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HIGH-ORDER ADAPTIVE TIME STEPPING FOR THE
INCOMPRESSIBLE NAVIER--STOKES EQUATIONS\ast 

JEAN-LUC GUERMOND\dagger AND PETER MINEV\ddagger 

Abstract. In this paper we develop a high-order time stepping technique for the incompressible
Navier--Stokes equations. The method is based on an artificial compressibility perturbation made
high order by using a Taylor series technique. The method is suitable for time step control. It is
unconditionally stable in the case of the unsteady Stokes equations and conditionally stable for the
full Navier--Stokes equations. The numerical results presented in the paper suggest that the stability
condition in the second case is of CFL type; i.e., the time step should be of the order of the ratio
of the meshsize and the magnitude of the velocity. In principle, the technique can be developed to
any order in time. We illustrate the idea by giving the third-order version of the methodology. We
numerically illustrate the third-order convergence rate of the method on a manufactured solution.
The scheme converges with time steps randomly chosen at each time level as the size of the average
time step decreases. We also demonstrate the efficiency of a simple time step control on a realistic
incompressible flow in 2D.
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1. Introduction. In the literature dedicated to approximations of differential-
algebraic equations (DAEs) there are two major approaches used to avoid the simul-
taneous solution of the discretized ODE system and the discrete algebraic constraint.
The first one consists of enforcing the constraint by projecting a consistently produced
approximation of the solution of the differential equations onto the manifold defined
by the constraint (see, for example, Hairer and Wanner [12, sect. VII.4]). This class of
methods is known in the computational fluid dynamics literature as projection meth-
ods, the most famous instance being the first-order, nonincremental technique known
as the Chorin--Temam method, which appeared in the late 1960s. Unfortunately, all
subsequent attempts to increase the order of the method beyond second order in time
have been unsuccessful so far, due to the fact that the projection operator incorpo-
rates some boundary conditions on the pressure that must be extrapolated in time.
All attempts for higher-than-second-order extrapolations known so far compromise
the stability of the method (see Guermond, Minev, and Shen [11] for an extended dis-
cussion on this issue). The second approach consists of regularizing the constraint by
adding a properly chosen perturbation (see, for example, Baumgarte [3]). In the com-
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putational fluid dynamics literature this regularization technique has been proposed
in two variants. The incompressibility constraint can be regularized as

(1.1) \epsilon p+\nabla \cdot u = 0,

yielding the so-called penalty method (see, for example, Bercovier and Engelman [4]),
or, as proposed in Vladimirova, Kuznetsov, and Yanenko [25], Yanenko [27], Temam
[24], Ladyzhenskaya [14], Shen [22], it can be regularized as follows:

(1.2) \epsilon \partial tp+\nabla \cdot u = 0.

In (1.1), \epsilon is a small positive number that scales like a time over the square of a length,
and in (1.2), \epsilon is a small positive number that scales like the inverse of the square
of a velocity (say the ``sound speed""). The main advantage of the perturbation (1.2)
over (1.1) is that the linear system for u that is obtained after substituting p in the
discretization of the momentum equation can have a condition number that is signif-
icantly smaller than when using (1.1). For example, using \epsilon \sim \tau /\lambda , where \tau is the
time step and \lambda is a normalizing parameter having the appropriate units (the square
of a reference length scale for (1.1) and the square of a velocity times a reference time
scale for (1.2)), one obtains in both cases a method that is \scrO (\tau ) accurate. But the
algebraic system for u resulting from the space discretization of the penalty equation
(1.1) gives a condition number of order \scrO (h - 2), where h is the meshsize, whereas the
linear system resulting from the space discretization of the artificial compressibility
equation (1.2) gives a condition number that is of order \scrO (\tau h - 2), which is the typical
condition number that one obtains when approximating the heat equation (see Guer-
mond and Minev [8] for more details). These considerations demonstrate also that
any attempt to increase the order of the perturbation in (1.1) or (1.2) by choosing,
for example, \epsilon \sim \tau k/\lambda , with k > 1, would give a condition number that is of order
\scrO (\tau 1 - kh - 2), which would make the linear system difficult to solve. In [8] we proposed
a technique to construct time discretizations of any order in time that is based on
the perturbation (1.2) and requires only the solution of optimally conditioned linear
systems. It employs the defect-correction approach to reduce both the order of the
perturbation and the time-discretization error. As proven in [8], each substep in this
algorithm leads to a decrease in the overall error by one order in \tau . A procedure
for reducing the perturbation, also based on (1.2), has been proposed for linear and
nonlinear DAEs by Asher and Lin [1, 2], and a particular adaptation of this idea to
the incompressible Navier--Stokes equations has been proposed by Lin [16]. But, un-
like our approach, it uses an iterative penalty method, essentially an implicit version
of the augmented Lagrangian iteration, with the overall accuracy not exceeding first
order in time. Moreover, the parameter \epsilon that is used in [16] to obtain stability yields
linear systems with condition numbers of order \scrO (h - 2) or higher.

The method proposed in [8] has been further extended in [9] so as to avoid the
appearance of the grad-div operator in the linear system resulting from the discretiza-
tion of the momentum equations. In [8, 9], we demonstrated the accuracy of the
so-constructed schemes using a third-order variant. To our knowledge, this is the first
noniterative scheme (i.e., not based on Uzawa or augmented Lagrangian iterations)
that can achieve higher-than-second-order accuracy in time on the velocity in the
H1-norm and on pressure in the L2-norm. An additional advantage of this scheme
is that it does not involve an elliptic problem for the pressure that has a condition
number scaling like O(h - 2); the method requires instead solving a set of parabolic
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problems for the velocity with condition numbers scaling like O(\tau h - 2), which is sig-
nificantly better than O(h - 2). This may turn out to be important for the parallel
implementation of these schemes.

Unfortunately, all the schemes proposed in [8, 9] with a convergence rate in time
higher-than-first are not suitable for adaptive time stepping and time step control
since they involve more than two time levels. The objective of the present paper is
to present an alternative version of these schemes that is high order in time (second
order and higher) and involves only two time levels, which makes it suitable for time
step control. The new idea consists of using some variations of the so-called Taylor
method for time discretization modified so as to avoid the explicit differentiation of
the nonlinear terms. To the best of our knowledge, the proposed approach is new and
allows one to construct schemes of any order in time using only two time levels.

The paper is organized as follows. In section 2 we introduce the problem and
establish the notation used in the paper. We also recall the third-order algorithm
proposed in [8] for completeness. The main contribution of the paper is in section
3, where we introduce the novel high-order two-level technique mentioned above; see
(3.9)--(3.11) or (3.12)--(3.14). We discuss in section 4 some linear algebra details
that facilitate the implementation of the method. The performance of the proposed
method is illustrated in section 5 using the marker-and-cell (MAC) technique on
uniform Cartesian grids and mixed \BbbP 2/\BbbP 1 finite elements on nonuniform triangular
grids. We confirm therein that the proposed method is indeed third-order accurate in
time and performs well with adaptive time stepping. Concluding remarks are reported
in section 6.

2. Preliminaries. In this section we introduce the model problem along with
the notation that is used in the paper. We also recall the third-order algorithm
proposed in [8] since it is our starting point.

