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Abstract

A subgrid stabilization technique is developed for solving the two-dimensional incompressible Navier–Stokes equations at high Rey-
nolds numbers. The time marching algorithm is based on a well-established fractional-step pressure-correction projection method. The
advection–diffusion step is enriched by an implicit subgrid stabilizing term and by an explicit dissipative shock capturing term. The for-
mer is calculated by means of a hierarchical finite element setting, the latter is included to avoid Gibbs� phenomenon in the boundary
layer. Convergence tests on prototypical two-dimensional examples are reported and the method is used to simulate the viscous incom-
pressible flows around the airfoil NACA0012 at zero incidence and Reynolds numbers ranging from 105 to 106.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The capability of finite element-based Galerkin methods to solve the incompressible Navier–Stokes equations in a wide
range of Reynolds numbers (Re) is limited by the capability of current computers to handle extremely large sets of degrees
of freedom. From the mathematical point of view, the reason for this difficulty is that the stability of Galerkin methods
solely relies on the coercivity of the second-order dissipative operator in the momentum equation. As Re grows, the coer-
civity constant goes to zero and the problem becomes dominated by the non-coercive first-order non-linear transport oper-
ator. Accuracy can be recovered if the cell-Reynolds number Vh/m is of order one, where h is the typical meshsize and V is
the typical velocity. Working with cell-Reynolds numbers larger than some units usually yields unrealistic spurious wiggles
spreading throughout the entire computational domain.

The currently known alternatives to pure Galerkin methods are either to change the model (i.e., e.g., inviscid potential
flow theory plus boundary layer corrections) or to use so-called stabilized methods. One of the most popular class of sta-
bilized method is the Galerkin/least squares method (GaLS) and its many variants (streamline diffusion, streamline upwind
Petrov Galerkin, residual free bubbles) [1,2,13,15]. Another set of stabilization techniques are the so-called discontinuous
Galerkin methods [5,19,22]. GaLS, GaLS-like and DG methods are quite efficient for solving first-order PDEs and they all
yield the same quasi-optimal Oðhkþ1

2Þ convergence rate in the L2-norm on transport equations. However, these methods
(except RFB) require tuning coefficients measuring the relative importance of first-order terms to second-order terms when
(possibly small) second-order differential operators are present in the equation. Moreover, these methods do not easily
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extend to time-dependent problems unless using non-trivial discontinuous Galerkin approximation in time. These reasons
have led us to prefer the subgrid stabilization technique which does not suffer from the two problems mentioned above, [7–
9], and the objective of this paper is to show how the subgrid stabilization technique can be applied in dimension two to
simulate the Navier–Stokes equations over a wide range of Reynolds number.

The paper is organized as follows. The basic concepts of the subgrid stabilization method are recalled in Section 2.
Application of the stabilization technique to two-dimensional advection equations and convergence tests are reported in
Section 3. It is shown in Section 4 how the subgrid viscosity method can be used to solve the Navier–Stokes equations.
Implementation details are given and convergence tests are reported. In Section 5 we show numerical solutions of flows
around airfoil NACA0012 for 105

6 Re 6 106. We explore the transition of the two-dimensional flow beyond the laminar
regime.

2. Basic concepts of the subgrid stabilization method

The mathematical theory that yields to the subgrid stabilization method employed in this work has been already pre-
sented in detail in a number of papers [8,9]. Therefore the objective of this section is simply to give a brief summary of
its most important features.

2.1. Abstract setting

Let us introduce a general setting for non-coercive time-dependent problems. Let V � L be two separable Hilbert spaces
(V being dense and continuously embedded in L). Let A : V! L be a positive maximal linear operator. The maximality
hypothesis here means that there are c1 > 0 and c2 P 0 such that

8u 2 V ; sup
v2L

ðAu; vÞL
kvkL

P c1kukV � c2kukL. ð2:1Þ

For applications one may think of L as being L2(X) and A as being a first-order differential operator, for instance A can be
a transport operator. Consider the following problem: For f 2 C1ð½0; T �; LÞ and u0 2 V, seek u 2 C1ð½0; T �; LÞ \ C0ð½0; T �; V Þ
such that

dtuþ Au ¼ f ; uð0Þ ¼ u0; ð2:2Þ
which is well known to be well posed owing to the Hille–Yosida theorem [28, p. 248]. Whereas the Galerkin method is
known for not being suitable to solve this problem when A is a first-order differential operator, the subgrid viscosity tech-
nique has been tailored for this purpose.

2.2. Abstract discrete setting

The key ideas of the subgrid stabilization method are twofold. First, the approximation space is split into resolved scales
and subgrid scales so that a discrete counterpart of the inf–sup condition (2.1) holds uniformly with respect to this decom-
position. Second, the Galerkin approximation is slightly modified by adding an asymptotically consistent artificial diffusion
term on the subgrid scales.

Let us briefly restate the setting introduced in [8,9]. We assume that there is a family of pairs of finite-dimensional sub-
spaces {XH,Xh}{H,h} such that

(i) XH ˆ Xh � V.
(ii) There is X H

h � X h such that X h ¼ X H � X H
h and the projection PH : Xh! XH induced by this decomposition is stable

in L:

9c > 0 8vh 2 X h; kP H vhkL 6 ckvhkL. ð2:3Þ
For all vh in Xh, set vH = PHvh and vH

h ¼ ð1� P H Þvh.
(iii) There is ci > 0 such that

8vh 2 X h; jvhjV 6 ciH�1kvhkL. ð2:4Þ
This hypothesis holds for finite elements based on quasi-uniform mesh families provided c1H 6 h 6 c2H.

(iv) There exist a dense subspace of V, say W, a linear interpolation operator IH 2LðW ; X H Þ, an integer k, and a constant
c > 0 such that

8v 2 W ; kv� IH vkL þ Hkv� IH vkV 6 cH kþ1kvkW . ð2:5Þ
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(v) There is a subgrid viscosity bilinear form bh 2LðX H
h � X H

h ; RÞ satisfying the following continuity and coercivity
hypotheses:

8vH
h ;w

H
h 2 X H

h ;
bhðvH

h ;w
H
h Þ 6 cb2H jvH

h jbjwH
h jb;

bhðvH
h ; v

H
h ÞP cb1H jvH

h j
2
b;

(
ð2:6Þ

where the seminorm j Æ jb is such that there are ce1 > 0 and ce2 > 0 for which

8vH
h 2 X H

h ; ce1jvH
h jV 6 jvH

h jb 6 ce2H�1kvH
h kL. ð2:7Þ

(vi) There are ca > 0 and cd P 0 such that

8vh 2 X h; sup
/h2X h

ðAvH ;/hÞ
k/hkL

P cajvH jV � cdkvhkL. ð2:8Þ

All the constants involved in (2.3)–(2.8) do not depend on {H,h}.

Hypothesis (2.8) is the keystone of the theory. It is simply the discrete counterpart of (2.1). In general, (2.1) has no uni-
form discrete counterpart in the standard Galerkin framework. In actual applications, we will choose XH to be a finite ele-
ment space defined on a mesh of size H, whereas Xh will be defined on the once-refined mesh, i.e., h = H/2.

