube test. Density at t ∈ {0.6, 0.8, 1} with µ = 10−3. Meshes with increasing refinement level: Mesh 1, 359388 grid point;
esh 2, 684996 grid point; Mesh 3, 859765 grid points.

elocity to be zero and the normal derivative of the tangent component of the velocity to be zero at {y =
1
2 }.

The CFL number used for these computations is 0.95 (see (4.4) and (6.1)). The computations are done with
nonuniform meshes that are progressively refined. The meshes are highly nonuniform to concentrate the grid
points in the right part of the cavity. In mesh 1 the meshsize is about 0.0007 on {0.3 ≤ x ≤ 1, y = 0} and
0.0014 on {0.5 ≤ x ≤ 1, y = 0.5} (359388 grid points). The meshsize in the second mesh is about 0.0005 on
{0.3 ≤ x ≤ 1, y = 0} and 0.001 on {0.5 ≤ x ≤ 1, y = 0.5} (684996 grid points). For mesh 3 the meshsize is about
0.0004 on {0.3 ≤ x ≤ 1, y = 0} and 0.001 on {0.5 ≤ x ≤ 1, y = 0.5} (859765 grid points).

We start by demonstrating the behavior of the method under nonuniform mesh refinement. We show in Fig. 1 the
radient of the density field at t ∈ {0.6, 0.8, 1} for the three meshes: Mesh 1 to Mesh 3. More precisely, denoting

g(x) = ∥∇ρh(x)∥ℓ2 , gmin = minx∈D g(x), gmax = maxx∈D g(x), we visualize the quantity e−10 g−gmin
gmax−gmin to amplify

he contrast. We observe that the results at t = 0.6 and at t = 0.8 vary very little as the grids are refined. Some
ocal changes are noticeable for the solution at t = 1, but the overall structure of the flow seems to be converging
hen the meshsize decreases. There is some disagreement in the literature on the solution at t = 1 for µ = 10−3.
or instance various schemes are tested in Sjögreen and Yee [29] on meshes ranging from 1000×500 grid points

o 4000×2000 grid points (in the half domain), but the results reported therein seem to depend on the scheme
hat is chosen. It is remarkable though that our results on the finest grid (Fig. 1(i)) are strikingly similar to those
eported Fig. 8d in Daru and Tenaud [28] and Fig. 11l in Zhou et al. [30] (see also Fig. 5a in [28] and Fig. 6c in
30]); these three figures are almost Xerox copies of each other. But none of the results reported in [29] (and [31])
gree with the results shown in Fig. 1 (and Fig. 8d in [28] and Fig. 11l in [30]). In conclusion, it seems that
ur results agree very well with those reported in Daru and Tenaud [28] and Zhou et al. [30] but disagree with
hose reported in Sjögreen and Yee [29] (and Kotov et al. [31]), thereby shedding some doubts on the correctness
f the computations in [29,31]. A detailed quantitative comparisons with [28] using extremely fine meshes is in
reparation.

As a last numerical illustration we recompute the density field at t = 1 on Mesh 4 for four increasingly smaller
iscosities µ ∈ {10−3, 5×10−4, 2×10−4, 10−4

}. The results are reported in Fig. 2. We observe that for decreasing
iscosity the flow field develops increasingly more pronounced and smaller vortex structures. This confirms that the
nfluence of the artificial graph viscosity of the hyperbolic step (see Section 7.2) is well below the viscous effects
ntroduced by the physical viscosity µ and the thermal conductivity κ .
15
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Fig. 2. 2D shocktube test, Mesh 3. Density at t = 1 for µ ∈ {10−3, 5×10−4, 2×10−4, 10−4
}.

. Conclusions and outlook

A fully discrete second-order order accurate method for solving the compressible Navier–Stokes equations has
een introduced. The novelty of this work lies in the guaranteed invariant domain preservation of the fully discrete
ethod under the usual hyperbolic CFL condition. The method relies on the operator-splitting strategy in order

o preserve invariant set stability properties. There is, in principle, no limitation for the accuracy in space. We
lso notice that the method exhibits quite robust behavior (in the eye-ball norm) for flows containing strong shock
nteractions with viscous layers. At this point in time, it is not yet clear how to develop a third-order accurate
in-time) invariant-domain-preserving scheme.
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[16] J. Brandts, S. Korotov, M. Křížek, The discrete maximum principle for linear simplicial finite element approximations of a

reaction-diffusion problem, Linear Algebra Appl. 429 (10) (2008) 2344–2357.
[17] J. Xu, L. Zikatanov, A monotone finite element scheme for convection-diffusion equations, Math. Comp. 68 (228) (1999) 1429–1446.
[18] J.P. Boris, D.L. Book, Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works, J. Comput. Phys. 135 (2) (1997)

170–186, With an introduction by Steven T. Zalesak, Commemoration of the 30th anniversary of J. Comput. Phys.; J. Comput. Phys.
11 (1) (1973) 38–69.

