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We introduce in this paper a new direction splitting algorithm for solving the incompressible
Navier–Stokes equations. The main originality of the method consists of using the operator (I � @xx)(I �
@yy)(I � @zz) for approximating the pressure correction instead of the Poisson operator as done in all
the contemporary projection methods. The complexity of the proposed algorithm is significantly lower
than that of projection methods, and it is shown the have the same stability properties as the Poisson-
based pressure-correction techniques, either in standard or rotational form. The first-order (in time) ver-
sion of the method is proved to have the same convergence properties as the classical first-order projec-
tion techniques. Numerical tests reveal that the second-order version of the method has the same
convergence rate as its second-order projection counterpart as well. The method is suitable for parallel
implementation and preliminary tests show excellent parallel performance on a distributed memory
cluster of up to 1024 processors. The method has been validated on the three-dimensional lid-driven cav-
ity flow using grids composed of up to 2 � 109 points.
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1. Introduction pressibility constraint is penalized in a negative norm induced by
Most of the time marching algorithms that are used in Compu-
tation Fluid Mechanics to solve large scale incompressible fluids
flows are based on the so-called projection methods (see Chorin
[5] and Temam [24] for the earliest examples and [12] for a recent
review). In all the variants of this strategy, the pressure, or pressure
correction, is obtained by solving a Poisson equation equipped with
Newmann boundary conditions or a weak version thereof. The so-
called pressure Poisson equation results from the decomposition
of the velocity field into a divergence-free part and a gradient,
and this decomposition has been the main paradigm behind all
the improved pressure/velocity decoupling techniques that have
been proposed since the pioneering works of Chorin and Temam.

The objective of this paper is to introduce a novel fractional
time stepping technique that departs from the projection para-
digm. We propose instead to use a pressure equation derived from
a perturbed form of the continuity equation in which the incom-
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direction splitting. Departure from the projection paradigm has al-
ready been proved to be very efficient for solving variable density
flows in [13]. An early version of the algorithm proposed in this pa-
per has been announced in [9]. In the present work we pursue fur-
ther the ideas introduced/announced in [9] in the sense that in
addition to splitting the pressure-correction, we also apply a direc-
tion splitting technique to the momentum equation, thus further
reducing the overall computational complexity of the method.
We provide stability and convergence results for the first-order
variant of the method and a stability result for the (formally) sec-
ond-order fully split scheme, and we numerically illustrate the
convergence properties of the method and its scalability.

The paper is organized as follows. The basic idea is introduced
in Section 2. The new paradigm consists of constructing a singular
perturbation of the Navier–Stokes equations by using an abstract
operator A having generic coercivity properties in H1(X) (see
Section 2.2). The family of Chorin/Temam projection methods is
recovered by using A :¼ �D but an entirely new family is obtained
by setting A :¼ (1 � @xx)(1 � @yy) in two space dimensions and
A :¼ (1 � @xx)(1 � @yy)(1 � @zz) in three space dimensions. The
merits of the proposed technique are discussed in Section 3. A
formally second-order version of the method is introduced in
Section 4. The main theoretical result of this paper is Theorem
4.2 which establishes the stability and convergence of this new
algorithm. The method is illustrated numerically in Section 5 and
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convergence tests confirm that the rotational form of the incre-
mental version of the method is indeed second-order in the L2-
norm of the velocity field. Weak scalability tests reported in Sec-
tion 5 confirm that the method is extremely efficient. Some conclu-
sions are reported in Section 6.

2. The non-incremental scheme

In this section we introduce the most simple first-order version
of the method and analyze its stability. The purpose of this section
is to introduce the basic concepts of the technique and to avoid
technicalities. A formally second-order variant of the method is
introduced and analyzed in Section 4.

2.1. Notation and preliminaries

We consider the time-dependent Navier–Stokes equations on a
finite time interval [0,T] and in a cubic domain X = (0,1)3.

Since the nonlinear term in the Navier–Stokes equations does
not interfere with the incompressibility constraint, we henceforth
mainly focus our attention on the time-dependent Stokes equa-
tions written in terms of velocity u and pressure p:

@tu� mDuþrp ¼ f in X� ½0; T�;
r � u ¼ 0 in X� ½0; T�;
uj@X ¼ 0 in ½0; T�; and ujt¼0 ¼ u0 in X;

8><
>: ð2:1Þ

where f is a smooth source term and u0 is a solenoidal initial veloc-
ity field with zero normal trace at the boundary of X. We consider
homogeneous Dirichlet boundary conditions on the velocity for the
sake of simplicity.

2.2. Singular perturbation analysis

Let us start by recalling some fundamental properties of projec-
tion methods. Let Dt be the time step in the Chorin–Temam algo-
rithm, then it can be shown (see e.g., [22]) that the Chorin–Temam
algorithm is a singular perturbation of (2.1) which can be written
as follows:

@tu� � mDu� þrp� ¼ f in X� ½0; T�;
�DtDp� þr � u� ¼ 0 in X� ½0; T�;
u�j@X ¼ 0; @np�j@X ¼ 0 in ½0; T�;

and u�jt¼0 ¼ u0; p�jt¼0 ¼ p0 in X;

8>>><
>>>:

ð2:2Þ

where p0 :¼ p (t = 0) and Dt is the perturbation parameter (i.e.,
� :¼ Dt). A key property of the Chorin–Temam technique is that
the quantity v� :¼ �Dtrp� + u� is solenoidal and has a zero normal
trace at the boundary. Denoting H :¼ {z 2 L(X)2; r � z 2 L2(X);
z � njoX = 0} and setting PH : L2(X) ? H to be the L2-projection onto
H, we have v� = PHu�, which is the earmark of Chorin–Temam type
algorithms. Actually u� = v� + Dtrp� is the so-called Helmholtz
decomposition of u� and this decomposition is L2-orthogonal, i.e.,
L2ðXÞ ¼ H�?rH1R

¼0ðXÞ where we have defined L2R
¼0ðXÞ and

H1R
¼0ðXÞ to be the spaces that are composed of those functions in

L2(X) and H1(X) that are of zero mean, respectively. The quantity
v� is often used as an approximation for u.