Set ahðuh; vhÞ ¼ ðAuh; vhÞ þ bðuH
h ; v

H
h Þ and also introduce asðu; vÞ ¼ 1

2
½ðAu; vÞ þ ðAv; uÞ�. Since A is positive, as is positive

and symmetric. As a result, as induces a seminorm on V; let j � jV s
be this seminorm. Assume that u0 2W so that u0 can

be approximated by IHu0. The discrete problem we consider hereafter is the following: Seek uh 2 C1ð½0; T �; X hÞ such that

ðdtuh; vhÞL þ ahðuh; vhÞ ¼ ðf ; vhÞL 8vh 2 X h; uhð0Þ ¼ IH u0. ð2:9Þ
This problem has clearly a unique solution since it is a linear system of ODEs. The major result proved in [9] is the
following:

Theorem 2.1. Under hypotheses (i)–(vi), if the solution u to (2.2) is in C2ð½0; T �; W Þ, the solution uh to (2.9) satisfies

ku� uhkC0ð½0;T �;LÞ þ ju� uhjL2ð�0;T ½;V sÞ 6 c1H kþ1
2; ð2:10Þ

1ffiffiffiffi
T
p ku� uhkL2ð�0;T ½;V Þ 6 c2Hk; ð2:11Þ

where c1 ¼ c½H þ T ð1þ T Þ�
1
2kukC2ð½0;T �;W Þ, and c2 6 c½1þ T �kukC2ð½0;T �;W Þ.

Note that in the above error estimates H can be replaced by h, since owing to the inverse inequality hypothesis (iii) h and H

must be of the same order.

2.3. A singular perturbation result

The subgrid viscosity technique is tailored for first-order differential operators. In practice, we have often to deal with
situations where B = A + �D, where A is a first-order differential operator and D is a coercive second-order differential
operator. From the mathematical point of view, the coercivity of D implies that the evolution equation is parabolic. If
� is Oð1Þ, the standard Galerkin theory applies. If � is small, the coercivity is not strong enough to guarantee that the Galer-
kin approximation is satisfactory, since, in first approximation, one has B � A. We now show that the subgrid viscosity
technique can easily be extended to treat this situation.

Use the notation introduced above. In addition to the two Hilbert spaces already considered, L and V, we introduce a
new Hilbert space, say X, with dense and continuous embedding in V. We also introduce a bilinear form d 2LðX � X ; RÞ,
and we assume that there is a seminorm j Æ jX in X so that d(u,v) 6 cdjujXjvjX for all u, v in X. In practice, D can be a degen-
erate elliptic operator. We assume the following coercivity property with respect to the seminorm j Æ jX:

8v 2 X ; jvj2X 6 ðAv; vÞ þ dðv; vÞ. ð2:12Þ
Consider the following problem: For f 2 C1([0,T]; L), � P 0, and u0 2 X, seek u in {v 2 L2(]0,T[; X); dtv 2 L2(]0,T[;X 0)}
such that for all v 2 X and for all t P 0

ðdtu; vÞL þ ðAu; vÞ þ �dðu; vÞ ¼ ðf ; vÞL; uð0Þ ¼ IH u0. ð2:13Þ
Assume that (2.13) is normalized so that � 6 1 and that there is c > 0 so that kvkX 6 c(kvkL + jvjX). The consequence of this
hypothesis is that problem (2.13) is parabolic and has a unique solution. In the framework of unsteady advection–diffusion
equations, � is the reciprocal of the Péclet number.
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To illustrate the above setting, let us think for instance of an advection diffusion equation with homogeneous Dirichlet
boundary conditions. Let � be the viscosity coefficient and b be the advection field, and let C� be the inflow boundary. Then
L = L2(X), V ¼ fv 2 L2ðXÞ; b � rv 2 L2ðXÞ; vjC� ¼ 0g, and X ¼ H 1

0ðXÞ. Moreover, Av = b Æ $v, Dv = �Dv, aðu; vÞ ¼R
X vðb � ruÞ, and dðu; vÞ ¼

R
Xru � rv.

We now turn our attention to the approximation of problem (2.13). We use the two-scale discrete setting already intro-
duced above to construct an approximate solution to (2.13). Introduce a sequence of pairs of finite-dimensional spaces
{XH,Xh}{H,h}, both conforming in X and satisfying hypotheses (i)–(vi) stated in Section 2.2. Furthermore, assume that
the following inverse inequality holds:

jvhjX 6 cH�1kvhkL. ð2:14Þ
In practice, hypothesis (2.14) means that the norms of X and V involve derivatives of the same order (see the advection
diffusion example considered above).

Assume u0 2W so that IHu0 is an optimal approximation to u0. The discrete problem is: Seek uh in C1([0, T];Xh) such
that, uh(0) = IHu0 and for all t P 0 and vh 2 Xh

ðdtuh; vhÞL þ ðAuh; vhÞ þ �dðuh; vhÞ þ bhðuH
h ; v

H
h Þ ¼ ðf ; vhÞL. ð2:15Þ

Problem (2.15) is well posed since it is a linear system of ODEs. The following result is proved in [9]:

Theorem 2.2. In the framework of the above assumptions, if the solution u to (2.13) is in C2ð½0; T �; W Þ, then the solution uh to

(2.15) satisfies

ku� uhkC0ð½0;T �;LÞ þ �
1
2ku� uhkL2ð½0;T �;X Þ 6 c1ðT ; uÞ Hkþ1

2 þ �1
2H k

� �
; ð2:16Þ

1ffiffiffiffi
T
p ku� uhkL2ð½0;T �;V Þ 6 c2ðT ; uÞHk; ð2:17Þ

where c1 ¼ c½H þ T ð1þ T Þ�
1
2kukC2ð½0;T �;W Þ, and c2 ¼ c½1þ T �kukC2ð½0;T �;W Þ.

Note that contrary to GaLS-like methods or DG techniques nothing in the setting of the subgrid viscosity method has to
be tuned to account for the presence of the dissipative bilinear form �d(u,v). In particular, the subgrid viscosity constant cb

(see (2.24)) does not depend on �. Furthermore any reasonable type of time-stepping technique can be used to approximate
the time derivative (for instance any A-stable method is suitable).

The subgrid stabilization technique described above shares some features with the heuristic setting of the so-called var-
iational multiscale method [12]. One may think of the present subgrid method as one particular mathematical formalization
of the variational multiscale concept.

2.4. Particular instances of two-level settings

We now present two realizations of the two-level Lagrange finite elements setting satisfying the hypotheses (2.3)–(2.8)
when A is a first-order differential operator (possibly with reasonably smooth non-constant coefficients, see [8] for details).

Since our goal is to simulate two-dimensional flows using triangular meshes, we assume that the solution domain X is a
polygon of R2. We denote by ðTH ÞfH>0g a shape-regular family of triangulations of X. All that is said below can be
extended to dimension three provided the computer resource is available.