2.1. The model problem. The incompressible Navier--Stokes equations can be
recast in the following abstract operator form:

(2.1) \partial tu+N(u) +Au - B\sansT p = f(t), Bu = 0, u| t=0 = v0,

where A : V \rightarrow V\prime and B : V \rightarrow M are linear operators, and N(u) is a nonlinear
operator. Here V \lhook \rightarrow H \equiv H\prime \lhook \rightarrow V\prime is a Gelfand triple and M \equiv M\prime is a Hilbert
space. f is some source term and v0 is the initial data. The boundary conditions
are encoded in the spaces V and M and in the definitions of the operators A and
B. Also, B\sansT denotes the adjoint of B. We assume that the above problem makes
sense and there is a unique solution, say u \in L2((0,\infty );V), N(u) \in L2((0,\infty );V\prime ),
\partial tu \in L2((0,\infty );V\prime ), and p \in L2((0,\infty );M). It is not the purpose of this paper
to discuss the validity of these assumptions. One can think of (2.1) either as a
time-dependent partial differential equation (PDE), in which case V, H, and M are
functional spaces (Sobolev or otherwise), or as a nonlinear system of ODEs (possibly
resulting from the application of the method of lines to a time-dependent PDE), in
which case V, H, and M are finite-dimensional vectors spaces. Although the above
setting is quite general and may model many physical situations, we henceforth refer
to (2.1) as the Navier--Stokes system, and we refer to u and p as the velocity and the
pressure, respectively.

The problem we investigate in the present paper consists of approximating (2.1)
in time so that the velocity and the pressure are uncoupled and the resulting scheme
is high-order accurate with respect to \tau and produces reasonable condition numbers
when approximated in space.
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2.2. The multistep artificial compressibility method. We now recall the
third-order method proposed in [8]. Let \tau be some time step. Let tn \geq 0 be the current
time, and let tn+1 = tn+ \tau . We denote by fn+1, fn, . . . , the quantities f(tn+1), f(tn),
. . . , if f is continuous in time, or some approximations thereof otherwise. Let \lambda 
be a normalizing parameter independent of \tau and having the unit of the square of a
velocity times a reference time scale. It is shown in [8] that the sequences (un

0 , p
n
0 )n\geq 0,

(un
0 + \tau un

1 , p
n
0 + \tau pn1 )n\geq 1, (u

n
0 + \tau un

1 + \tau 2un
2 , p

n
0 + \tau pn1 + \tau 2pn2 )n\geq 2 are, respectively,

first-order, second-order, and third-order approximations in time of the solution to
(2.1), with

(2.2)

\left\{     
un+1
0  - un

0

\tau 
+Aun+1

0 + \lambda B\sansT Bun+1
0  - B\sansT pn0 = fn+1  - N(un

0 ),

pn+1
0 = pn0  - \lambda Bun+1

0 , dun+1
0 =

un+1
0  - un

0

\tau 
, dpn+1

0 =
pn+1
0  - pn0

\tau 
,

(2.3)

\left\{                   

nln1 = N(un
0 + \tau un - 1

1 ), d2un+1
0 =

dun+1
0  - dun

0

\tau 
,

un
1  - un - 1

1

\tau 
+Aun

1 + \lambda B\sansT Bun
1  - B\sansT (pn - 1

1 + dpn0 )

=  - 1

2
d2un+1

0  - nln1  - nln0
\tau 

,

pn1 = pn - 1
1 + dpn0  - \lambda Bun

1 , dun
1 =

un
1  - un - 1

1

\tau 
, dpn1 =

pn1  - pn - 1
1

\tau 
,

(2.4)

\left\{                           

nln - 1
2 = N(un - 1

0 + \tau un - 1
1 + \tau 2un - 2

2 ),

d2un
1 =

dun
1  - dun - 1

1

\tau 
, d3un+1

0 =
d2un+1

0  - d2un
0

\tau 
,

un - 1
2  - un - 2

2

\tau 
+Aun - 1

2 + \lambda B\sansT Bun - 1
2  - \lambda B\sansT (pn - 2

2 + dpn - 1
1 ),

=  - 1

2
d2un

1 +
1

6
d3un+1

0  - nln - 1
2  - nln - 1

1

\tau 2
,

pn - 1
2 = pn - 2

2 + dpn - 1
1  - \lambda Bun - 1

2 ,

un - 1 = un - 1
0 + \tau un - 1

1 + \tau 2un - 1
2 , pn - 1 = pn - 1

0 + \tau pn - 1
1 + \tau 2pn - 1

2 .

The basic stability and accuracy of this scheme have been established in Lemma 5.2
in [8]; more precisely, the method (2.2)--(2.4) is third-order accurate in time and is
unconditionally stable if N(u) \equiv 0. The numerical results reported in Table 6.2 in [8]
also suggest that the method is stable for reasonably large Courant numbers.

The above method achieves high-order accuracy in time by relying on finite differ-
ence approximations of the time derivatives in the Taylor expansions of the solution
around the previous time level. Therefore, the algorithm is intrinsically a multistep
method, which makes it unsuitable for time step adaption. In fact, all the efforts
we have made since we published [8] to develop a robust time step control algorithm
for this method have failed. The main objective of this paper is to overcome this
difficulty.

3. The Taylor series technique. In this section, we revisit the above algo-
rithm (2.2)--(2.4), but instead of approximating the various time derivatives by using
finite differences (which makes the algorithm a multistep method), we are going to
solve separate evolutionary equations for each of the necessary derivatives.
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3.1. Taylor series method. In this section we use the Taylor series method to
develop a third-order two-step algorithm for the approximation in time of (2.1). The
method can be extended to any order in time.

Methods for approximating the solutions of ODEs, or DAEs, based on truncating
the Taylor series expansion of the solution are not widely used in the literature, as
compared to, for example, the Runge--Kutta (RK) methods. Important contributions
to the development of methods based on Taylor series can be found in Corliss and
Chang [6], Pryce [21], Nedialkov and Pryce [18], Nedialkov and Pryce [19], and Tan,
Nedialkov, and Pryce [23]. The idea of the Taylor series method for ODEs is to first
formulate a recursive system of ODEs satisfied by the solution of the original ODE
and its derivatives to a given order, then approximate this system with a method of
appropriate accuracy, and finally recover high-order accuracy by using Taylor series
expansions.

Let us apply the Taylor series strategy to the system (2.1) up to the third order.
How to extend the method to any order will be clear at the end of this section,
and we leave further extensions to fourth and higher orders to the interested reader.
Denoting by ul, pl, fl the lth-order partial derivative with respect to t of u, p, and f ,
i.e., ul := \partial l

tu, pl := \partial l
tp, fl := \partial l

tf , for l \in \{ 0, 1, 2\} , we have

\partial tu2 + \partial ttN(u0) +Au2  - B\sansT p2 = f2(t), Bu2 = 0,(3.1)

\partial tu1 + \partial tN(u0) +Au1  - B\sansT p1 = f1(t), Bu1 = 0,(3.2)

\partial tu0 +N(u0) +Au0  - B\sansT p0 = f0(t), Bu0 = 0.(3.3)

Furthermore, if we discretize the equation for the second derivative (3.1) by a first-
order scheme, i.e., approximating \partial tu2 by a first divided difference, then the result
can be used to approximate the derivative \partial tu1 by the following second-order accurate
Taylor expansion:

(3.4)
\partial un+1

1

\partial t
=

un+1
1  - un

1

\tau 
+
\tau 

2

\partial un+1
2

\partial t
+O(\tau 2) =

un+1
1  - un

1

\tau 
+
\tau 

2

un+1
2  - un

2

\tau 
+O(\tau 2).