We now propose to depart from (2.2) by considering the follow-
ing alternative OðDtÞ-perturbation of (2.1):

@tu� � mDu� þrp� ¼ f in X� ½0; T�;
DtAp� þr � u� ¼ 0 in X� ½0; T�;
u�j@X ¼ 0; p� 2 DðAÞ; in ½0; T�;

and u�jt¼0 ¼ u0; p�jt¼0 ¼ p0 in X;

8>>><
>>>:

ð2:3Þ
where the operator A : DðAÞ � L2R
¼0ðXÞ ! L2R

¼0ðXÞ is assumed to be

unbounded and closed and to be such that the bilinear form
aðp; qÞ :¼

R
X qApdx satisfies the following properties:

a is symmetric; and krqk2
L2 6 aðq; qÞ; 8q 2 DðAÞ: ð2:4Þ

As a consequence of these hypotheses, the following scalar product
and norm can be defined:

hp; qiA :¼ hAp; qi; 8p; q 2 DðAÞ; kqkA

:¼ hAq; qi
1
2; 8q 2 DðAÞ: ð2:5Þ

Many admissible choices are possible for the operator A. For in-
stance one recovers the Chorin–Temam technique by using
A = �DN, where �DN is the Laplace operator supplemented with
homogeneous Neumann boundary conditions. One could also use
A = I � DN where I is the identity operator. The key to the method
presented in this paper is that A :¼ (1 � @xx)(1 � @yy)(1 � @zz) with
appropriate boundary conditions satisfies the requirement (2.4) in
three space dimensions. In two space dimensions the operator
A :¼ (1 � @xx)(1 � @yy) with appropriate boundary conditions also
satisfies (2.4).

At this point we have made a significant step away from the
projection paradigm. The presence of the operator A in (2.3) breaks
the L2-orthogonality property mentioned above. Although, (2.3)
can no longer be interpreted in terms of projection, the solutions
to (2.2) and (2.3) have similar convergence properties.

Proposition 2.1. Assume that the solution to (2.1) is smooth enough
with respect to time and space and that (2.4) holds, then the solutions
to (2.2) and (2.3) both satisfy the following estimates

ku� u�kL2ðð0;TÞ;H1ðXÞÞ 6 cDt
1
2: ð2:6Þ
Proof. Repeat the arguments from [22].
2.3. Formulation of the scheme

We now construct a fractional step technique approximating
(2.3) by using alternating direction strategies and the Crank–Nicol-
son time stepping.

2.3.1. Pressure predictor
The first step of the algorithm consists of computing a pressure

predictor as any other fractional time stepping technique for the
Navier–Stokes equations. The algorithm is initialized by setting
p�

1
2 ¼ 0 and for n P 0 we set

p�;nþ
1
2 ¼ pn�1

2: ð2:7Þ
2.3.2. Velocity update
The second step consist of updating the velocity field. We pro-

pose to update the velocity by using a direction splitting technique
proposed by Douglas [16]. The algorithm is initialized by setting
u0 = u0, and the velocity is updated as follows for n P 0:

nnþ1 � un

Dt
� mDun þrp�;nþ

1
2 ¼ f tnþ1

2

� �
; unj@X ¼ 0;

gnþ1 � nnþ1

Dt
� m

2
@xxðgnþ1 � unÞ ¼ 0; gnþ1jx¼0;1 ¼ 0;

fnþ1 � gnþ1

Dt
� m

2
@yyðfnþ1 � unÞ ¼ 0; fnþ1jy¼0;1 ¼ 0;

unþ1 � fnþ1

Dt
� m

2
@zzðunþ1 � unÞ ¼ 0; unþ1jz¼0;1 ¼ 0:

ð2:8Þ

The two-dimensional version of the algorithm is obtained by omit-
ting the last substep and setting un+1 = fn+1.
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Remark 2.1. The Alternating Direction Implicit (ADI) strategy was
first proposed in the seminal article of Peaceman and Rachford
[20]. It is a Crank–Nicolson-like two-stage time integration scheme
for two-dimensional parabolic problems in which the second-
order derivative with respect to each space variable is treated
implicitly while the other is made explicit at each time sub-step.
Overall, the ADI strategy is very efficient for parabolic problems
since the resulting schemes have the same computational com-
plexity as explicit schemes while being unconditionally stable. The
Douglas scheme (2.8) has similar stability and convergence prop-
erties as ADI but contrary to ADI it can be applied to parabolic
problems in any space dimension.
2.3.3. Pressure update
The pressure is updated by solving Apnþ1

2 ¼ � 1
Dtr � unþ1 with the

direction splitting operator A :¼ (1 � @xx)(1 � @yy)(1 � @zz) supple-
mented with appropriate boundary conditions. This is done as
follows:

w� @xxw ¼ �
1
Dt
r � unþ1; @xwjx¼0;1 ¼ 0;

u� @yyu ¼ w; @yujy¼0;1 ¼ 0;

pnþ1
2 � @zzpnþ1

2 ¼ u; @zpnþ1
2jz¼0;1 ¼ 0:

ð2:9Þ
2.4. Stability and convergence analysis

Probably the most remarkable feature of the scheme (2.7)–(2.9)
is that it only requires solving one-dimensional boundary-value
problems. We are going to show that it provides a solution which
as accurate as that given by the classical Chorin–Temam projection
method at a fraction of its complexity.

Before going through the stability analysis, we establish a pre-
liminary result concerning the operator A which is used in (2.9).
Henceforth we denote

A :¼ ð1� @xxÞð1� @yyÞð1� @zzÞ; ð2:10Þ

and the domain of A is defined to be

DðAÞ :¼ p 2 L2ðXÞ; ð1� @zzÞp; ð1� @yyÞð1� @zzÞp; Ap
� �n

2 ½L2ðXÞ�3; @zpjz¼0;1 ¼ 0; @yð1� @zzÞpjy¼0;1

¼ 0; @xð1� @yyÞð1� @zzÞpjx¼0;1 ¼ 0
o
: ð2:11Þ

We first prove that (2.9) indeed amounts to solving Apnþ1
2 ¼ �r�unþ1

Dt

and that A has the properties specified in (2.4).