2.4.1. Two-level P1 interpolation

Let XH be the function space of the resolved scales defined by

X H ¼ U 2 C0ðXÞ;UjKH
2 P1ðKH Þ 8KH 2TH

� �
. ð2:18Þ

For each macro-triangle KH 2TH , we create four new triangles by connecting the midpoints of the three sides of KH. Set
h = H/2 and denote by Th the resulting triangulation. For each macro-triangle KH, we define Pð1ÞðKH Þ to be the space of
functions that are continuous on KH, are piecewise P1 on each sub-triangle of KH, and vanish at the three vertices of KH.
We define the subgrid scale space to be

X H
h ¼ u 2 C0ðXÞ;ujKH

2 Pð1Þ 8KH 2TH

� �
. ð2:19Þ

Letting X h ¼ X H � X H
h , it is clear that we can characterize Xh by

X h ¼ / 2 C0ðXÞ;/jKh
2 P1ðKhÞ 8Kh 2Th

n o
. ð2:20Þ

Fig. 1 shows the two-level spatial discretization and the degrees of freedom for XH, Xh and X H
h .



Fig. 1. Two-level P1 setting. Left: P1 resolved scale space XH (j, dof); Center: four P1 triangles of Xh generated from the macro-triangle (d, dof). Right:
subgrid scale space X H

h (s, dof).
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2.4.2. Two-level P2 interpolation

The construction of hierarchical bases for quadratic polynomials mimics that for the linear case. For the sake of com-
pleteness, we repeat the construction of the spaces. Since a P2 subparametric interpolation is employed for the velocity in
the Navier–Stokes problem, the sides of the triangles of Th are assumed to be straight.

Again we set h = H/2 and we denote by Th the triangulation obtained by dividing each macro-triangle of TH into four
equal triangles (Fig. 2). For each triangle Kh 2Th we denote by u1, u2, u3 the three nodal P2 shape functions associated
with the midpoints of the three sides of Kh. We set the resolved scale space to be

X H ¼ U 2 C0ðXÞ;UjKH
2 P2ðKH Þ 8KH 2TH

� �
ð2:21Þ

and we define the space of the subgrid scale to be

X H
h ¼ u 2 C0ðXÞ;ujKh

2 spanðu1;u2;u3Þ 8Kh 2Th

n o
. ð2:22Þ

The space X h ¼ X H � X H
h is then characterized by

X h ¼ / 2 C0ðXÞ;/jKh
2 P2ðKhÞ 8Kh 2Th

n o
. ð2:23Þ
2.4.3. The subgrid viscosity bilinear form bh

Assuming that one of the two realizations of the two-level Lagrange finite element setting described above is chosen, we
now define the bilinear form bh introduced in the hypothesis (v) as follows:

bhðuH
h ; v

H
h Þ ¼ cb

X
K2Th

ffiffiffiffiffiffiffi
jKj

p Z
K
ruH

h � rvH
h ; ð2:24Þ

where jKj is the measure of K, uH
h ¼ ð1� P HÞuh and vH

h ¼ ð1� P H Þvh. A three-dimensional rendering of the graph of nodal
shape functions associated with a vertex of the coarse mesh TH is shown in Fig. 3. In the figure we show the fine scale vh,
the resolved scale vH = PHvh, and the fluctuation vH

h ¼ ð1� P H Þvh for the two-level P1 setting (left) and the two-level P2

setting (right). cb is a free constant; henceforth we set cb = 0.015, unless specified otherwise.
Fig. 2. Space discretization and different set of degrees of freedom for the two-level P2 interpolation. Left: P2 macro-triangle of the resolved scale XH.
Center: four P2 triangles of Xh generated from the macro-triangle. Right: subgrid scale X H

h whose degrees of freedom are indicated by empty circles.



Fig. 3. 3D rendering of the graph of nodal shape functions associated with a vertex of the grid TH : vH 2 XH (grey), vh 2 Xh (blue) and vH
h 2 X H

h (red). Left:
two-level P1. Right: two-level P2. (For interpretation of colours in this figure legend the reader is referred to the web version of this article.)
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3. Subgrid stabilized solution of 2D advection equation

3.1. Smooth initial data

To quantitatively appreciate the behavior of the subgrid stabilization technique, we test it on a two-dimensional advec-

tion equation with smooth initial data in a circular domain X ¼ ðx; yÞ 2 R2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< 1

n o
. The velocity field is a rigid

rotation with unit angular velocity; accordingly we set b(r) = 2p(�y,x). The initial value problem is as follows:

@tuþ bðrÞ � ru ¼ 0 in X; ujt¼0 ¼ u0ðrÞ ¼ exp � jr� r0j2

a2

 !
; ð3:1Þ

where r0 = (0.5,0) and a = 0.2. Thus, the initial Gaussian hill rotates around the origin without deformation.
The time discretization is based on the second-order accurate three level BDF scheme. The time step used in the numer-

ical tests reported below is either Dt = 10�3 or Dt = 2.5 · 10�4. We have chosen very small time steps to make sure that the
time error is significantly smaller than the spatial error so that the only error observed in the tests is that induced by the
space discretization. In practice such small time steps are not necessary since the method is unconditionally stable. To sim-
plify notations, for every sequence (/0,/1, . . .) we set

D/kþ1 ¼
1
2
ð3/kþ1 � 4/k þ /k�1Þ if k P 1;

/kþ1 � /k if k ¼ 0.

(
ð3:2Þ

Using the notation introduced in Sections 2.4.1 and 2.4.2, the fully discrete subgrid stabilized counterpart of problem
(3.1) is as follows: Set u0

hðrÞ ¼ IH u0ðrÞ, where IH is the Lagrange interpolation operator, and for k P 0 seek ukþ1
h in Xh such

that

Dukþ1
h

Dt
; vh

� �
þ bðrÞ � rukþ1

h ; vh

	 

þ bhðuH ;kþ1

h ; vH
h Þ ¼ 0; ð3:3Þ

where uH ;kþ1
h ¼ ð1� P H Þukþ1

h is the fluctuating (or subgrid) part of ukþ1
h .

3.1.1. Numerical results

The numerical results obtained with (cb = 0.015) and without (cb = 0) subgrid stabilization and using Dt = 10�3 are
reported in Figs. 4 and 5, for P1 and P2 approximations, respectively.
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Fig. 4. Gaussian hill: T = 5, P1 approximation, Dt = 10�3. From left to right: grid (h = 0.05); P1 interpolant of solution; Galerkin solution (cb = 0);
subgrid stabilized solution (cb = 0.015).
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Fig. 5. Gaussian hill: T = 5, P2 approximation, Dt = 10�3. From left to right: grid (h = 0.07); P1 interpolant of solution; Galerkin solution (cb = 0);
subgrid stabilized solution (cb = 0.015).

Fig. 6. Spatial convergence tests. Error versus meshsize h for P1 (left) and P2 (right) approximations. Empty markers refer to standard Galerkin
approximation. Full markers refer to the subgrid viscosity approximation.
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The leftmost panel in Fig. 4 shows the grid employed consisting of 3220 triangles (h = 0.05). The second panel shows the
isovalues of the exact solution at T = 5, i.e., after five complete revolutions. The solution obtained by using the Galerkin
method is shown in the third panel and is found to be affected by strong numerical wiggles spreading throughout the com-
putational domain. By contrast, the subgrid stabilized solution shown in the rightmost panel is obviously a better
approximation.