This approximation can in turn be used to approximate the first derivative of u0 using
the third-order Taylor expansion:

(3.5)
\partial un+1

0

\partial t
=

un+1
0  - un

0

\tau 
+

\tau 

2

\partial un+1
1

\partial t
 - \tau 2

6

\partial un+1
2

\partial t
+O(\tau 3)

=
un+1
0  - un

0

\tau 
+

\tau 

2

\biggl( 
un+1
1  - un

1

\tau 
+

\tau 

2

un+1
2  - un

2

\tau 

\biggr) 
 - \tau 2

6

un+1
2  - un

2

\tau 
+O(\tau 3)

=
un+1
0  - un

0

\tau 
+

\tau 

2

un+1
1  - un

1

\tau 
+

\tau 2

12

un+1
2  - un

2

\tau 
+O(\tau 3).

The derivatives of the nonlinear terms in (3.1)--(3.2) can be computed directly
by evaluating exactly the Jacobian and Hessian of N. Alternatively, these derivatives
can be approximated by using finite differences of the corresponding order, and, since
this approach is more universal, we adopt it here. We also choose to discretize the
nonlinear terms explicitly in order to avoid solving nonlinear algebraic problems.
Notice, however, that using an implicit discretization of the nonlinear term is perfectly
admissible if desired, and we leave these possible extensions to the interested reader.
The resulting third-order Taylor series scheme for the incompressible Navier--Stokes
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equations can then be written as follows:

(3.6)
un+1
2  - un

2

\tau 
+

N(un
0 + 2\tau un

1 + 2\tau 2un
2 ) - 2N(un

0 + \tau un
1 + \tau 2

2 un
2 ) +N(un

0 )

\tau 2

+Aun+1
2  - B\sansT pn+1

2 = fn+1
2 , Bun+1

2 = 0,

(3.7)

un+1
1  - un

1

\tau 
+

\tau 

2

un+1
2  - un

2

\tau 
+

N(un
0 + 2\tau un

1 + 2\tau 2un
2 ) - N(un

0 )

2\tau 

+Aun+1
1  - B\sansT pn+1

1 = fn+1
1 , Bun+1

1 = 0,

(3.8)

un+1
0  - un

0

\tau 
+

\tau 

2

un+1
1  - un

1

\tau 
+

\tau 2

12

un+1
2  - un

2

\tau 
+N

\biggl( 
un
0 + \tau un

1 +
\tau 2

2
un
2

\biggr) 
+Aun+1

0  - B\sansT pn+1
0 = fn+1

0 , Bun+1
0 = 0.

The above algorithm has to be properly initialized since the original problem
provides no initial conditions on the time derivatives of the solution. We propose an
algorithm for the initialization of (3.6)--(3.8) in section 3.3.

3.2. Taylor series method with bootstrapping. Now we attack the real
issue under investigation in this paper, which consists of approximating properly the
constraints Bun+1

0 = 0, Bun+1
1 = 0, Bun+1

2 = 0. This will be done by using the
bootstrapping technique introduced in Guermond and Minev [8].

We first replace Bun+1
2 = 0 by \epsilon \partial tp

n+1
2 +Bun+1

2 = 0, which is an \scrO (\epsilon ) perturba-
tion of the exact constraint. Then, setting \epsilon := \tau /\lambda and using first-order differences to
approximate \partial tp

n+1
2 , we replace the constraint Bun+1

2 = 0 by pn+1
2 = pn2  - \lambda Bun+1

2 .
Notice that under appropriate smoothness assumptions, we have Bun+1

2 = \scrO (\tau ).
Hence, the sequence (un

2 , p
n
2 )n\geq 0 is a first-order approximation in \tau of (\partial ttu, \partial ttp).

This statement is proved in Theorem 4.3 in Guermond and Minev [8] without the
nonlinear term (and with r \equiv 0 therein); it is also proved in Theorem 3.1 in Shen [22].
In conclusion, we can replace (3.6) by

(3.9)
un+1
2  - un

2

\tau 
+

N(un
0 + 2\tau un

1 + 2\tau 2un
2 ) - 2N(un

0 + \tau un
1 + \tau 2

2 un
2 ) +N(un

0 )

\tau 2

+Aun+1
2  - B\sansT pn+1

2 = fn+1
2 , pn+1

2 = pn2  - \lambda Bun+1
2 .

We now use the bootstrapping technique to replace the constraint Bun+1
1 = 0 in

(3.7) by \epsilon (\partial tp
n+1
1  - pn+1

2 ) + Bun+1
1 = 0. Notice that now we have Bun+1

1 = \scrO (\epsilon \tau )
by virtue of Theorem 4.3 in Guermond and Minev [8] (with \partial tr \equiv p2), since we
have established above that the sequence (pn2 )n\geq is an \scrO (\tau ) approximation of \partial tp1 =

\partial ttp. Replacing \partial tp
n+1
1 by the first-order approximation

pn+1
1  - pn

1

\tau and \epsilon by \tau /\lambda gives

pn+1
1 = pn1 + \tau pn+1

2  - \lambda Bun+1
1 , and now we have Bun+1

1 = \scrO (\tau 2) because
pn+1
1  - pn

1

\tau =

\partial tp
n+1
1 + \scrO (\tau ). Hence, the sequence (un

1 , p
n
1 )n\geq 0 is a second-order approximation in

\tau of (\partial tu, \partial tp). In conclusion, we can replace (3.7) by

(3.10)

un+1
1  - un

1

\tau 
+

\tau 

2

un+1
2  - un

2

\tau 
+

N(un
0 + 2\tau un

1 + 2\tau 2un
2 ) - N(un

0 )

2\tau 

+Aun+1
1  - B\sansT pn+1

1 = fn+1
1 , pn+1

1 = pn1 + \tau pn+1
2  - \lambda Bun+1

1 .
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Finally we replace Bun+1
0 = 0 in (3.8) by \epsilon (\partial tp

n+1
0  - pn+1

1 ) +Bun+1
0 = 0. Since

the sequence (pn1 )n\geq 0 is an \scrO (\tau 2) approximation of \partial tp0, by virtue of Theorem 4.3 in
[8] (with \partial tr \equiv p1), we infer that Bun+1

0 = \scrO (\epsilon \tau 2). Now, using the Taylor expansion
pn0 = pn+1

0  - \tau \partial pn+1
0 + 1

2\tau 
2\partial ttp

n+1
0 + \scrO (\tau 2), we replace \partial tp

n+1
0 by the second-order

approximation
pn+1
0  - pn

0

\tau + 1
2\tau p

n+1
2 . Then, using \epsilon := \tau /\lambda , the constraint Bun+1

0 = 0 is

replaced by pn+1
0 = pn0 + \tau pn+1

1  - 1
2\tau 

2pn+1
2  - \lambda Bun+1

0 . Now we have Bun+1
0 = \scrO (\tau 3)

because
pn+1
0  - pn

0

\tau + 1
2\tau p

n+1
2 = \partial tp

n+1
0 + \scrO (\tau 2). Hence, the sequence (un

1 , p
n
1 )n\geq 0 is a

third-order approximation in \tau of (u, p). Hence we replace (3.8) by

(3.11)

un+1
0  - un

0

\tau 
+

\tau 

2

un+1
1  - un

1

\tau 
+

\tau 2

12

un+1
2  - un

2

\tau 
+N

\biggl( 
un
0 + \tau un

1 +
\tau 2

2
un
2

\biggr) 
+Aun+1

0  - B\sansT pn+1
0 = fn+1

0 , pn+1
0 = pn0 + \tau pn+1

1  - \tau 2

2
pn+1
2  - \lambda Bun+1

0 .