Lemma 2.2. Let f 2 L2(X). Let w, u, and p solve
w� @xxw ¼ f ; @xwjx¼0;1 ¼ 0;

u� @yyu ¼ w; @yujy¼0;1 ¼ 0;

p� @zzp ¼ u; @zpjz¼0;1 ¼ 0;
then Ap = f. Moreover the bilinear form a : DðAÞ � DðAÞ 3 ðp; qÞ#R
X qApdx 2 R satisfies (2.4).
Proof. The existence and uniqueness of w, u, and p in {r 2 L2(X),
@xr 2 L2(X), @xrjx=0,1 = 0}, {r 2 L2(X), @yr 2 L2(X), @yrjy=0,1 = 0}, and
{r 2 L2(X), @zr 2 L2(X), @zrjz=0,1 = 0}, respectively, is a simple conse-
quence of the Lax–Milgram lemma. By proceeding by elimination,
it is clear also that Ap = f and p is a member of D(A).
Let us now prove (2.4). Let q be a member of D(A), then

Z
X

qApdx ¼
Z

X
qð1� @xxÞwdx ¼

Z
X
ðqwþ @xq@xwÞdx

¼
Z

X
ðqð1� @yyÞuþ @xq@xð1� @yyÞuÞdx

¼
Z

X
ðquþ @yq@yuþ @xq@xu� @xq@xyyuÞdx

¼
Z

X
ðquþ @yq@yuþ @xq@xuþ @xyq@xyuÞdx

�
Z
fy¼1g

@xqðx;1; zÞ@xyuðx;1; zÞdxdz

þ
Z
fy¼0g

@xqðx;0; zÞ@xyuðx;0; zÞÞdxdz:

The boundary terms are zero since the two boundary conditions
@yu(x,1,z) = 0 and @yu(x,0,z) = 0 for all (x,z) 2 (0,1)2 imply that
@xyu(x,1,z) = @x(@yu(x,1,z)) = 0, and @xyu(x, 0,z) = @x(@yu(x, 0,z)) = 0
for all (x,z) 2 (0,1)2. As a result,

Z
X

qApdx ¼
Z

X
quþ @yq@yuþ @xq@xuþ @xyq@xyu
� �

dx

¼
Z

X
qðp� @zzpÞ þ @yq@yðp� @zzpÞ þ @xq@xðp� @zzpÞ
�

þ @xyq@xyðp� @zzpÞ
�

dx

¼
Z

X
qpþ @zq@zpþ @yq@ypþ @yzq@yzpþ @xq@xp
�

þ @xz@xzpþ @xyq@xypþ @xyz@xyzp
�

dx:

The boundary terms resulting from the last integration by parts are
zero since the following identities hold for all n 2 {0,1} and all
(x,y) 2 (0,1)2:

@xzpðx; y; nÞ ¼ @xð@zpðx; y; nÞÞ ¼ 0;
@yzpðx; y; nÞ ¼ @yð@zpðx; y; nÞÞ ¼ 0;
@xyzpðx; y; nÞ ¼ @xyð@zpðx; y; nÞÞ ¼ 0:

The symmetry and the H1-coercivity of the bilinear form a are now
evident. h

Let N :¼ T/Dt, and for any norm k�kE let us introduce the follow-
ing notation:

kgk2
‘2ð0;T;EÞ :¼ Dt

XN

n¼1

kgðtn; �Þk2
E ; kgk2

‘1ð0;T;EÞ :¼ max
06n6N

kgðtn; �ÞkE:

ð2:12Þ

We define the negative norm k � kH�1 as follows:

kf kH�1 :¼ sup
0–g2H1

0ðXÞ

ðf ; gÞ
krgkL2

: ð2:13Þ

We are now in position to prove the main result of this section:

Proposition 2.3. Assume that the solution to (2.1) is smooth enough
with respect to time and space and that (2.4) holds. Then the solution
to (2.7), (2.16), (2.9), with p�

1
2 ¼ 0, satisfies the following stability

estimate for all T > 0:

kuk2
‘1ð0;T;L2Þ þ mkruk2

‘2ð0;T;L2Þ þ Dt2kpk2
‘2 �Dt

2 ;T�
Dt
2 ;DðAÞð Þ

6 ku0k2
L2 þ m�1kf k2

‘2 Dt
2 ;T�

Dt
2 ;H

�1ð Þ: ð2:14Þ

For all T there is c, uniform in Dt, so that

ku� uk‘1ð0;T;L2Þ þ
ffiffiffi
m
p
krðu� uÞk‘2ð0;T;L2Þ 6 cDt

1
2: ð2:15Þ
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Proof. The direction splitting technique which is used to solve the
momentum Eq. (2.8) is non-essential and certainly not original.
The original part of the present work is the introduction of the
direction splitting for computing the pressure update (2.9). To
avoid mixing the two issues and to simplify the presentation, we
are going to make the stability analysis assuming that the momen-
tum equation is solved without direction splitting, i.e., we replace
(2.8) by the Euler time stepping:

unþ1 � un

Dt
� mDunþ1 þrp�;nþ

1
2 ¼ f ; uj@X ¼ 0: ð2:16Þ

The error and stability analysis of the fully split algorithm is done in
details in [11].

We multiply (2.16) by 2Dtun+1 and integrate over X, then using
the identity 2(a � b,a) = kak2 + ka � bk2 � kbk2 we obtain

kunþ1k2
L2 þ kunþ1 � unk2

L2 � kunk2
L2 þ 2Dtmkrunþ1k2

L2

þ 2Dt rpn�1
2;unþ1

� �
¼ 2Dt

Z
X

f nþ1
2 � unþ1 dx: ð2:17Þ

Now we use Lemma 2.2 to deduce that pnþ1
2 2 DðAÞ solves the fol-

lowing problem:

a pnþ1
2; q

� �
¼ �Dt�1ðr � unþ1; qÞ; 8q 2 DðAÞ: ð2:18Þ

Using 2Dt2pn�1
2 as a test function together with the fact that a(�, �) is

symmetric and coercive in H1(X), we infer that

�2Dt r � unþ1; pn�1
2

� �
¼ 2Dt2a pnþ1

2; pn�1
2

� �

¼ Dt2 pnþ1
2

��� ���2

A
þ pn�1

2

��� ���2

A
� pnþ1

2 � pn�1
2

��� ���2

A

� 	
:

ð2:19Þ

We now seek a control on pnþ1
2 � pn�1

2

��� ���2

A
by subtracting (2.18) at

time tn to (2.18) at time tn+1 and by testing the result with

Dt pnþ1
2 � pn�1

2

� �
,

Dtkpnþ1
2 � pn�1

2k2
A ¼ � r � ðunþ1 � unÞ; pnþ1

2 � pn�1
2

� �

¼ unþ1 � un;r pnþ1
2 � pn�1

2

� �� �

6 kunþ1 � unkL2 r pnþ1
2 � pn�1

2

� ���� ���
L2
:

(Note that the above operation is legitimate also for n = 0 provided
p�

1
2 ¼ 0 and u0 = u0.) Then using the coercivity property of the bilin-

ear form a we infer that

Dt r pnþ1
2 � pn�1

2

� ���� ���
L2

pnþ1
2 � pn�1

2

��� ���
A

6 kunþ1 � unkL2 r pnþ1
2 � pn�1

2

� ���� ���
L2
;

which then implies

Dt2 pnþ1
2 � pn�1

2

��� ���2

A
6 kunþ1 � unk2

L2 :

Inserting this bound into (2.19), we obtain

Dt2 pnþ1
2

��� ���2

A
þ pn�1

2

��� ���2

A

� 	
6 �2Dt r � unþ1;pn�1

2

� �
þ kunþ1 � unk2

L2 :

Combining this estimate with (2.17) gives

kunþ1k2
L2 þ Dt2 pnþ1

2

��� ���2

A
þ pn�1

2

��� ���2

A

� 	
þ Dtmkrunþ1k2

L2

6 kunk2
L2 þ m�1Dtkf k2

H�1 : ð2:20Þ
The desired result is obtained by summing (2.20) over the time lev-
els from 0 to N � 1. h
Remark 2.2. Lemma 2.2 has an obvious two-dimensional
counterpart.
Remark 2.3. The advection part of the momentum equation can
be discretized by various explicit methods. We use a second order
Adams–Bashforth method in the numerical tests reported at the
end of the paper. Another possible option could be to use a semi-
implicit procedure which can be combined with the direction split-
ting of the momentum equation. We conjecture that this procedure
would probably enhance the stability of the overall algorithm
when solving the Navier–Stokes equations.
Remark 2.4. TheoperatorsA ¼ 1
bx
� by@xx

� �
1
by
� bx@yy

� �
in twospace

dimensions and A ¼ 1
bx
� bybz@xx

� �
1
by
� bzbx@yy

� �
1
bz
� bxby@zz

� �
in

three space dimensions satisfy the property (2.4) for all positive
real numbers bx, by, bz. The stability and error analysis developed
in the present paper holds true for this class of operators as well.
There may exist sets of coefficients that make the method optimal
in some sense, but we have not explored this possibility yet. All
the numerical results reported in Section 5 have been obtained with
bx = by = bz = 1.
3. Direction splitting/preconditioning/FFT

In this section we discuss the merits of the present approach
compared to various preconditioning techniques for solving the
Poisson equation.

3.1. Connection with previous works

Starting with the 1955 seminal article of Peaceman and
Rachford [20], direction splitting methods have since then been
used extensively for solving parabolic equations. The reader is re-
ferred to the book of Marchuk [19] for a review.

Applying direction splitting to the Navier–Stokes equations is
not a new idea either. For instance, in [25, Section 3.7.2], Temam
studies a projection method where the solution of the momentum
equation is obtained using direction splitting and the incompress-
ibility constraint is enforced by means of a Poisson equation. Sta-
bility and convergence of the scheme are proved therein but no
error estimates are provided. Lu et al. show in [17,18] that the
scheme proposed by Temam is indeed O s1

2

� �
accurate, s being

the time-step.
Our work differs from that of Temam and Lu et al. mainly in two

directions. First, we abandon the projection paradigm and adopt
instead the direction splitting strategy for the computation of the
pressure-correction as well. This renders the method extremely
fast and massively parallelizable. Second, we provide higher-order
error estimates for the proposed scheme, and we show that the so-
called standard version of the scheme is OðsÞ-accurate in all quan-
tities irrespective of the space dimension. We show also that the

rotational version is O s3
2

� �
-accurate in two space dimensions.

Numerical experiments show that the result holds true in three
space dimensions and the actual convergence rates are higher than
those inferred theoretically.

3.2. Direction splitting vs. preconditioning

The computational complexity per time step of a traditional
projection method (either in pressure or velocity correction) is that
of solving one vector-valued advection–diffusion equation plus one
scalar-valued Poisson equation equipped with Neumann boundary
conditions. For large size three-dimensional problems and large
Reynolds numbers, the cost of solving the Poisson equation be-
comes dominant. One possibility to address this issue consists of
designing preconditioners for the Poisson equation. The multigrid
approach is probably one of the most optimal in this respect. The
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downside of most preconditioners though, including multigrid, is
that they are not easy to parallelize, which is not the case of the
present splitting method. The proposed technique requires the
solution of only two (in 2D) or three (in 3D) one-dimensional
boundary-value problems for the pressure. If the one-dimensional
problems are discretized by means of second-order finite differ-
ences, the resulting linear systems are three-diagonal and can be
solved very efficiently on very large parallel clusters. If higher-or-
der discretizations are employed, the resulting linear systems have
more diagonals but these diagonals are next to each other and
therefore the solution of such systems can be obtained very effi-
ciently with a parallel direct method based on a Schur complement
technique.

The method that we propose in this paper bears similarities to
some preconditioning techniques of the Poisson equation that are
based on direction splitting. It is indeed possible to solve the Pois-
son equation as the steady limit of the heat equation which in turn
can be solved by a direction splitting procedure (see [28,19] for de-
tails). A recent parallel procedure for the Navier–Stokes equations
based on such an approach for solving the Poisson problem is de-
scribed in [1], see also [3]. In the present paper we go one step fur-
ther and instead of using the direction splitting to precondition the
Pressure Poisson equation, we approximate the pressure by just
one application of a direction splitting operator and we prove that
the resulting method is indeed stable and convergent.

3.3. Direction splitting vs. Poisson + FFT

The pressure update defined in (2.9) is significantly easier to
compute than that given by the usual Poisson equation arising at
the projection step of any projection schemes. Of course, one can
argue that the pressure Poisson equation can be very efficiently
solved using a Fast Fourier Transform (FFT) and therefore we
now compare the two techniques.

The convergence analysis presented below (see Theorem 4.2)
and in [11] and the numerical results reported in Section 5 show
that, under mild regularity conditions, the time accuracy of the
direction splitting algorithm is of the same order as that of the
equivalent projection scheme. In conclusion, the present approach
is not less accurate than the usual projection scheme.

Denoting N the total number of grid points in X and assuming
that (2.9) is solved by using second-order finite differences on a
Cartesian grid, the discrete version of (2.9) can be solved in O(N)
operations per time step whereas using FFT requires O(Nlog2N)
operations per time step. In conclusion, the complexity of solving
(2.9) with second-order finite differences is smaller than solving
the Poisson equation with FFT.