Similarly, Fig. 5 shows the results obtained by the two-level P2 approximation at T = 5 and using Dt = 10�3. The grid
consisting of 1612 triangles (h = 0.07) is shown in the leftmost panel. The Lagrange interpolant of the exact solution is
shown in the second panel. The other two panels in the figure demonstrate clearly the improvement achieved by the subgrid
stabilization technique over the standard Galerkin method.

Finally, we collect in Fig. 6 the results from convergence tests using P1 and P2 approximations, respectively. The curves
with full markers correspond to the results obtained using the subgrid stabilization technique. The most accurate results are
those from the stabilized P2 solution. Note that for both the P1 and the P2 approximations the L2-norm of the error is
monotone with respect to the meshsize. To materialize the convergence rates, the lines of slope 1, 2 and 3 are also drawn.
The results show that the stabilized method based on the P1 approximation is Oðh2Þ in the L2-norm and OðhÞ in the H1-
norm, while the P2 stabilized method is Oðh3Þ in the L2-norm and Oðh2Þ in the H1-norm. We used Dt = 2.5 · 10�4 to avoid
saturation of the error on very fine meshes due to the time discretization.

3.2. Discontinuous initial data

We now consider a problem with an initial datum that is not smooth, say discontinuous. Referring to (2.2), we no longer
assume u0 2 V. Consequently the quasi-optimal convergence results stated in Theorem 2.1 no longer hold; although, owing
to the density of V into L, convergence is still ensured in the L-norm whenever the data is only in L.

A very similar situation arises when computing incompressible flows at high Reynolds numbers. As Re grows, boundary
layers appear and grow thinner. If the grid that is used to approximate the solution is not fine enough to capture these
boundary layers, then, at the meshsize scale the exact solution can be considered to be discontinuous. We want to show
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in this section that the subgrid stabilization technique can handle this situation provided an additional shock capturing
term is added to the formulation.

Consider the following advection problem:

@ tuþ bðrÞ � ru ¼ 0 in X; ujt¼0 ¼
1 in X1;

0 elsewhere;

�
ð3:4Þ

where X1 ¼ fðx; yÞ 2 R2j0:4 6 x 6 0:8; jyj 6 0:2g and b(r) = 2p(�y,x). Since the initial datum is discontinuous, the exact
solution is also discontinuous with respect to space at all times. When trying to approximate this function one then ob-
serves the well-known Gibbs phenomenon characterized by spurious oscillations. This behavior is the numerical manifes-
tation of a far-reaching theorem of analysis that states that truncated Fourier series of a given function does not converge
uniformly to the function in question unless the function is very smooth (continuity is not enough) [23].

A possible solution to avoid Gibbs oscillations is to introduce a strong local dissipation where the solution is not smooth
[14,16]. Within our two-level space discretization, an indicator of the lack of regularity of the solution is its fluctuation
uH

h ¼ ð1� P HÞuh. Therefore we introduce the following non-linear shock capturing form:

cH
h ðuh;wh; vhÞ ¼ csc

X
KH2TH

ffiffiffiffiffiffiffiffiffi
jKH j

p kruH
h kL2ðKH Þ

kruhkL2ðKH Þ

Z
KH

rwh � rvh. ð3:5Þ

This form is linear with respect to its second and third arguments and non-linear with respect to uh. The need for a non-
linear form is rooted in the Godunov theorem [20] which states that a linear monotone scheme cannot be more accurate
than OðhÞ.

The approximate counterpart of (3.4) is obtained in weak form by adding to the Galerkin formulation the (linear)
subgrid stabilization form bh and the (non-linear) shock capturing form ch. The discrete problem is the following:
Set u0

hðrÞ ¼ IH u0ðrÞ and for k P 0 seek ukþ1
h in Xh such that for all vh 2 Xh

Dukþ1
h

Dt
; vh

� �
þ bðrÞ � rukþ1

h ; vh

	 

þ bhðukþ1;H

h ; vH
h Þ þ cH

h ðuk
h; u

k
h; vhÞ ¼ 0. ð3:6Þ
3.2.1. Numerical results

The computations are performed on the grid shown in Fig. 4: it consists of 3220 triangles (h = 0.05) and 1674 P1 degrees
of freedom. The results for T = 1 and Dt = 10�3 are shown in Fig. 7. By considering the P1-interpolant of the exact solution
shown in the leftmost panel, it is clear that due to the lack of regularity, the Galerkin solution after just one period (second
panel) is more affected by spurious oscillations than the Gaussian hill after five turns (Fig. 4). The linear subgrid stabiliza-
tion alone (Fig. 7, third panel) eliminates most of them but cannot get rid of Gibbs� oscillations. By employing both the
subgrid stabilization and the shock capturing term the spatial oscillations disappear (rightmost panel) at the price of
increased smearing of the discontinuity.

Fig. 8 shows the graph of the Galerkin solution and of the two stabilized solutions to put in evidence the large oscilla-
tions close to the prism and their removal by using the non-linear shock capturing term.

The results obtained by means of the quadratic approximation are presented in Figs. 9 (isovalues) and 10 (three-dimen-
sional rendering of the graph). The grid consisting of 1612 triangles (h = 0.07) and 3315 P2 degrees of freedom is shown in
Fig. 5.
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Fig. 7. Prism: T = 1, P1 approximation, Dt = 10�3. From left to right: P1 interpolant of solution; Galerkin solution (cb = 0); subgrid stabilized solution
(cb = 0.015); shock capturing + subgrid stabilized solution (cb = 0.015, csc = 0.09).



Fig. 9. Prism: T = 1, P2 approximation, Dt = 10�3. From left to right: P2 interpolant of solution; Galerkin solution (cb = 0); subgrid stabilized solution
(cb = 0.015); shock capturing + subgrid stabilized solution (cb = 0.015, csc = 0.06).

Fig. 10. Prism: T = 1, P2 approximation, Dt = 10�3. Left: Galerkin solution (cb = 0). Center: subgrid stabilized solution (cb = 0.015). Right: shock
capturing + subgrid stabilized solution (cb = 0.015, csc = 0.06).

Fig. 8. Prism: T = 1, P1 approximation, Dt = 10�3. From left to right: Galerkin solution (cb = 0); subgrid stabilized solution (cb = 0.015); shock
capturing + subgrid stabilized solution (cb = 0.015, csc = 0.09).
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4. Subgrid stabilized incremental projection method

In this section we introduce the time-dependent incompressible Navier–Stokes equations and we describe our solution
technique. The algorithm is based on a pressure-correction method combined with the subgrid technique introduced above.
Convergence tests for the stabilized projection method are reported at the end of the section.