Notice that the velocity and the pressure are indeed uncoupled in (3.9)--(3.11).
Indeed, using that pn+1

2 = pn2  - \lambda Bun+1
2 , pn+1

1 = pn1 + \tau pn+1
2  - \lambda Bun+1

1 , and pn+1
0 =

pn0 + \tau pn+1
1  - \tau 2

2 pn+1
2  - \lambda Bun+1

0 , one observes that the momentum equations in (3.9)--
(3.11) can be solved as follows:

(3.12)
un+1
2

\tau 
+Aun+1

2 + \lambda B\sansT Bun+1
2 =

un
2

\tau 
+ fn+1

2 +B\sansT pn2

 - 
N(un

0 + 2\tau un
1 + 2\tau 2un

2 ) - 2N(un
0 + \tau un

1 + \tau 2

2 un
2 ) +N(un

0 )

\tau 2
,

(3.13)
un+1
1

\tau 
+Aun+1

1 + \lambda B\sansT Bun+1
1 =

un
1

\tau 
+ fn+1

1 +B\sansT (pn1 + \tau pn+1
2 )

 - \tau 

2

un+1
2  - un

2

\tau 
 - N(un

0 + 2\tau un
1 + 2\tau 2un

2 ) - N(un
0 )

2\tau 
,

(3.14)
un+1
0

\tau 
+Aun+1

0 + \lambda B\sansT Bun+1
0 =

un
0

\tau 
+ fn+1

0 +B\sansT 

\biggl( 
pn0 + \tau pn+1

1  - \tau 2

2
pn+1
2

\biggr) 
 - \tau 

2

un+1
1  - un

1

\tau 
 - \tau 2

12

un+1
2  - un

2

\tau 
 - N

\biggl( 
un
0 + \tau un

1 +
\tau 2

2
un
2

\biggr) 
.

The pressure is updated by setting pn+1
2 = pn2 - \lambda Bun+1

2 , pn+1
1 = pn1+\tau pn+1

2  - \lambda Bun+1
1 ,

and pn+1
0 = pn0 + \tau pn+1

1  - \tau 2

2 pn+1
2  - \lambda Bun+1

0 .
The two key arguments to establish stability and convergence of the algorithm

(3.9)--(3.11) when N(u) \equiv 0 are Theorem 4.3 in Guermond and Minev [8] and Propo-
sition 5.1 in Shen [22]. That (un

2 , p
n
2 )n\geq 0 is a first-order approximation in \tau of

(\partial ttu, \partial ttp) is a direct consequence of [22, Prop. 5.1]. After noticing that (un
1 , p

n
1 )n\geq 0

depends linearly on the sequence (un
2 , p

n
2 )n\geq 0, one proves that (u

n
1 , p

n
1 )n\geq 0 is a second-

order approximation in \tau of (\partial tu, \partial tp) by invoking [8, Thm. 4.3] combined with [22,
Prop. 5.1]. Finally, one proves that (un

0 , p
n
0 )n\geq 0 is a third-order approximation in

\tau of (u, p) by invoking [8, Thm. 4.3] combined with [22, Prop. 5.1], and using that
(un

0 , p
n
0 )n\geq 0 depends linearly on the sequences (un

1 , p
n
1 )n\geq 0 and (un

2 , p
n
2 )n\geq 0. In conclu-

sion, the algorithm (3.9)--(3.11) is unconditionally stable if N(u) \equiv 0 and third-order
accurate. The numerical results presented below suggest that the method is stable
with reasonably large Courant numbers in case of the Navier--Stokes equations.
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3.3. Initialization. As mentioned above, the initial values of the derivatives of
u and p are unknown, so the method (3.9)--(3.11) has to be started appropriately by
using a lower-order scheme. Note that in order to maintain the overall accuracy of the
scheme we need initial values for (u2, p2), (u1, p1), and (u0, p0) that are first, second,
and third-order accurate, respectively.

We propose here one possibility to generate the full set of data required at the
time t = \tau by combining the Richardson extrapolation technique with the first-order
artificial compressibility scheme over the time interval (0, 2\tau ]. Since the original prob-
lem (2.1) does not contain an initial condition for p at the time t = 0, this quan-
tity has to be generated by using, for example, the pressure initialization proposed
in Guermond, Minev, and Shen [11] (see Hypothesis 3.1 and the subsequent com-
ments therein). Given the initial velocity v0 and the pressure at t = 0, say q0, let
us denote by (u1

\tau /3, p
1
\tau /3), (u

1
\tau /2, p

1
\tau /2), and (u1

\tau , p
1
\tau ) the solutions obtained at time

t = \tau by the first-order artificial compressibility scheme using, respectively, the time
steps \tau /3, \tau /2, and \tau . Similarly, let (u2

\tau /3, p
2
\tau /3), (u

2
\tau /2, p

2
\tau /2), and (u2

\tau , p
2
\tau ) be the

solutions obtained at time t = 2\tau . Next we generate third-order approximations
at \tau and 2\tau of (u, p), say (u1

R, p
1
R) and (u2

R, p
2
R), respectively, using the extrapo-

lation formula \phi k
R = 9

2\phi 
k
\tau /3  - 4\phi k

\tau /2 + 1
2\phi 

k
\tau , with \phi = u or \phi = p, and k = 1, 2.

These approximations can be used in turn to generate a first-order approximation
to the second derivative of u and p at t = \tau by means of a second difference i.e.,
\partial tt\phi (\tau ) = (\phi 2

R  - 2\phi 1
R + \phi (0))/\tau 2 + O(\tau ). Similarly, the first derivative at \tau can be

approximated by \partial t\phi (\tau ) = (\phi 2
R - \phi (0))/(2\tau )+O(\tau 2), and the value at t = \tau is simply

given by \phi (\tau ) = \phi 1
R + O(\tau 3). Of course there is no initialization problem if v0 = 0,

f(0) = 0, \partial tf(0) = 0, and \partial ttf(0) = 0.

Remark 3.1. It is well known that the inconsistency of the initial data with the
perturbed incompressibility constraint of the artificial compressibility method leads to
the appearance of spurious acoustic modes in the pressure that decrease the accuracy
of the approximation close to t = 0 (see Ohwada and Asinari [20], DeCaria, Layton,
and McLaughlin [7] for a detailed discussion on this issue). These acoustic modes
can be filtered using various correction techniques, and we again refer the reader to
Ohwada and Asinari [20] and DeCaria, Layton, and McLaughlin [7] for details on
the available options. In our opinion, the easiest and computationally least intrusive
among them is to use the so-called Robert--Asselin filter (see Williams [26], Hurl
et al. [13], Layton, Li, and Trenchea [15], and DeCaria, Layton, and McLaughlin
[7]). Essentially, this technique corrects a posteriori the results for the velocity and
pressure at each time level using second time differences of these quantities. Notice,
though, that none of these techniques is applied in the numerical tests reported at the
end of the paper in section 5. The results from our numerical tests are not filtered.

Remark 3.2. As usual for perturbation techniques, the method (3.9)--(3.11) yields
an end-of-step velocity that satisfies the incompressibility constraint up to an addi-
tional truncation error in time. This might be viewed as a defect by some readers
since it is claimed in the literature that a major advantage of projection methods is
that they yield an end-of-step velocity field that satisfies the divergence constraint
up to machine precision. However, the end-of-step velocity field contains an addi-
tional truncation error that is rarely mentioned in the literature: it does not solve the
discrete momentum balance equations and does not satisfy the proper boundary con-
dition. In addition, it satisfies ``exactly"" only the discrete incompressibility constraint
(i.e., this constraint already contains a spatial truncation error), and the resulting ap-
proximation to the velocity is not pointwise divergence-free. For a detailed discussion
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on this issue we refer the reader to the review on projection methods in Guermond,
Minev, and Shen [11].