[19] S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys. 31 (3) (1979) 335–362.
[20] D. Kuzmin, R. Löhner, S. Turek, Flux–Corrected Transport, in: Scientific Computation, Springer, 2005, 3-540-23730-5.
[21] M. Maier, M. Kronbichler, Massively parallel 3D computation of the compressible Euler equations with an invariant-domain preserving

second-order finite-element scheme, 2020.
[22] M. Maier, I. Tomas, The step-69 tutorial program: implementation of a graph-based scheme for Euler’s equation of compressible gas

dynamics. Deal.ii Library, URL https://www.dealii.org/developer/doxygen/deal.II/step_69.html.
[23] C.G. Petra, O. Schenk, M. Lubin, K. Gäertner, An augmented incomplete factorization approach for computing the schur complement

in stochastic optimization, SIAM J. Sci. Comput. 36 (2) (2014) C139–C162.
[24] R. Becker, Stoßwelle und detonation, Z. Phys. 8 (1) (1922) 321–362.
[25] B.M. Johnson, Analytical shock solutions at large and small prandtl number, J. Fluid Mech. 726 (2013) R4, 12.
[26] M. Dumbser, Arbitrary high order PN PM schemes on unstructured meshes for the compressible Navier-Stokes equations, Comput.

Fluids 39 (1) (2010) 60–76.
[27] V. Daru, C. Tenaud, Evaluation of TVD high resolution schemes for unsteady viscous shocked flows, Comput. & Fluids 30 (1) (2001)

89–113.
[28] V. Daru, C. Tenaud, Numerical simulation of the viscous shock tube problem by using a high resolution monotonicity-preserving

scheme, Comput. Fluids 38 (3) (2009) 664–676.
[29] B. Sjögreen, H. Yee, Grid convergence of high order methods for multiscale complex unsteady viscous compressible flows, J. Comput.

Phys. 185 (1) (2003) 1–26.
[30] G. Zhou, K. Xu, F. Liu, Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube, Phys.

Fluids 30 (1) (2018) 016102.
[31] M. Kotov, L. Ruleva, S. Solodovnikov, I. Kryukov, S. Surzhikov, Multiple flow regimes in a single hypersonic shock tube experiment,

in: 30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2014, http://dx.doi.org/10.2514/6.2014-2657,
AIAA 2014-2657.
17

http://refhub.elsevier.com/S0045-7825(20)30793-3/sb11
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb11
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb11
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb12
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb13
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb13
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb13
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb14
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb14
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb14
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb15
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb15
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb15
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb16
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb16
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb16
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb17
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb18
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb18
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb18
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb18
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb18
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb18
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb19
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb20
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb21
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb21
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb21
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
https://www.dealii.org/developer/doxygen/deal.II/step_69.html
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb23
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb23
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb23
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb24
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb25
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb26
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb26
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb26
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb27
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb27
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb27
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb28
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb28
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb28
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb29
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb29
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb29
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb30
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb30
http://refhub.elsevier.com/S0045-7825(20)30793-3/sb30
http://dx.doi.org/10.2514/6.2014-2657

	Second-order invariant domain preserving approximation of the compressible Navier–Stokes equations
	Introduction
	The compressible Navier–Stokes equation
	Notation
	Model description

	Strang splitting and stability properties of the hyperbolic and parabolic limits
	Hyperbolic limit
	Parabolic limit
	Stability of Strang splitting

	Explicit hyperbolic step
	Discrete setting for the space approximation
	Hyperbolic update

	Implicit parabolic step
	Density and velocity update
	Internal energy update (first-order)
	Internal energy update (Second-order)
	Total energy update

	Complete method
	Numerical illustration
	Implementation details
	1D convergence tests
	2D convergence tests
	2D shocktube test

	Conclusions and outlook
	Declaration of competing interest
	References