4.1. Time-dependent incompressible Navier–Stokes equations

We consider the motion of an incompressible viscous fluid occupying a domain X assumed to be a two-dimensional
bounded region. One (or more) airfoil is immersed in the fluid. The set of equations modeling this situation is the incom-
pressible Navier–Stokes equations expressed in terms of the primitive variables, namely the velocity u and the pressure p:
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@tuþ ðu � $Þu ¼ �rp þ mr2u; r � u ¼ 0;

ujt¼0 ¼ u0ðrÞ; ujC ¼ bðrC; tÞ;

(
ð4:1Þ

u0(r) is the initial velocity field and b(rC, t) is the velocity prescribed at the boundary C of X. The initial and boundary data,
assumed to be smooth enough for the purpose of our subsequent analysis, must satisfy the following set of compatibility
conditions:

r � u0ðrÞ ¼ 0;

Z
C

n � bðrC; tÞ ¼ 0; n � u0ðrÞjC ¼ n � bðrC; 0Þ. ð4:2Þ

These three compatibility conditions guarantee existence and uniqueness of weak solutions of minimal regularity
(u 2 L2(0, T;H1) \ L1(0, T;L2)), see e.g. [26, p. 253] or [18, p. 88].

4.2. Second-order BDF incremental projection method

A major difficulty for the numerical simulation of incompressible flows is that the velocity and the pressure are coupled
by the incompressibility constraint. Projection methods are fractional-step time-marching algorithm that overcome this dif-
ficulty [3,4,25,26]. The most attractive feature of projection methods is that, at each time step, one only needs to solve a
sequence of decoupled elliptic equations for the velocity and the pressure, making it very efficient for large scale numerical
simulations. The method implemented here is based on the incremental projection method of Guermond and Quartapelle
[10]. Since a large body of literature has already been dedicated to the development and the analysis of methods belonging
to this class, we are just going to show how the subgrid viscosity method can be implemented using the so-called rotational
form of the pressure-correction algorithm [27,11].

We approximate the time derivative in (4.1) by using a second-order BDF2 time-stepping scheme and we adopt the rota-
tional form of the pressure-correction algorithm. Let Dt be the time step and set tk = kDt for k 2 {0,1, . . . , [T/Dt]}. Let ukþ1

H

be the second-order linear extrapolation of the advection velocity at time tk+1 (for k P 1) defined as follows:

ukþ1
H
¼ 2uk � uk�1. ð4:3Þ

If k = 0 we set u1
H
¼ u0. The non-linear advection term is put in skew-symmetric form u � $Þuþ 1

2
ðr � uÞu

	
(see e.g., [26])

and is semi-implicitly discretized in time. To avoid long notation we introduce

NLðuH; uÞ ¼ ðuH � $Þuþ
1

2
ðr � uHÞu. ð4:4Þ

We initialize the algorithm by setting u0 = u0, p0 = p(t = 0), and /0 = 0. Then for k P 0 we set

pkþ1
H
¼

p0 for k ¼ 0;

p1 þ 2/1 for k ¼ 1;

p2 þ 4
3
/2 � 1

2
/1 for k ¼ 2;

pk þ 4
3
/k � 1

3
/k�1 for k P 3;

8>>>><
>>>>:

ð4:5Þ

where /k, k = 1,2, . . ., is the solution of a Poisson equation that will be defined below. Note that the initial pressure field
p0 is not an initial data but can be computed by solving �r2p0 ¼ r � ½ðu0 � $Þu0� with @np0jC ¼
n � ½�ðu0 � $Þu0 � mr�r� u0�jC. In the present case, we assumed u0 to be the potential flow field u0 ¼ $w0 with
$2w0 = 0, onw0jC = n Æ b(rC, 0), so that $� u0 ¼ 0 and the boundary condition for p0 simplifies to @np0jC ¼
�n � ðu0 � $Þu0jC. Then using the identity ðu0 � $Þu0 ¼ $ð1

2
ku0k2Þ since r� u0 ¼ 0, we infer p0 ¼ � 1

2
ku0k2 þ constant. See

[21] for other details.
The first step of the algorithm accounts for the viscous effects; it consists of seeking uk+1 such that

Dukþ1

Dt
� mr2ukþ1 þNLðukþ1

H
; ukþ1Þ ¼ �rpkþ1

H
; ukþ1jC ¼ bkþ1. ð4:6Þ

Note that the Cartesian components of the unknown uk+1 are fully uncoupled. The second step of the algorithm accounts
for the incompressibility constraint; it is the so-called projection step. It is written in the form of a Poisson equation sup-
plemented with Neumann boundary conditions:

�r2/kþ1 ¼ � bkþ1

Dt
r � ukþ1; @n/

kþ1jC ¼ 0; ð4:7Þ

where b1 = 1 and bkþ1 ¼ 3
2

if k P 1. Then we update the pressure field as follows:

pkþ1 ¼ /kþ1 þ pkþ1
H
� mr � ukþ1. ð4:8Þ
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4.3. Weak formulation and spatial discretization

To develop the fully discretized solution algorithm, the two problems (4.6) and (4.7) are recast in discrete weak forms
using the Galerkin method. To simplify notation we use the inner product notation for scalar functions ðq; pÞ 	

R
X qp and

for vector-valued functions ðu; vÞ 	
R

X u � v. Moreover, we define ðru;rvÞ 	
R

X

Pd
i¼1

Pd
j¼1

ouj

oxi

ovj

oxi
, where d = 2 is the space

dimension.
To account for the possible loss of coercivity in the momentum equation when the Reynolds number becomes very large

and the grid is not fine enough, we approximate the velocity by using the two-level P2 finite element setting defined in Sec-
tion 2.4.2. Using the definitions of XH, X H

h , and Xh in (2.21)–(2.23), we set

XH ¼ X H � X H ; XH
h ¼ X H

h � X H
h ; Xh ¼ X h � X h. ð4:9Þ

For approximating the pressure we introduce

Mh ¼ qh 2 C0ðXÞ; qhjKh
2 P1ðKhÞ 8Kh 2Th;

Z
X

qh ¼ 0

� �
. ð4:10Þ

The fully discrete weak form of the viscous step (4.6) is written as follows: For k P 0, seek ukþ1
h 2 Xh, with ukþ1

h jC ¼ Ihbkþ1

(Ih is the Lagrange interpolation operator in Xh), such that for all vh 2 Xh, with vhjC = 0,

Dukþ1
h

Dt
; vh

� �
þ m rukþ1

h ;rvh

	 

þ ðNLðukþ1

h;H ; u
kþ1
h Þ; vhÞ þ bhðukþ1;H

h ; vH
h Þ ¼ �cH

h ðuk
h; u

k
h; vhÞ � ðrpkþ1

h;H ; vhÞ ð4:11Þ

where, using definitions (2.24) and (3.5), we set bhðuH
h ; v

H
h Þ ¼

P2
i¼1bhðuH

i;h; v
H
i;hÞ and cH

h ðuh;wh; vhÞ ¼
P2

i¼1cH
h ðui;h;wi;h; vi;hÞ.