4. Further splitting. We show in this section that the algorithm (3.9)--(3.11)
can be further simplified, and we give implementation details for mixed finite elements.

4.1. Abstract splitting. LetC\bigtriangleup : V \rightarrow V\prime be another bounded linear operator
such that 1

\tau I+A+ \lambda B\sansT B - C\bigtriangleup is a bijective operator for any \tau > 0, where I is the
identity operator. Then it has been shown in Guermond and Minev [9] that the
defect-correction technique can be further simplified by replacing Aun+1

2 by Aun+1
2  - 

C\bigtriangleup (un+1
2  - un

2 ) in (3.9), Aun+1
1 by Aun+1

1  - C\bigtriangleup (un+1
1  - un

1  - \tau un+1
2 ) in (3.10), and

Aun+1
0 by C\bigtriangleup (un+1

0  - un
0  - \tau un+1

1 + \tau 2

2 un+1
2 ) in (3.11). In summary the system

(3.12)--(3.14) can be replaced without loss of accuracy by

(4.1)

\biggl( 
1

\tau 
I+A+ \lambda B\sansT B - C\bigtriangleup 

\biggr) 
un+1
2 =

un
2

\tau 
+ fn+1

2 +C\bigtriangleup un
2 +B\sansT pn2

 - 
N(un

0 + 2\tau un
1 + 2\tau 2un

2 ) - 2N(un
0 + \tau un

1 + \tau 2

2 un
2 ) +N(un

0 )

\tau 2
,

(4.2)

\biggl( 
1

\tau 
I+A+ \lambda B\sansT B - C\bigtriangleup 

\biggr) 
un+1
1 =

un
1

\tau 
+ fn+1

1 +C\bigtriangleup (un
1  - \tau un+1

2 )

+B\sansT (pn1 + \tau pn+1
2 ) - \tau 

2

un+1
2  - un

2

\tau 
 - N(un

0 + 2\tau un
1 + 2\tau 2un

2 ) - N(un
0 )

2\tau 
,

(4.3) \biggl( 
1

\tau 
I+A+\lambda B\sansT B - C\bigtriangleup 

\biggr) 
un+1
0 =

un
0

\tau 
+fn+1

0 +C\bigtriangleup 
\biggl( 
un
0  - \tau un+1

1 +
\tau 2

2
un+1
2

\biggr) 
+B\sansT 

\biggl( 
pn0 +\tau pn+1

1  - \tau 2

2
pn+1
2

\biggr) 
 - \tau 

2

un+1
1  - un

1

\tau 
 - \tau 2

12

un+1
2  - un

2

\tau 
 - N

\biggl( 
un
0 +\tau un

1 +
\tau 2

2
un
2

\biggr) 
.

The heuristic reason for these modifications to be reasonable and give the same
properties as the original algorithm is that C\bigtriangleup (un+1

2  - un
2 ) introduces an \scrO (\tau ) pertur-

bation on u2, which is not a problem since the accuracy that is needed on u2 to achieve
the \scrO (\tau 3) accuracy on u0 is only \scrO (\tau ). Then C\bigtriangleup (un+1

1  - un
1  - \tau un+1

2 ) introduces
an \scrO (\tau 2) perturbation on u1, which again is not a problem since the accuracy that is

needed on u1 is only \scrO (\tau 2). Finally, C\bigtriangleup (un+1
0  - un

0  - \tau un+1
1 + \tau 2

2 un+1
2 ) introduces a

\scrO (\tau 3) perturbation on u0, which again is optimal since we expect the accuracy on u0

to be \scrO (\tau 3). We show in the next section that one can use the additional operator
C\bigtriangleup to simplify the solution process for the momentum equations in (3.9)--(3.11).

4.2. Splitting of the grad-div operator. Let us illustrate the technique in-
troduced in section 4.1 in the context of the Navier--Stokes equations in a bounded
domain \Omega \subset \BbbR d, d \in \{ 2, 3\} . Let us set Au :=  - 1

Re\Delta u, Bu := \nabla \cdot u, and B\sansT p :=  - \nabla p,
where all these operators are defined with the appropriate boundary conditions. Then,
once the pressure is eliminated from (3.9)--(3.11), one has to solve the linear systems
(3.12)--(3.14), each involving the operator 1

\tau I+A+\lambda B\sansT B. Notice that the (negative
of the) grad-div operator B\sansT B couples all the Cartesian components of the velocity,
which is not the case (a priori) of the operator 1

\tau I + A. Hence, we have uncoupled
the velocity and the pressure at the cost of coupling the Cartesian components of the
velocity. This coupling can be removed by a block-triangular splitting of the operator
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B\sansT B. Let \partial i be the partial derivative with respect to the ith Cartesian coordinate.
Let (u1, . . . , ud) be the Cartesian components of the field u : \Omega \rightarrow \BbbR d, and let us set

(4.4) (C\bigtriangleup u)i :=  - \lambda \partial i

\biggl( d\sum 
j=i+1

\partial juj

\biggr) 
\forall i \in \{ 1, . . . , d\} .

Then \lambda B\sansT B - C\bigtriangleup is a lower triangular operator in the sense that

(4.5) (\lambda B\sansT Bu - C\bigtriangleup u)i =  - \lambda \partial i

\biggl( i\sum 
j=1

\partial juj

\biggr) 
\forall i \in \{ 1, . . . , d\} .

That is to say, (\lambda B\sansT Bu - C\bigtriangleup u)1 =  - \lambda \partial 11u1, (\lambda B
\sansT Bu - C\bigtriangleup u)2 =  - \lambda (\partial 21u1+\partial 22u2),

and (\lambda B\sansT Bu - C\bigtriangleup u)3 =  - \lambda (\partial 31u1 + \partial 32u2 + \partial 33u3).
For instance, the solution of the linear system ( 1\tau I +A + \lambda B\sansT B  - C\bigtriangleup )u = f in

two dimensions with homogeneous Dirichlet conditions and a generic right-hand side
f can be obtained as follows. First we solve the scalar equation

1

\tau 
u1  - 

\biggl( 
1

Re
+ \lambda 

\biggr) 
\partial 11u1  - 

1

Re
\partial 22u1 = f1, u1| \partial \Omega = 0.

Then we solve the second scalar equation:

1

\tau 
u2  - 

\biggl( 
1

Re
+ \lambda 

\biggr) 
\partial 22u2  - 

1

Re
\partial 11u2 = f2 + \lambda \partial 21u1, u2| \partial \Omega = 0.

This splitting facilitates the solution of the system of momentum equations and
allows us to easily modify existing codes for the Navier--Stokes equations. Moreover,
our numerical experience (see Guermond and Minev [9] and section 5 below) shows
that the accuracy of the splitting scheme (4.1)--(4.3) is practically the same as the
fully coupled scheme (3.9)--(3.11). We finally refer the reader to Linke and Rebholz
[17], where different splittings with similar properties are proposed.

4.3. Finite elements implementation. When using mixed finite elements sat-
isfying the inf-sup condition to solve the Navier--Stokes equations, one must be careful
when eliminating the pressure in order to avoid possible locking at high Reynolds num-
bers or having to invert the pressure mass matrix. More precisely, let us denote by
\scrM the mass matrix for the velocity. Let \scrN be the mass matrix for the pressure, or
its lumped version, or any diagonal matrix with entries equal to the volume of the
support of the pressure shape functions. Let \scrA be the stiffness matrix associated
with the operator A. Similarly, we denote by \scrB the matrix associated with the diver-
gence operator B. Then \scrB \sansT is the matrix associated with the negative of the gradient
operator.