The most significant advantage of the proposed direction split-
ting approach over the Poisson equation solved with FFT becomes
evident when one compares the scalability of each algorithm when
implemented on a distributed memory cluster, which seems to be
the current trend in parallel computing. For simplicity let us
assume that we have a cubic domain containing N grid points
and that we employ P processors. A natural way of distributing
the grid points when solving (2.9) consists of dividing the proces-
sors into a cubic Cartesian set of P1/3 processors in each direction so
that each processor contains n3 grid points, where n = (N/P)1/3. The
amount of data exchange per processor (per linear solve) for the
direction splitting algorithm is 6(N/P)2/3 (see Section 5.4). The sit-
uation is slightly different if one solves the Poisson equations by
using FFT. To the best of our knowledge, the current parallel FFT
methods distribute the data in a two-dimensional fashion, that is
to say the data is distributed in parallelepipeds each containing
N1/3 �m2 grid points where m = N1/3/P1/2 (see e.g., [23]). Then each

processor needs to exchange 3ðN1=3 �mÞm2 ¼ 3 1� 1=
ffiffiffi
P
p� �

N=P
values. The quantity 3 1� 1=
ffiffiffi
P
p� �

N=P is significantly larger than

6(N/P)2/3 when N/P is large. For instance if N/P = 106, then
3
6 ðN=PÞ

1
3 ¼ 50; in this case the FFT involves 50 times more commu-

nications than solving (2.9) with a Schur complement technique.
This implies that solving (2.9) instead of solving the Poisson equa-
tion with FFT allows to utilize a larger number of processors and to
solve larger problems than with FFT since the processors can be ar-
ranged in a 3D rather than in a 2D Cartesian fashion. In conclusion,
the weak scalability of solving (2.9) is better than that of solving
the Poisson equation with FFT.

4. Higher-order variants

It is well known that the time accuracy of the Chorin–Temam
scheme is limited and yields error estimates similar to those stated
in Proposition 2.1. The purpose of this section is to introduce
higher-order versions of the method by using the arsenal of the
incremental schemes (see e.g., [26] for the so-called rotational
variants and [12] for a complete review).

4.1. Singular perturbation analysis

Virtually all currently known incremental pressure-correction
schemes are more or less semi-discrete versions of the following
singular perturbation of (2.1):

@tu� � mDu� þrp� ¼ f in X� ½0; T�; u�j@X�½0;T� ¼ 0; u�jt¼0 ¼ u0;

�DtD/� þr � u� ¼ 0 in X� ½0; T�; @n/�j@X�½0;T� ¼ 0;
Dt@tp� ¼ /� � vmr � u� p�jt¼0 ¼ p0;

8><
>:

ð4:1Þ

where Dt is the perturbation parameter (i.e., � :¼ Dt) and v 2 [0,1]
is an adjustable parameter. This problem has been analyzed in [15,
Section 3.3] and [14, Section 3.1] and u� has been shown therein to
be a OðDt2Þ perturbation of u in the L2-norm and a OðDt

3
2Þ perturba-

tion for all 0 < v 6 1.
We now introduce a generalization of (4.1) which allows for

direction splitting by considering the following alternative
OðDt2Þ-perturbation of (2.1):

@tu� � mDu� þrp� ¼ f in X� ½0; T�; u�j@X�½0;T� ¼ 0; u�jt¼0 ¼ u0;

DtA/� þr � u� ¼ 0 in X� ½0; T�; /� 2 DðAÞ;
Dt@tp� ¼ /� � vmr � u� p�jt¼0 ¼ p0:

8><
>:

ð4:2Þ
Proposition 4.1. Assume that the solution to (2.1) is smooth enough
with respect to time and space and that (2.4) holds, then the solutions
to (4.1) and (4.2) both satisfy the following estimates

ku� u�kL2ðð0;TÞ;H1ðXÞÞ 6 cDt; if v ¼ 0: ð4:3Þ

ku� u�kL2ðð0;TÞ;H1ðXÞÞ 6 cDt
3
2; if v 2 ð0;1�: ð4:4Þ
Remark 4.1. When A = �DN and v 2 (0,1] it is known that u� is a
OðDt2Þ perturbation of u in the L2-norm. Whether the OðDt2Þ per-
turbation estimate holds in general (i.e., when A induces a norm
which is not equivalent to the H1-norm) is an open question,
although numerical tests seem to show that it should hold. The
main problem one encounters when trying to prove this estimate
is that the duality argument which is usually used to prove sec-
ond-order accuracy on the velocity in the L2-norm (see [14]) does
not easily generalize when the bilinear form a is not bounded in
H1, see [11].
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4.2. Formulation of the scheme

We now describe an algorithm based on (4.2) that uses the
direction splitting operator A defined in (2.10) and (2.11).

4.2.1. Pressure predictor
Denoting p0 the pressure field at t = 0, the algorithm is initial-

ized by setting p�
1
2 ¼ p�

3
2 ¼ p0. Then for all n > 0 a pressure predic-

tor is computed as follows:

p�;nþ
1
2 ¼ pn�1

2 þ /n�1
2: ð4:5Þ
4.2.2. Velocity update
The velocity is updated by proceeding exactly as in the non-

incremental version of the algorithm described in Section 2.3.2.
The velocity field is initialized by setting u0 = u0, and for all n > 0
the velocity update is computed by solving the following series
of one-dimensional problems:

nnþ1 � un

Dt
� mDun þrp�;nþ

1
2 ¼ f tnþ1

2

� �
; unj@X ¼ 0;

gnþ1 � nnþ1

Dt
� m

2
@xxðgnþ1 � unÞ ¼ 0; gnþ1jx¼0;1 ¼ 0;

fnþ1 � gnþ1

Dt
� m

2
@yyðfnþ1 � unÞ ¼ 0; fnþ1jy¼0;1 ¼ 0;

unþ1 � fnþ1

Dt
� m

2
@zzðunþ1 � unÞ ¼ 0; unþ1jz¼0;1 ¼ 0:

ð4:6Þ
4.2.3. Penalty step
The intermediate parameter /� introduced in (4.2) is approxi-

mated by solving A/nþ1
2 ¼ � 1

Dtr � unþ1. Owing to the definition of
the direction splitting operator A, this is done by solving the fol-
lowing series of one-dimensional problems:

w� @xxw ¼ �
1
Dt
r � unþ1; @xwjx¼0;1 ¼ 0;

u� @yyu ¼ w; @yujy¼0;1 ¼ 0;

/nþ1
2 � @zz/

nþ1
2 ¼ u; @z/

nþ1
2





z¼0;1

¼ 0:

ð4:7Þ
4.2.4. Pressure update
The last sub-step of the algorithm consists of updating the pres-

sure as follows:

pnþ1
2 ¼ pn�1

2 þ /nþ1
2 � vmr � 1

2
ðunþ1 þ unÞ

� 	
: ð4:8Þ

We say that the algorithm is in standard incremental form when we
choose v = 0 and the algorithm is in rotational incremental form
when we choose v 2 (0,1].