The fully discrete form of the projection step (4.7) is set as follows: Find /kþ1
h 2 Mh such that for all qh 2Mh

r/kþ1
h ;rqh

	 

¼ � bkþ1

Dt
r � ukþ1

h ; qh

	 

. ð4:12Þ

The pressure is updated by solving the following mass problem: Seek pkþ1
h 2 Mh such that for all qh 2Mh

pkþ1
h ; qh

	 

¼ ð/kþ1

h þ pkþ1
h;H � mr � ukþ1

h ; qhÞ. ð4:13Þ
4.4. Post-processing procedure

Since the time discretization of the projection method induces a time-splitting error, we will resort to a method intro-
duced in [21] to a posteriori compute a pressure field with a lower splitting error. We briefly recall the method here. We first
observe that the momentum equation can be written as follows:

@tuþNLðu; uÞ ¼ �rp � mr�r� u ð4:14Þ
and can be regarded as an equation for rp, assuming u is known. Then, multiplying (4.14) by rv, "v 2 H1(X), integrating
by parts the evolutionary term, using the incompressibility conditionr � u ¼ 0 together with the boundary condition on the
normal component of the velocity, we obtain

ðrp;rvÞ ¼ �ðNLðu; uÞ;rvÞ � mðr �r� u;rvÞ �
Z

C
@tðn � bÞv ð4:15Þ

"v 2 H1(X). Finally the viscous term can be reduced to a surface integral by using again an integration by parts and using
the fact that the curl of gradients is zero. In the present two-dimensional setting, we obtain

ðrp;rvÞ ¼ �ðNLðu; uÞ;rvÞ þ m
Z

C
ẑ � r � u s � rv�

Z
C
@tðn � bÞv ð4:16Þ

"v 2 H1(X), where s is the unit tangential vector and ẑ � r � u ¼ @xuy � @yux. This is a Poisson problem for the pressure
with a Neumann boundary conditions involving the tangential trace of vorticity.

To compute the post-processed pressure we introduce

Npost
h ¼ qh 2 C0ðXÞ; qhjKh

2 P‘ðKhÞ 8Kh 2Th;

Z
X

qh ¼ 0

� �
; ð4:17Þ

where ‘ is either 1 or 2. Using the fully discrete setting described in the previous section, the post-processed pressure at the
time level tk is computed by solving for pk;post

h 2 N post
h such that for all qh 2 Npost

h

rpk;post
h ;rqh

	 

¼ � NLðuk

h; u
k
hÞ;rqh

	 

þ m

Z
C

ẑ � r � uk
h s � rqh �

Z
C
@tðn � bkÞqh. ð4:18Þ
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Whether this strategy can be proved to deliver full Oðh‘þ1Þ convergence on the pressure in the L2-norm is an open problem,
but convergence tests reported below suggest that the post-processed pressure is more accurate than pk

h. The post-processed
pressure is computed only when needed; it is never used to march in time.

4.5. Convergence tests

In this section we test the accuracy of the subgrid stabilized projection method and that of the aforementioned post-pro-
cessing technique. The domain is the unit square X = [0,1]2. The reference solution is as follows:

uex ¼ � cos x sin y gðtÞ; vex ¼ sin x cos y gðtÞ;
pex ¼ � 1

4
½cosð2xÞ þ cosð2yÞ�g2ðtÞ;

�
ð4:19Þ

where g(t) = sin(2t). Writing the velocity in the form uex ¼ �uðx; yÞgðtÞ, the source term corresponding to the Navier–Stokes
equation is

f ¼ �uðx; yÞ g0ðtÞ þ 2gðtÞ
Re

 �
.

The Reynolds number is set to 100,000 and the time convergence tests are performed on two meshes composed of 2 · 202

and 2 · 402 triangles, respectively. Since the analytical solution we use is very smooth, the non-linear stabilizing term is not
employed in the numerical test considered in this section.

4.5.1. Convergence test for the subgrid stabilized projection method

We use the algorithm (4.11)–(4.13). The pressure is approximated using P1 elements and the velocity is approximated
using P2 elements. The full markers refer to the subgrid stabilized technique whereas the empty markers refer to the non-
stabilized technique. Fig. 11 shows the maximum value over the time interval [0,1.5] of the L2-norm of the error in the
pressure and the H1- and L2-norms of the error in the velocity. The graph on the left panel shows the results obtained
on the 2 · 202 grid and that on the right panel shows the results obtained on the 2 · 402 grid. The range of time steps
explored is Dt 2 [10�3,10�1].

The results show that, when the meshsize of the grid is fixed, second-order accuracy in time is achieved, as expected from
theoretical considerations. The different saturation levels we observe as Dt! 0 are due to the spatial discretization error,
which is Oðh2Þ and Oðh3Þ for the velocity in the H1-norm and the L2-norm, respectively, and is Oðh2Þ for the pressure in the
L2-norm.

When comparing the stabilized solution curves with the non-stabilized ones it is evident that the saturation of the error
occurs at a significantly higher level for the non-stabilized solution than for the stabilized one. Although only the advec-
tion–diffusion step is stabilized, the subgrid stabilization significantly increases the accuracy of the pressure also.

Note that refining the grid increases the error in the non-stabilized solution. To illustrate this behavior we have per-
formed a space convergence test fixing Dt = 10�3. The results are shown in Fig. 12. The main conclusion is that, for this
Fig. 11. Time convergence test, Re = 100,000. Left: 2 · 202 grid. Right: 2 · 402 grid. Curves with full (empty) markers refer to the (un)stabilized technique.
The solid line without markers materializes the second-order slope.



Fig. 12. Spatial convergence test, Re = 100,000. Error versus meshsize h. Curves with full (empty) markers refer to the (un)stabilized technique. The solid
lines without markers materialize first-, second-, and third-order slopes.

Fig. 13. Time convergence test. The L2-norm of the error in the pressure field versus Dt. Left: 2 · 202 grid. Right: 2 · 402 grid. The line without markers
materialize second-order slope.
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high Reynolds number and for the range of meshsizes explored h 2 [10�2,10�1], the non-stabilized solution diverges
whereas the stabilized solution maintains the correct convergence rates.

4.5.2. Convergence test for the post-processing technique

In this section we test the accuracy of our proposed post-processing technique using either P1 or P2 approximation for
the pressure, i.e., ‘ = 1 or ‘ = 2 (see (4.17)). In Fig. 13 we report the L2-norm of the difference between the post-processed
pressure and the exact pressure at time t = 1, i.e., kðppost

h � pÞjt¼1kL2 . This error is plotted as a function of the time step Dt.
The computation is done with Re = 100,000. We also show in this figure the L2-norm of the error in the pressure that is
provided by the projection method; this pressure field is henceforth referred to as the non-post-processed pressure.

It is clear that the post-processing technique substantially improves the accuracy of the pressure whether the P1 or P2

interpolation is used. Improvement of almost one order of magnitude is observed when using P2 approximation for post-
processing. For P1 post-processing the results are qualitatively similar but the improvement is definitely less significant as
Dt decreases.

5. Numerical results on NACA0012 at zero incidence

In this section we use the algorithm described in the previous sections to simulate the flow around the NACA0012 airfoil
at zero incidence starting from the inviscid potential flow. Three different Reynolds numbers are simulated: Re = 100,000,
Re = 500,000, Re = 1,000,000.
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5.1. The setting

The velocity of the incoming flow at infinity is the reference velocity scale. The chord of the airfoil is the reference length
scale. The computational domain is the rectangle [�5,6] · [�5,5]. The initial flow field is that of the inviscid potential flow.
The upstream velocity is enforced on {x = �5; �5 6 y 6 5} [ {�5 6 x 6 6; y = ±5}. Natural boundary conditions are
enforced at the downstream boundary Cout, i.e., we impose s � ujCout

¼ 0 and r � ujCout
¼ 0, and the latter, by virtue of

the former, becomes @nðn � uÞjCout
¼ 0.