At every time step, the system (3.9)--(3.11) requires solving linear equations of
the form 1

\tau u + Au  - \lambda B\sansT p = f , p = q  - \lambda Bu, where f and q are given. Then the
matrix form of the first equation is ( 1\tau \scrM +\scrA )U  - \lambda \scrB \sansT P = F , and the matrix form of
the second equation is \scrN P = \scrN Q - \lambda \scrB U . Notice here that the exact matrix version
of p = q - \lambda Bu requires that \scrN be the pressure mass matrix. But this constraint can
be relaxed since, without loss of accuracy, instead of approximating \epsilon \partial tp +\nabla \cdot u = 0,
we could also approximate the perturbation \epsilon \partial tL(p) + \nabla \cdot u = 0, where L : M \rightarrow M
is any perturbation of the identity operator. Hence, as said above, instead of using
the mass matrix for the pressure, one does not lose the properties of the scheme by
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using either the lumped mass matrix or any diagonal matrix with entries equal to the
volume of the support of the pressure shape functions. In conclusion, one eliminates
the pressure in the velocity equation by using p = q  - \lambda \scrN  - 1\scrB U , and one obtains
( 1\tau \scrM + \scrA + \lambda \scrB \sansT \scrN  - 1\scrB )U = F + \lambda \scrB \sansT Q. We insist again that \scrN need not be the
consistent pressure mass matrix; actually, we recommend using either the lumped
mass matrix or any diagonal matrix appropriately scaled.

We finish this section by mentioning that, on special grids, it is possible to avoid
the pressure mass matrix altogether by simply approximating the operator  - \lambda \nabla \nabla \cdot 
with the bilinear form c(u,v) :=

\int 
\Omega 
\nabla \cdot u\nabla \cdot v dx as shown in Case et al. [5].

5. Numerical illustrations. In this section, we illustrate the performance of
the method proposed in the paper with the Navier--Stokes equations: Using the no-
tation of (2.1), from now on we use Au :=  - 1

Re\Delta u, Bu := \nabla \cdot u,  - B\sansT p := \nabla p,
and N(u) := u\cdot \nabla u. For homogeneous Dirichlet boundary conditions, we have V :=
H1

0(\Omega ), M := L2(\Omega )/\BbbR , where \Omega \subset \BbbR d is the fluid domain. First we confirm that
the convergence rate in time is indeed third order by using a manufactured solution.
Then we show that the method performs as expected when the time step is chosen
either randomly or adaptively. In all the computation reported below we take \lambda = 1.

5.1. Manufactured solutions. Using x = (x, y)\sansT in \BbbR 2, we consider here the
Navier--Stokes equations with the source term chosen so that the solution is given by

(5.1)

u(x, t) = (sin(x) sin(y + t), cos(x) cos(y + t))\sansT ,

p(x, t) = cos(x) sin(y + t) - 1

| \Omega | 

\int 
\Omega 

cos(x) sin(y + t)d\Omega .

The problem is solved in \Omega = (0, 1)\times (0, 1) over a time interval (0, T ]. We enforce
the Dirichlet conditions on the velocity. The initial condition for the velocity and
the pressure and their first and second partial derivatives in time are taken equal to
those of the exact solution. The purpose of this test is to estimate the convergence
rate in time of the proposed scheme. We do two series of tests. In the first series, the
spatial discretization is done by using the second-order MAC technique on a uniform
Cartesian grid, and we use the fully uncoupled scheme (4.1)--(4.3) with C\bigtriangleup defined in
(4.4). In the second series, the space approximation is done with mixed \BbbP 2/\BbbP 1 finite
elements on unstructured triangular meshes, and we use (3.12)--(3.14). In both cases
we denote by (w, q) the approximate solution.

We start with the MAC approximation and use a fixed grid composed of 200\times 200
cells. The simulations are run until T = 10 with various time steps. The time step is
kept constant for each simulation. We show in Figure 1 the L2-norm of the error on
the velocity, and the L2-norm of the error on the pressure and the (discrete) divergence
of the velocity at T = 10. All theses errors are estimated at T = 10. We also show the
maximum in time of the error on the velocity in the L2-norm, and the maximum in
time of the error on the pressure in the L2-norm. The computations reported in the
top panels of Figure 1 are done at Re = 1, and those reported in the bottom panels
are done at Re = 100. At Re = 1, the order \scrO (\tau 3) is clearly visible. Notice that
the error saturates at small time steps, i.e., when \tau 3 \lesssim h3 or \tau 3 \lesssim h2, depending on
the norm considered, because in this regime the spatial error is dominant. We also
observe third-order accuracy at Re = 100, but the saturation occurs earlier than at
Re = 1. Notice that the error on the discrete divergence does not saturate, i.e., the
L2-norm of discrete divergence is \scrO (\tau 3) independently of the meshsize.

We now report the convergence tests done with mixed finite elements. We show
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Fig. 1. 200\times 200 MAC grid, at Re = 1 (top) and Re = 102 (bottom).

Table 1
Mixed \BbbP 2/\BbbP 1 finite element approximation, Re = 1.

\tau \| u - w\| \bfL 2 Rate | u - w| \bfH 1 Rate \| p - q\| L2 Rate
1/20 1.42E-04 -- 8.91E-04 -- 3.95E-03 --
1/40 1.45E-05 3.29 5.59E-05 3.99 3.45E-04 3.52
1/80 3.88E-06 1.91 1.49E-05 1.90 9.12E-05 1.92
1/160 6.13E-07 2.66 2.94E-06 2.34 1.47E-05 2.63
1/320 8.42E-08 2.86 1.64E-06 0.85 2.41E-06 2.61
1/640 1.11E-08 2.92 1.60E-06 0.03 1.22E-06 0.98

in Tables 1 and 2 the error in the L2-norm on the velocity, the error in the H1-
seminorm on the velocity, and the error in the L2-norm on the pressure. All the
errors are computed at T = 10 and are relative, i.e., the errors are normalized by the
corresponding norm or seminorm of the solution at T = 10. The computations are
done on a nonuniform mesh composed of 118837 \BbbP 2 grid points and 59098 triangles.
The tests reported in Table 1 have been done with Re = 1, and those reported in
Table 2 have been done with Re = 102. We observe the third-order convergence in \tau 
in the L2-norm for the velocity in both cases. We also observe \scrO (\tau 3) convergence on
the H1-seminorm of the error of the velocity and on the L2-norm of the error on the
pressure for large \tau , but just as with the MAC approximation there is saturation at
small time steps due to the spatial error.
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Table 2
Mixed \BbbP 2/\BbbP 1 finite element approximation, Re = 102.