4.3. Stability and error analysis

To simplify the notation we now define the following time-
increment operator:

dpnþ1
2 :¼ pnþ1

2 � pn�1
2; d2pnþ1

2 :¼ pnþ1
2 � 2pn�1

2 þ pn�3
2: ð4:9Þ

We also denote �u the sequence whose generic term is �unþ1
2 ¼

1
2 ðunþ1 þ unÞ. The main result of this section is the following:

Theorem 4.2. Assume that the solution to (2.1) is smooth enough
with respect to time and space and that (2.4) holds. There exist c1,
uniform in Dt, so that for all T and all v 2 [0,1] the solution to
(4.5)–(4.8), with p�

1
2 ¼ p�

3
2 ¼ p0, satisfies the following stability

estimate:
kuk2
‘1ð0;T;L2Þ þ mkr�uk2

‘2 Dt
2 ;T�

Dt
2 ;L2ð Þ þ Dt2kpk‘1 Dt

2 ;T�
Dt
2 ;DðAÞð Þ

6 c1 ku0k2
L2 þ Dt2 p�

1
2

��� ���2

A
þ Dtmkru0k2

L2 þ m�1kf k‘2 Dt
2 ;T�

Dt
2 ;H

�1ð Þ

� 	
:

ð4:10Þ

For all T there is c2, uniform in Dt, so that

ku�uk‘1ð0;T;L2Þ þ
ffiffiffi
m
p
krðu�uÞk‘2ð0;T;L2Þ 6 c2Dt; if v2 ½0;1�;

ð4:11Þ
ku�uk‘2ð0;T;L2Þ þ

ffiffiffi
m
p
kr�uk‘1ð0;T;L2Þ 6 c2Dt

3
2; if v2 ð0;1�: ð4:12Þ
Proof. We are going to prove (4.10) for v = 0 and f = 0 only. The full
proof of the theorem is given in [11]. To avoid mixing issues and to
avoid technicalities we assume again that the momentum equation
is not split, i.e., we replace (4.6) by

unþ1 � un

Dt
� 1

2
mDðunþ1 þ unÞ þ r~p�;nþ

1
2 ¼ 0; uj@X ¼ 0: ð4:13Þ

We multiply (4.13) by 2Dtun+1, integrate over X, and use the
identity 2(a � b,a) = kak2 + ka � bk2 � kbk2 to obtain

kunþ1k2
L2 þ kunþ1 � unk2

L2 þ 1
2

Dtm krunþ1k2
L2 þ 4kr�unþ1

2k2
L2

� �

þ 2Dt rp�;nþ
1
2;unþ1

� �
¼ kunk2

L2 þ 1
2

Dtmkrunk2
L2 : ð4:14Þ

Now we use Lemma 2.2 to deduce that the pressure correction
pnþ1

2 � pn�1
2

� �
2 DðAÞ solves the following problem for n P 0 and

v = 0:

a pnþ1
2 � pn�1

2; q
� �

¼ �Dt�1ðr � unþ1; qÞ; 8q 2 DðAÞ: ð4:15Þ

Using 2Dt2p�;nþ
1
2 :¼ 2Dt2 2pn�1

2 � pn�3
2

� �
as a test function together

with the fact that a(�, �) is symmetric and coercive in H1(X), we infer
that

�2Dt r�unþ1;p�;nþ
1
2

� �

¼ 2Dt2a dpnþ1
2;2pn�1

2�pn�3
2

� �
¼ 2Dt2a dpnþ1

2;pnþ1
2

� �

þ2Dt2a dpnþ1
2;�dpnþ1

2þ dpn�1
2

� �

¼Dt2 kpnþ1
2k2

Aþkdpnþ1
2k2

A�kpn�1
2k2

A� dpnþ1
2k2

A�kd
2pnþ1

2k2
Aþkdpn�1

2k2
A

��� �
:

�

This then implies that

� 2Dt r � unþ1; p�;nþ
1
2

� �

¼ Dt2 pnþ1
2

��� ���2

A
� pn�1

2

��� ���2

A
þ kdpn�1

2k2
A � kd

2pnþ1
2k2

A

� 	
: ð4:16Þ

We now seek a control on kd2pnþ1
2k2

A by subtracting (4.15) at
time tn from (4.15) at time tn+1 and by testing the result with
Dtd2pnþ1

2,

Dt d2pnþ1
2

��� ���2

A
¼ � r � ðunþ1 � unÞ; d2pnþ1

2

� �
¼ unþ1 � un;rd2pnþ1

2

� �

6 kunþ1 � unkL2krd2pnþ1
2kL2 :

(Note that the above operation is legitimate also for n = 0 since
(4.15) holds for n = �1 owing to the definition p�

1
2 ¼ p�

3
2 and r�u0

=r � u0 = 0.) Then using the coercivity property of the bilinear form
a we infer that

Dtkrd2pnþ1
2kL2kd2pnþ1

2kA 6 kunþ1 � unkL2krd2pnþ1
2kL2 ;

which then implies that Dt2kd2pnþ1
2k2

A 6 kunþ1 � unk2
L2 . Inserting this

bound into (4.16), we obtain



Fig. 5.1. Rotational form (v = 1). L2-norm of the error at T = 2 on uniform grids. Top: velocity. Bottom: pressure. Left: 40 � 40 (dashed line), 80 � 80 (symbols) and 160 � 160
(dash-dotted line). Right: 1000 � 1000 uniform grid (symbols).
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Dt2 pnþ1
2

��� ���2

A
þ dpn�1

2

��� ���2

A
� pn�1

2

��� ���2

A

� 	

6 �2Dt r � unþ1; pn�1
2

� �
þ kunþ1 � unk2

L2 :