The grid we used has been generated taking the simulation at Re = 100,000 as a guideline for establishing the necessary
space and time discretization parameters. Due to our limited hardware resources (LINUX PC) and the single-processor
architecture of the program, we used the same grid when simulating flows at Reynolds numbers higher than 100,000.
The grid consists of about 172,000 nodes for the quadratic interpolation of velocity and 43,500 nodes for the linear pres-
sure. Two enlargement of the coarse triangulation TH around the airfoil and near its leading edge are shown in Fig. 14;
each triangle is divided into four subtriangles to yield the mesh Th. The spatial discretization inside the boundary layer is
h � 10�3. Since in dimension two, the thickness of boundary layers scale like Re

1
2, our mesh captures the viscous boundary

layer for Re [ 106. However, when Re = 106, h is just of the same order as the thickness of the boundary layer, and our
simulation may not represent the complete real physics inside the boundary layer at this extreme Reynolds number, i.e., the
results should be considered to be only qualitative.

As far as the initialization of the computation is concerned, even when respecting the compatibility conditions (4.2) as
we did, the impulsive start yields singularities on the higher order derivatives of the velocity and the pressure. This difficulty
has been dealt with by proceeding as follows. We employ Dt = 10�3 and Re = 1000 for the first 20 time steps and we use
Dt = 10�3 and Re = 10,000 for the next 20 time steps. For the subsequent time steps the Reynolds number is set to its cor-
rect value and Dt is set to 10�4.

The values of the subgrid viscosity coefficient cb and that of the shock capturing term csc that we used in our compu-
tations are reported in Table 1. The criteria for choosing these values has simply been based on a trial and error strategy.
We have tried to eliminate the macroscopic oscillations while keeping cb and csc as small as possible so as to depart as little
as possible from the original non-stabilized problem. Note that owing to the scalings chosen for the subgrid viscosity (2.24)
and the non-linear shock capturing viscosity (3.5), the coefficients cb and csc scale like the advection velocity.

As a first introductory result we show in Fig. 15 the effect of our stabilization strategy by comparing the Galerkin solu-
tion and the stabilized one. We show the isolines of the Euclidean norm of the velocity at time t = 0.5 and Re = 100,000.
The Galerkin solution is in the left panel and the stabilized one is in the right panel. It is clear that our stabilization strategy
removes the spurious oscillations plaguing the Galerkin solution and the stabilized solution has the expected qualitative
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Fig. 14. Coarse mesh TH around the airfoil (left) and near its leading edge (right).

Table 1
Values of the stabilizing coefficients cb and csc used in the simulations

Re

100,000 500,000 1,000,000

cb 0.2 0.2 0.25
csc 20 20 30



Fig. 15. Isovalues of the Euclidean norm of the velocity at t = 0.5, Re = 100,000. Left: Galerkin solution. Right: stabilized solution.
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behavior. For the sake of brevity, we do not show more comparisons between stabilized and non-stabilized solutions at
higher Reynolds numbers or later times since the non-stabilized solutions are of an increasingly worse quality.

5.2. Flow at Re = 100,000

We show in this section computations done at Re = 100,000. The choice for this particular first Reynolds number is
based on the fact that the boundary layer of the 3D flow starts to become turbulent at slightly higher Reynolds numbers
(200,000 6 Re 6 300,000). The flow is laminar at Re = 100,000.

Henceforth we compare our results with steady-state solutions computed using the Xfoil software, see [6]. The solution
method implemented in Xfoil couples the inviscid potential flow theory with a model of turbulent boundary layer. We
have selected this software since it is easily available and the models it uses are generally believed to fit well the zero inci-
dence situation in the range of Reynolds numbers considered in this work. As described in [6], Xfoil uses the en method to
determine the position of the transition point. This method is reasonable as long as the 2D Tollmien–Schlichting instability
is the principal mechanism that leads to transition. This is an acceptable hypothesis for the airfoil problem in a free stream
configuration with very low disturbance levels. The exponent n is the logarithm of the maximum amplification ratio of the
most amplified frequency. This coefficient reaches the critical value ncrit at the laminar–turbulent transition. The value of
ncrit depends on the level of disturbance of the experiment: for instance, in a clean wind tunnel ncrit 2 [10,12], while in a
dirty one ncrit 2 [4, 8]. A value commonly used in the literature is ncrit = 9 and we picked this value for our comparisons.

We show in Fig. 16 the pressure coefficient cp at time t = 5 on the upper and lower surfaces of the NACA0012 airfoil
(cp ¼ ðP � P1Þ= 1

2
qV 2
1, with q = 1, P1 = 0). The reference (symmetric) solution given by the Xfoil code is the solid line

with markers. The results from the subgrid stabilized projection method are shown in the left panel. The results obtained by
means of the P1 and P2 post-processing technique are shown in the middle and right panels, respectively. We observe that
the non-post-processed pressure field differs noticeably from the reference solution. Both the P1 and P2 post-processed
pressure fields seem to match more accurately the reference solution.

To explain the origin of the non-symmetric pressure profiles observed in Fig. 16, we show in Fig. 17 snapshots of the P2

post-processed pressure coefficient at times t = 0.5,1.0, 1.5,2.0, 2.5,3.0, 3.5,4.0, and 4.5. Oscillations starting from the lead-
ing-edge and traveling down to the trailing-edge are clearly visible. These oscillations are induced by vortices that have
been generated at the leading-edge and are transported downstream. The symmetry of the flow is almost perfectly pre-
served until the vortices reach the trailing-edge, then the vortices trigger the von Karman instability. The vertical symmetry
is progressively lost as the von Karman wake develops. This behavior is strongly related to the two-dimensional character
of our simulation. In a hypothetical three-dimensional simulation we would not have observed a von Karman wake at
Re = 100,000 because a vortex instability would have broken the two-dimensional vortices into smaller structures with
spanwise features.

The vorticity fields at times t = 0.5, 1.0,1.5, 2.0,2.5,3.0, 3.5,4.0, 4.5, and 5.0 are shown in Fig. 18.
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Fig. 16. cp profiles on upper and lower sides of NACA0012 airfoil at zero incidence, Re = 100,000, t = 5.0. Left: non-post-processed pressure. Center:
P1 post-processing. Right: P2 post-processing. Curve with markers is Xfoil solution.
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Fig. 17. From left to right and top to bottom: P2 post-processed pressure coefficient at t = 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0, and 4.5, Re = 100,000.
The curve with markers is the Xfoil reference solution.