\tau \| u - w\| \bfL 2 Rate | u - w| \bfH 1 Rate \| p - q\| L2 Rate
1/20 5.71E-05 -- 1.17E-03 -- 1.21E-04 --
1/40 4.41E-06 3.70 5.49E-05 4.42 1.51E-05 3.00
1/80 5.50E-07 3.00 7.32E-06 2.91 2.29E-06 2.72
1/160 6.86E-08 3.00 2.08E-06 1.82 1.22E-06 0.92
1/320 8.90E-09 2.95 1.88E-06 0.15 1.17E-06 0.05
1/640 2.67E-09 1.74 1.88E-06 0.00 1.17E-06 0.00

Table 3
Mixed \BbbP 2/\BbbP 1 finite element approximation, Re = 102. The meshsize and the time step are

refined simultaneously, \tau \sim 1
2
h.

h \tau \| u - w\| \bfL 2 Rate | u - w| \bfH 1 Rate \| p - q\| L2 Rate
0.1 1/20 2.13E-04 -- 4.55E-03 -- 6.95E-03 --
0.05 1/40 2.52E-05 3.66 1.04E-03 2.53 1.74E-03 2.37
0.025 1/80 2.31E-06 3.61 1.92E-04 2.55 2.56E-04 2.89
0.0125 1/160 2.38E-07 3.35 3.96E-05 2.33 1.11E-04 1.23
0.00625 1/320 2.50E-08 3.27 8.48E-06 2.24 2.87E-05 1.97
0.003125 1/640 2.67E-09 3.24 1.88E-06 2.18 1.17E-06 4.63

We show in Table 3 the relative errors at Re = 100 using meshes and time steps
that are refined simultaneously, as is routinely done in practical applications. The
number of \BbbP 2 grid points and the size of the time step used for each of these meshes
are as follows: (161, 1/20), (517, 1/40), (1945, 1/80), (7545, 1/160), (29857, 1/320),
(118837, 1/640). The meshes are not hierarchically nested. We observe that the
convergence rate on the velocity in the L2-norm is 3, and the convergence rate on
the other two quantities is 2, as expected. The maximum order of convergence with
respect to space on the velocity in the H1-seminorm and on the pressure in the L2-
norm cannot exceed 2 with mixed \BbbP 2/\BbbP 1 finite elements. This test and the previous
ones confirm that the proposed scheme delivers the error estimates \| u  - w\| \bfL 2 \leq 
c1\tau 

3 + c2h
3, | u - w| \bfH 1 \leq c3\tau 

3 + c4h
2, and \| p - q\| L2 \leq c5\tau 

3 + c6h
2 for any T > 0.

5.2. Robustness with respect to open boundary conditions. We now
consider a test to illustrate the robustness of the proposed scheme with respect to
open boundary conditions and incompatible initial data. We compute the flow around
a wing equipped with a flap as shown in the top left panel in Figure 2.

The distance between the leading edge of the wing and the trailing edge of the flap
is 1.0558. The computational domain is the parallelogram defined by the following four
corners: x0 = ( - 1, - 0.7), x1 = ( - 1, 1.3), x2 = ( - 4, 0.8), x3 = (4, 1.2). We enforce
the inflow boundary condition u = (1, 0)\sansT at \{ x =  - 1, y \in ( - 0.7, 1.3). We enforce the
no-slip boundary condition on the wing and the flap for t > 0. The initial velocity at
t = 0 is v0 = (1, 0). Notice that there is incompatibility between the initial velocity
and the boundary condition on the wing and the flap. Notice also that the boundary
connecting x0 to x3 is in principle an inflow boundary condition since it is slightly
inclined, but to make sure that the scheme is robust with respect to open boundary
conditions, we nevertheless enforce the natural boundary condition - 1

Ren\cdot \nabla u+pn = 0
on this segment. We also enforce the natural boundary  - 1

Ren\cdot \nabla u + pn = 0 on the
segments (x1,x2) and (x2,x3). The chosen Reynolds number is 104. The simulation
is run until T = 5. The size of the time step is kept constant. The mesh is Delaunay
and composed of 57720 triangles. This makes 116483 \BbbP 2 nodes for the velocity and
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Fig. 2. Wing with flap. Re = 104; t = 0 (top left); t = 1 (middle left); t = 2 (bottom left);
t = 3 (top right); t = 4 (middle right); t = 5 (bottom right).

29381 \BbbP 1 nodes for the pressure. We show the vorticity in Figure 2 at the times
t \in \{ 0, 1, 2, 3, 4, 5\} . We observe that the flow develops correctly in time. An unstable
wake forms since the angle of attack is 0o and the flap is not properly trimmed (on
purpose) for this angle of attack. The bottom, left, and top edges of the figures are
cropped, but the right edge corresponds to the actual outflow boundary. We observe
that the vortices cross this boundary without creating spurious artifacts.

5.3. Random time stepping. Next, we solve the Navier--Stokes equations us-
ing again the manufactured solution (5.1) and the scheme (4.1)--(4.3); however, now
the time step is chosen randomly using a random number generator. The strategy
we use is as follows: We run K simulations, with the kth simulation done with the
average time step 2 - k\tau 0, k \in \{ 1, . . . ,K\} . For each simulation the time step \tau is rede-
fined at each time level by the expression \tau = 2r2 - k\tau 0, where each time r is a random
number in (0, 1). One series of simulations is done at Re = 102 and another one is
done at Re = 103. This test is meant to evaluate the robustness of the algorithm. It
is a very severe test since the size of \tau may vary by several orders of magnitude from
one time level to the other, because we allow the random number r to be arbitrarily
close to 0.

The first series of tests is done with the MAC scheme on a 200\times 200 uniform
Cartesian grid. We use \tau 0 = 0.04 and K = 6 for Re = 102, and we use \tau 0 = 0.0025
and K = 3 for Re = 103. The errors on the velocity, the pressure, and the (discrete)
divergence of the velocity are measured in the L2-norm at T = 10. We also compute
the maximum in time of the L2-norm of the errors on the velocity and the pressure.
The results are shown in Figure 3. The results at Re = 102 are shown in the top
panels, and the results at Re = 103 are shown in the bottom panels. The ideal third-
order convergence rate is obviously hampered by the random time stepping, but we
observe that the scheme is clearly robust and converges.

In the second series of tests we use mixed \BbbP 2/\BbbP 1 triangular continuous finite
elements. We use \tau 0 = 0.05, K = 6, and T = 10 for Re = 1 and Re = 100. The tests
are done on meshes that are refined by a factor 2k for all k \in \{ 1, . . . .K\} . The meshes
are nonuniform and are not hierarchically nested. The number of \BbbP 2 grid points and
average time step are as follows: (161, 1/20), (517, 1/40), (1945, 1/80), (7545, 1/160),
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(a) \| u - w\| \bfL 2 vs. \tau , Re = 102.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-2

L
2
 error at T=10

maximum L
2
 error

Slope 3

(b) \| p - q\| L2 vs. \tau , Re = 102.
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(c) \| \nabla \cdot w\| L2 vs. \tau , Re = 102.
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(d) \| u - w\| \bfL 2 vs. \tau , Re = 103.
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(e) \| p - q\| L2 vs. \tau , Re = 103.
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(f) \| \nabla \cdot w\| L2 vs. \tau , Re = 103.

Fig. 3. Random time step; 200\times 200 MAC grid; Re = 102 (top); Re = 103 (bottom). The
average value of the random time step is shown on the horizontal axes.

Table 4
Mixed \BbbP 2/\BbbP 1 finite elements, Re = 1 with random time stepping. The meshsize and the average

time step are refined simultaneously, average(\tau ) \sim 1
2
h.

h avg(\tau ) \| u - w\| \bfL 2 Rate | u - w| \bfH 1 Rate \| p - q\| L2 Rate
0.1 1/20 1.33E-04 -- 1.74E-03 -- 7.51E-03 --
0.05 1/40 1.20E-05 4.13 4.27E-04 2.41 1.61E-03 2.64
0.025 1/80 1.44E-06 3.20 1.04E-04 2.13 2.65E-04 2.72
0.0125 1/160 1.89E-07 3.00 2.58E-05 2.05 1.03E-04 1.39
0.00625 1/320 4.91E-07 -1.39 6.66E-06 1.97 3.12E-05 1.74
0.003125 1/640 3.61E-08 3.78 1.61E-06 2.06 2.58E-06 3.61

(29857, 1/320), (118837, 1/640). The results are reported in Tables 4 and 5.
Similarly to the MAC scheme, we observe that the method converges, although

the theoretical convergence rate is not exactly obtained due to the randomness of the
time stepping.