Combining this estimate with (4.14) gives

kunþ1k2
L2 þ Dt2 pnþ1

2

��� ���2

A
þ 1

2
Dtm krunþ1k2

L2 þ 4 r�unþ1
2

��� ���2

L2

� 	

6 kunk2
L2 þ Dt2 pn�1

2

��� ���2

A
þ 1

2
Dtmkrunk2

L2 : ð4:17Þ

The desired result is obtained by summing (4.17) over the time
levels from 0 to N � 1. h
Remark 4.2. The stability analysis of the above algorithm with the
pressure predictor 2pn�1

2 � 2pn�3
2 (as announced in [9]) reveals that

the algorithm is stable for v 2 [0,v0) for some v0 small enough. Our
numerical tests have revealed that v0 depends on the space dis-
cretization and v0 	 0.6 for the MAC scheme. The stability analysis
of the algorithm using the pressure predictor pn�1

2 þ /nþ1
2 shows

that the algorithm is stable for all v 2 [0,1] (see [11]). This shows
that the pressure predictor pn�1

2 þ /nþ1
2 should be preferred to

2pn�1
2 � 2pn�3

2.
5. Numerical results

We report in this section numerical tests illustrating the perfor-
mance of the algorithm described above. The tests are made in two
and three space dimensions using second-order central differences
on a MAC stencil. Weak scalability tests reported in Section 5.4
show that the method scales very well.

5.1. Convergence tests

The algorithm (4.5)–(4.8) is tested numerically on the following
smooth solution of the unsteady Stokes equations (with the source
term chosen properly):

u ¼ sin x sinðyþ tÞ; cos x cosðyþ tÞð Þ; p ¼ cos x sinðyþ tÞ: ð5:1Þ

The problem is solved in X = (0,1) � (0,1), for 0 6 t 6 T :¼ 2 with
Dirichlet boundary conditions (given by the pointwise values of
the exact solution). The initial condition is the exact solution at
t = 0. The accuracy of the incremental algorithm in standard and
rotational forms is measured on four uniform meshes 40 � 40,
80 � 80, 160 � 160, and 1000 � 1000, with Dt 2 {0.00625,0.0125,
0.025,0.05,0.1}. The rotational version of the method is obtained
by setting v = 1. The L2-norm of the error on the velocity and the



Fig. 5.2. Standard form (v = 0). Errors at T = 2 on uniform grids. Top: L2-norm on the velocity. Bottom: L2-norm on the pressure. Left: 40 � 40 (dashed line), 80 � 80 (symbols)
and 160 � 160 (dash-dotted line). Right: 1000 � 1000 uniform grid (symbols).
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L2-norm of error on the pressure at T = 2 are shown in Fig. 5.1 for the
rotational form of the scheme and in Fig. 5.2 for the standard one.

Since the velocity is computed on the MAC grid and the grid
points for the two Cartesian components are staggered, the error
is computed by averaging the Cartesian components at the center
of each square cell. This does not spoil the spatial error since the
averaging is second-order accurate.

The left panels in Figs. 5.1 and 5.2 demonstrate second-order
convergence in space on the L2-norm of velocity and the L2-norm
of the pressure at small time steps (Dt = 0.0007825) and relatively
coarse grids (h = 1/40–h = 1/160) where the spatial error domi-
nates. At larger time steps the convergence in time is very close
to second-order.

In order to quantify the convergence rate with respect to Dt, we
present in the right panels of Figs. 5.1 and 5.2 the L2-norm of the
error on the velocity and the L2-norm of the error on pressure on
a relatively fine grid (h = 0.001). Both the rotational and standard
forms exhibit convergence rate in time that are close to second-or-
der on the L2-norm of the velocity. The situation is slightly differ-
ent for the pressure. The convergence rate in time on the L2-norm
of the pressure is close to 3

2 for the standard form of the algorithm
and close to 2 for the rotational form. In all the cases the observed
convergence rates in time are higher than that those stated in
Theorem 4.2;
5.2. 2D driven cavity

We now compute the solution to the well known lid-driven cav-
ity problem in X = (0,1)2, using (4.5)–(4.8) with v ¼ 1

2. (The steady
state is independent of v.) Note that the purpose of this test is so-
lely meant to show that long time integration of (4.5)–(4.8) is con-
vergent. Accurate time-marching schemes are not CPU efficient to
compute steady-state solutions when compared to well-tuned
Newton-based steady-state solvers. In all the cases shown below
the computation starts with zero initial data and the horizontal
component of the velocity is set to one on the lid.

We show in Fig. 5.3 the horizontal velocity profile along the ver-
tical line x ¼ 1

2 at Re = 1000 (left panel) and Re = 5000 (right panel).
We compare our results obtained on a uniform grid composed of
5000 � 5000 grid points with the results of [6] which have been
computed on a uniform grid of 600 � 600 grid points. Both sets of
results are close to each other. Our results match those of [6] up
to the fourth digit and those of [4] up to the fifth digit at Re = 1000.

5.3. 3D driven cavity

The final validation test consists of solving the three-dimen-
sional flow in a lid-driven cavity in X = (0,1) � (0,1) � (0,2).
Denoting x,y,z the Cartesian coordinates, the driving lid is the side



Fig. 5.3. Horizontal component of the velocity along the vertical line through the center of the cavity: results with the rotational version of the scheme on a 5000 � 5000
uniform grid (continuous line) and benchmark results of [6] (�). Left graph: Re = 1000; Right graph: Re = 5000.

Fig. 5.4. Left: Horizontal component of the velocity along the vertical line through x = 0.5, y = 0.5, z = 1 and vertical component of the velocity along the horizontal line
through the same point: results with (4.5)–(4.8) (dashed line), computational results from [8] (dotted line), and experimental results from [8] (symbols �). Center and Right:
Streamlines in the plane z = 1 at t = 8. Present computational results (left) and experimental results (right).
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wall at x = 1. This flow has been studied by Guermond et al. [8] at
Re = 1000. [8] presents both experimental and computational re-
sults at various times after the impulsive start.

We present in the left panel of Fig. 5.4 the graph of the horizon-
tal component of the velocity along the vertical line in the plane
z = 1 passing through x = 0.5, y = 0.5, z = 1 at t = 4 and the vertical
component of the velocity along the horizontal line passing
through the same point and in the same plane at t = 4 also. The re-
sults obtained with (4.5)–(4.8) are shown in dashed lines. The
numerical results from [8] are shown in dotted lines, and the
experimental results reported in [8] are shown with symbols �.
The results shown in this figure have been produced using the
rotational version of the algorithm with v = 0.5, on a non-uniform
cosine-type grid as defined in [8]. The grid consists of 80 � 80 �
160 grid cells. The computational results from [8] are produced
on a P2 � P1 finite element cosine-type grid and containing
39 � 39 � 60 hexahedra each subdivided into five tetrahedra. The
solver used in [8] is the standard version of the incremental pres-
sure correction scheme with a semi-implicit treatment of the
advection terms.