Fig. 18. From left to right and top to bottom: vorticity field at t = 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5, and 5.0, Re = 100,000.
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5.3. Flow at Re = 500,000

We now simulate the flow around the NACA0012 airfoil at Re = 500,000 keeping the incidence angle to be zero.
Contrary to the Re = 100,000 configuration, the flow near the airfoil does not tend to a quasi-steady regime over its

entire surface. The reference numerical solution obtained by Xfoil predicts the laminar–turbulent transition point at
79% of the chord from the leading-edge. Our simulation yields an unsteady solution as can be seen in Fig. 19 where we
show snapshots of the P2 post-processed pressure coefficient. After a transient time period lasting from t = 0 to t = 3, dur-
ing which vortices generated at the leading-edge at t = 0 are advected downstream, we observe pressure oscillations occur-
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Fig. 19. From left to right and top to bottom: P2 post-processed pressure coefficient at t = 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0, and 4.5, Re = 500,000.
The curve with markers is the Xfoil reference solution.
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Fig. 20. cp profiles on upper and lower sides of NACA0012 airfoil at zero incidence, Re = 500,000, t = 5.0. Left: non-post-processed pressure. Center:
P1 post-processing. Right: P2 post-processing. Curve with markers is Xfoil solution.
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ring in close proximity to the transition point predicted by Xfoil. We conjecture that these oscillations are the manifes-
tation of the Tollmien–Schlichting instability [24] occurring in the viscous boundary layer, but since there are not many
degrees of freedom in the boundary layer we cannot claim it with certainty. Nevertheless, it is extremely satisfactory to
observe that our stabilized simulation predicts quite well the position of the transition point.

We show in Fig. 20 the distribution of the pressure coefficient at t = 5. The non-post-processed pressure is shown in the
left panel, while the post-processed pressure results with P1 and P2 interpolations are shown in the center and right panels,
respectively. The two solutions with linear approximation show a comparable level of mismatch when compared with the
Xfoil results, the non-post-processed pressure being slightly better than the post-processed one. The P2 post-processed
pressure profile, instead, better agrees with that from Xfoil. All these results are consistent with the convergence tests
reported in Section 4.5.2.

Snapshots of the vorticity field are shown in Fig. 21. Once the small vortices generated at the transition point reach the
trailing-edge, they alternatively leave the upper side and the lower side of the airfoil. The wake thus created is composed of
small alternating vortices interacting according to the standard inverse cascade scenario [17]: in two-dimensional flows, the
transfer of energy goes from the smaller scales to the larger ones, preventing the small scales from surviving for long
periods.



Fig. 21. From left to right and top to bottom: vorticity field at t = 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5, and 5.0, Re = 500,000.
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5.4. Flow at Re = 1,000,000

We now simulate the flow around the NACA0012 airfoil at Re = 1,000,000 keeping the zero incidence configuration.
The behavior of the flow at Re = 1,000,000 is qualitatively similar to that at Re = 500,000, the main difference being that
the laminar–turbulent transition point predicted by Xfoil is now at 69% of the chord from the leading-edge.

We show in Fig. 22 snapshots of the P2 post-processed pressure coefficient. We observe a transient time period between
t = 0 and t = 2.5. During this transient, the vortices that are generated at the leading-edge at the initial time are advected
downstream and eventually shed in the wake. After the transient period, we observe pressure oscillations occurring in close
proximity to the transition point predicted by Xfoil. Like the simulation at Re = 500,000, we think that these oscillations
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Fig. 22. From left to right and top to bottom: P2 post-processed pressure coefficient at t = 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0, and 4.5, Re = 1,000,000.
The curve with markers is the Xfoil reference solution.
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are the manifestation of the Tollmien–Schlichting instability [24] occurring in the viscous boundary layer, but once again
we cannot make a definitive claim in this respect since the number of degrees of freedom in the boundary layer is small.
Nevertheless, considering the extremely high Reynolds number we are working with, it is satisfactory to observe that the
simulation accurately predicts the position of the transition point.

We compare in Fig. 23 the non-post-processed and the post-processed pressure fields at t = 5. We observe again that the
P2 post-processed pressure field is that which matches the most accurately the Xfoil reference solution.

We report in Fig. 24 snapshots of the vorticity field at times t = 0.5,1.0, 1.5,2.0, 2.5,3.0, 3.5,4.0, 4.5, and 5.0.

5.5. Concluding remarks

When carefully looking at Figs. 20 and 23, we observe residual oscillations of the pressure coefficient in the fore part of
the airfoil. Since these oscillations have no counterpart in the calculation done at Re = 100,000, see Fig. 16, we are led to
conclude that the mesh we have used is barely fine enough to fully resolve the boundary layer in the leading edge region
(where it is the finest) at Re = 500,000 and Re = 1,000,000. These oscillations could have been entirely eliminated by
slightly increasing the values of the coefficients cb and csc, but we did not play this game.

Nevertheless, despite the residual oscillations, the present simulations are very satisfactory when compared to the
Xfoil averaged solutions.

We finish by showing in Fig. 25 the pressure profiles at t = 5 for Re = 300,000, Re = 500,000, and Re = 1,000,000. This
figure summarizes quite well the content of the paper. The fact that the method is able to compute accurately the laminar–
turbulent transition point at Re = 300,000, Re = 500,000 and Re = 1,000,000 on the same grid proves that the stabilizing
terms do exactly what they are meant for: that is, they are strong enough to remove the spurious oscillations while being
small enough not to overwhelm the physical viscosity.
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Fig. 23. cp profiles on upper and lower sides of NACA0012 airfoil at zero incidence, Re = 1,000,000, t = 5.0. Left: non-post-processed pressure. Center:
P1 post-processing. Right: P2 post-processing. Curve with markers is Xfoil solution.

Fig. 24. From left to right and top to bottom: vorticity field at t = 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5, and 5.0, Re = 1,000,000.
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Fig. 25. Position of the transition point for Re = 300,000, Re = 500,000, and Re = 1,000,000 at t = 5.
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(1969) 377–385.
[26] R. Temam, in: Navier–Stokes Equations, Studies in Mathematics and its Applications, vol. 2, North-Holland, 1977.
[27] L.J.P. Timmermans, P.D. Minev, F.N. van de Vosse, An approximate projection scheme for incompressible flow using spectral elements, Int. J.

Numer. Methods Fluids 22 (1996) 673–688.
[28] K. Yosida, in: Functional Analysis, Classics in Mathematics, Springer-Verlag, Berlin, Germany, 1995, Reprint of the sixth (1980) edition.


	Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers
	Introduction
	Basic concepts of the subgrid stabilization method
	Abstract setting
	Abstract discrete setting
	A singular perturbation result
	Particular instances of two-level settings
	Two-level {{\open{P}}}_{\rm 1} interpolation
	Two-level {{\open{P}}}_{\rm 2} interpolation
	The subgrid viscosity bilinear form bh


	Subgrid stabilized solution of 2D advection equation
	Smooth initial data
	Numerical results

	Discontinuous initial data
	Numerical results


	Subgrid stabilized incremental projection method
	Time-dependent incompressible Navier-Stokes equations
	Second-order BDF incremental projection method
	Weak formulation and spatial discretization
	Post-processing procedure
	Convergence tests
	Convergence test for the subgrid stabilized projection method
	Convergence test for the post-processing technique


	Numerical results on NACA0012 at zero incidence
	The setting
	Flow at Re=100,000
	Flow at Re=500,000
	Flow at Re=1,000,000
	Concluding remarks

	References