5.4. Time step control. The main advantage of the Taylor series third-order
defect-correction scheme proposed in the present paper, as compared to the multistep
defect-correction in [9], is that it involves only two time levels, which makes it suitable
for time step control. The purpose of the present section is to propose one time
step control algorithm that is robust in the context of the present scheme. All our
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Table 5
Mixed \BbbP 2/\BbbP 1 finite elements, Re = 102 with random time stepping. The meshsize and the

average time step are refined simultaneously such that average(\tau ) \sim 1
2
h.

h \tau \| u - w\| \bfL 2 Rate | u - w| \bfH 1 Rate \| p - q\| L2 Rate
0.1 1/20 1.55E-03 -- 2.07E-02 -- 5.72E-03 --
0.05 1/40 6.56E-05 5.42 1.22E-03 4.86 1.55E-03 2.23
0.025 1/80 7.81E-06 3.21 2.02E-04 2.71 3.77E-04 2.14
0.0125 1/160 5.43E-06 0.54 5.63E-05 1.88 7.55E-05 2.37
0.00625 1/320 1.04E-06 2.40 1.09E-05 2.39 8.74E-05 -0.21
0.003125 1/640 4.35E-06 -2.07 3.39E-05 -1.65 9.88E-05 -0.18

attempts to implement such an algorithm with the scheme proposed in [9] have been
unsuccessful. Our quest for a robust scheme amenable to time step control is actually
what led us to develop the method explained in the present paper.

It is not our purpose here to develop an elaborate strategy of time step adaption
for the Navier--Stokes equations; we just want to show that the proposed scheme (3.9)--
(3.11) performs as expected with a very simple time step control. The adaption
strategy we consider is based on the assumption that the local error in the vicin-
ity of the current time level is \scrO (\tau 2\partial ttu). For example, let e be the error on the
velocity in the L2-norm, and let us assume that e = \scrO (\tau 2)\| \partial ttun\| L2(\Omega ). Since
un
2 is an approximation of \partial ttu(t

n), then e = \scrO (\tau 2)\| un
2\| L2(\Omega ). Let us make it

our objective that e should be bounded by Tol\times \| un
2\| L2(\Omega ), where Tol is the rela-

tive error we would like to reach. Then we propose to control the error by com-
puting the new time step as \tau n+1 = sn1 \tau 

n, where the scaling factor sn1 is given by
sn1 :=

\sqrt{} 
Tol \| un

0\| L2(\Omega )/\| un
2\| L2(\Omega )/\tau 

n. In addition, when the algorithm is combined
with space approximation, we can also control the stability of the method by requiring
that the local Courant number, C := \tau n+1 max\bfx \in \Omega \| un

0 (x)\| \ell 2/h(x), not be too large,
say C \in [ 12 , 1], h(x) being the local grid size and \| un

0 (x)\| \ell 2 the Euclidean norm of
un
0 (x). Then, letting \tau n+1 = sn2 \tau 

n, the stability constraint induced by the Courant
number is sn2 := Cmin\bfx \in \Omega h(x)/(\| un

0 (x)\| \ell 2\tau n). In conclusion, the next time step is
defined by setting \tau n+1 = \tau n min(sn1 , s

n
2 , smax), where smax is a fixed upper bound on

the growth rate of the size of the time step. If it happens that min(sn1 s
n
2 ) is too small,

say min(sn1 s
n
2 ) \leq smin, where smin is a fixed lower bound on the decrease rate of the

time step, then the computation should be redone. We have found that the bounds
smin = 0.75, smax = 1.25 give satisfactory results, but other choices are legitimate.
The method to compute the new time step \tau n+1 is described in Algorithm 1.

Algorithm 1 Time step control algorithm.

1: s = min(sn1 , s
n
2 , smax)

2: \tau n+1 = s\tau n

3: if s < smin then
4: Time step is repeated with \tau n+1

5: end if
6: return Time step \tau n+1 and flag whether to repeat time step or not

5.5. Transient driven cavity. In this section we consider the classical lid-
driven cavity problem, but in order to introduce essential unsteadiness in the solution,
we make the horizontal velocity of the lid equal to sin(2\pi t). We solve the problem
until T = 1, i.e., over one full period of the lid oscillation. The computations are
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done at Re = 103 with the MAC stencil. The problem is first solved with very
high accuracy using the parallel method discussed in Guermond and Minev [10], on
a uniform grid composed of 2 000\times 2 000 MAC cells and a time step \tau = 10 - 4. This
solution is further referred to as the reference solution. Then the algorithm (4.1)--
(4.3) is used to solve the problem on a MAC Cartesian grid composed of 200\times 200
cells. The results of five different simulations are presented: (i) The first simulation
is done with a constant time step \tau = 10 - 4. The other four utilize the time step
control described in section 5.4, where the control tolerance is defined as follows: (ii)
Tol = 100\times h2, (iii) Tol = 10h2, (iv) Tol = h2, and (v) Tol = 0.1\times h2. In all cases we
take C = 1, smin = 0.5, smax = 2. The differences between the reference solution and
the solutions in cases (i)--(v) at T = 1 are reported in Figure 4. We show in the left
panel the differences in the horizontal component of the velocity along the segment
x = 1

2 , y \in [0, 1]. In the right panel we show the difference in the vertical component
of the velocity along the segment x \in [0, 1], y = 1

2 . The computation requires 145
time steps with Tol = 100\times h2, 318 time steps with Tol = 10\times h2, 1023 time step with
Tol = h2, and 3258 time steps with Tol = 0.1\times h2. The solutions with the tolerances
Tol = h2 and Tol = 0.1\times h2 and with the constant time step \tau = 10 - 4 are almost
identical; the overall error in these cases is dominated by the spatial error.

(a) Differences in horizontal velocity. (b) Differences in vertical velocity.

Fig. 4. Deviations from the reference solution in the horizontal (a) and vertical (b) components
of the velocity along the vertical and horizontal center lines, respectively, at T = 1.

We show in Figure 5 the time step size versus the time level for cases (ii)--(v).
The cusp in the top graph (labeled Tol = 100h2) is due to the stability condition
C < 1; i.e., at this time moment, the error control yields a time step that violates the
stability condition, and this leads to its sudden decrease.

6. Conclusions. This paper proposes a two-level high-order algorithm for the
incompressible Navier--Stokes equations combining the artificial compressibility reg-
ularization (1.2) with a Taylor series scheme for the resulting ODE system. (The
algorithm can actually be applied to any PDE or system of DAEs that can be put in
the abstract form (2.1).) The main advantage of this setting as compared to the arti-
ficial compressibility method of Guermond and Minev [8, 9], which is of similar high
order, is that the method is amenable to robust time step control. The robustness of
the method with variable time stepping has been verified computationally using ran-
dom time steps with decreasing averages. The results show that the method converges
despite drastic variations of the time step from one time level to the other. A simple
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Fig. 5. Plot of the time step versus the time level.

strategy for the time step adaption has also been proposed. The performance of the
proposed time step control has been verified on the lid-driven cavity with an oscillating
lid velocity. The results demonstrate that the control of the second time derivative
and the local Courant number yield a robust and efficient algorithm. Finally, the
method discussed in this paper is third order in time, but there is no theoretical
obstacle to extend it to any order by following the steps described in sections 3.1--3.2.
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