A very detailed benchmark solution of this flow using
(4.5)–(4.8) with v = 1 and grids consisting of up to 2 � 109 grid
points will be presented in a forthcoming paper (see [10]); these
computations reveal that the results (dashed lines) shown in the
left panel of Fig. 5.4 are very close to the converged solution.

We show in center and right panels of Fig. 5.4 the flow stream-
lines in the plane z = 1 at t = 8. The computational solution is
shown in the center panel and the experimental streamlines from
[8] are shown in the right panel. We observe that the position of
the centers of the vortices in the two pictures are in a very good
agreement.

5.4. Parallel implementation

The algorithm (4.5)–(4.8) has been implemented in a parallel
code using MPI. The space approximation is done using second-or-
der central differences on a MAC stencil. The parallelization is
based on a Cartesian block decomposition of X with equal number
of grid points in each block.

Once approximated in space, all the one-dimensional linear
problems give rise to tridiagonal linear systems. We have chosen
to solve these systems by means of a Schur complement technique
based on the unknowns located at the interfaces between the sub-
domains. The only communications between subdomains that are



Table 5.1
Weak scalability: CPU time (in second) per time step for (4.5)–(4.8) + explicit
nonlinear terms.

# procs 2.7104 nds/proc 2.16105 nds/proc 106 nds/proc

1 � 1 � 1 0.056 s 0.41 s 2.0 s
8 � 8 � 8 0.077 s 0.54 s 2.3 s
8 � 8 � 16 0.094 s 0.55 s 2.34 s

Fig. 5.5. Speedup (dashed line) of the code used for this paper on the Hurr HPC
cluster of IAMCS at Texas A&M University with infiniband interconnect (algorithm
(4.5)–(4.8)). The ideal linear speedup is plotted with a solid line.
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required by (4.5)–(4.8) arise when solving the Schur complement
systems and when assembling the corresponding right-hand sides.
The Schur complement matrices are tridiagonal and are assembled
only once at a pre-processing step. Denoting by P0, . . . ,Ps the pro-
cessors involved in the assembling of a Schur matrix, the matrix
is assembled on P0 and all the processors communicate with P0.
The Schur linear system is solved by means of the direct Thomas
algorithm. This is extremely fast. For instance, on a cubic grid com-
posed of 1000 processors, the Schur systems are 9 � 9. Once the
Schur complement linear systems are solved, the solutions are
communicated back to the other processors P1, . . . ,Ps and the
interior unknowns in each sub-domain are obtained by solving
independent tridiagonal linear systems. The overall algorithm
requires only one exchange of the interface data per solve in each
direction and per time step. Therefore the parallel efficiency of the
algorithm is comparable to that of a fully explicit method.

We show weak scalability tests of the code in Table 5.1. Weak
scalability tests consists of fixing the number of grid points per
processor and observing the CPU time as the number of processor
increases. The tests have been performed while solving the 3D lid-
driven cavity problem mentioned in Section 5.3. The time reported
in each column corresponds to a fixed number of grid points per
processor (2.7 � 104 in column 1; 2.16 � 105 in column 2; and
106 in column 3). The CPU times reported in each row of the table
correspond to a fixed number of processors (1 processor in row 1;
512 processors in row 2; 1024 processors in row 3). For instance,
with 106 grid points per processor, the CPU time per time step goes
from 2.0 s on one processor to 2.34 s on 1024 processors (this was
the maximum number of processors available per user on the Hurr
HPC cluster of IAMCS at Texas A&M University at the time of this
test). This shows that the weak scalability of the algorithm is rea-
sonable considering that no attempt had been made to hide the
communications or to optimize the code.

The strong scalability performance of the algorithm is illus-
trated in Fig. 5.5. The speedup on p processors is defined as the ra-
tio of the CPU time necessary to solve the problem on one
processor divided by the CPU time needed to solve it on p
processors. We show the speedup on up to 1000 processors for a
Navier–Stokes problem discretized on grid composed of 400 �
400 � 400 = 64 � 106 nodes. The computations have been done
over ten time steps with 1,64,512 and 1000 processors. Fig. 5.5
shows that our direction splitting code has a speedup close to
the ideal speedup on up to 1000 processors.

6. Conclusions

We have proposed a new class of splitting schemes generalizing
the pressure-correction methods for the incompressible Navier–
Stokes equations. The main idea consists of replacing the Laplace
operator in the pressure-correction step by a more general sym-
metric positive definite operator. This new idea allowed us to
introduce a splitting technique based entirely on direction split-
ting. One striking feature of this new algorithm is that it has the
same stability and convergence properties as the pressure-correc-
tion method, either in standard or rotational form. When combined
with a second-order central difference scheme for the second
derivatives, the algorithm only requires the solution of tridiagonal
linear systems, independently of the dimensionality of the prob-
lem. Therefore, this new algorithm is computationally very effi-
cient, with a computational complexity of the same order as that
of an explicit scheme, and yet, unconditionally stable. This scheme
is particularly convenient for parallel implementation and demon-
strates excellent weak and strong scalability up to 1024 processors.

As described in this paper, the direction splitting algorithm can
be applied only to problems posed in simple domains that are com-
posed of the union of parallelepipeds whose faces are parallel to
the coordinate axes. This setting is nevertheless appropriate for a
large class of problems in science and engineering. We are thinking
in particular of academic problems that can be solved in simple
geometries e.g., simulation of turbulent flows in the atmosphere
and in the ocean, stratified flows, variable density flows, combus-
tion, solution of subgrid problems as part of an homogenization
procedure, etc. We believe also that the algorithm can also be ap-
plied to problems posed in more complex geometries. This can be
done for instance by combining it with a fictitious domain formu-
lation as that described in [27] or and immersed boundary formu-
lation like that of Peskin [21]. Another option could be to use
penalty methods as in [2] or a boundary fitting technique using
directional grid adjustment as in [7]. The authors have started
exploring the possibility of using directional grid adjustment for
the Dirichlet boundaries and have observed that the resulting
scheme is unconditionally stable and convergent for the time-
dependent Stokes problem. These results along with the stability
and convergence analysis of this adaptive algorithm will be re-
ported elsewhere.
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