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SUMMARY

The paper presents the convergence analysis of a characteristic=projection scheme for the incompress-
ible Navier–Stokes equations. This scheme is a modi�cation of the scheme analysed in Achdou and
Guermond (SIAM J. Numer. Anal. 2000; 37(3):799) which does not eliminate the projected velocity
�eld from the system but rather uses it as the advecting �eld in the explicit characteristic advection.
This �eld has a zero (generalized) divergence and is therefore more suitable for this purpose. It appears
that this scheme has the same convergence rate as the one in Achdou and Guermond (SIAM J. Numer.
Anal. 2000; 37(3):799) but on a given grid seems to produce more accurate results. The computational
cost is not signi�cantly higher since it requires only one extra inversion of the mass matrix which can
be done relatively e�ciently. We present numerical results which illustrate the properties of the scheme.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The projection methods have recently been combined with a characteristic method in a scheme
proposed and analysed by Achdou and Guermond [1]. The idea seems somewhat odd at a
�rst glance because projection methods usually produce an end-of-step velocity �eld whose
divergence (although controlled) is relatively large, while the solenoidality of the advecting
�eld is important for the stability of the method of characteristics. As proved in Reference
[1], however, this combination does produce a convergent and very e�cient algorithm. For
a discussion on this issue and references to important papers on projection and characteristic
methods the reader is referred to Achdou and Guermond [1] and the references therein.
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In Reference [2] a very similar scheme to the one introduced in Reference [1] is proposed.
In Reference [1], the authors use the viscous velocity (the one obtained at the �rst substep)
to perform the advection substep, whereas in Reference [2] the authors use the end-of-step
velocity for this purpose. Even though in the discrete setting chosen in Reference [2], the
end-of-step velocity is discontinuous and no obvious a priori bound on its divergence can
be derived, it is reasonable to think that this velocity �eld may possibly be more suitable
to use in the characteristic method than the viscous one since the projection step enforces
on this �eld a constraint which is close to solenoidality. The goal of the present paper is to
explore this idea. We study a �rst-order projection algorithm that uses the end-of-step velocity
(projected onto the discrete space of continuous velocities) to perform the Lagrangian step of
the algorithm. We show that the same error analysis as that in Reference [1] applies and yields
the same stability criteria. Although the theoretical analysis does not show that the proposed
strategy should perform better than the one in Reference [1], numerical results reported in
Section 4 show that, in some cases, the proposed scheme seems to give better results.
The remainder of the paper is organized as follows. Section 2 recalls some basic stability and

interpolation results concerning the characteristic and projection methods. Section 3 presents
the modi�ed scheme together with its convergence analysis. Finally, to illustrate the features
of the modi�ed scheme, Section 4 shows some numerical results on benchmark problems.

2. PRELIMINARY RESULTS

2.1. Navier–Stokes equations and their spatial discretization

We consider the unsteady Navier–Stokes problem

@u
@t
+ (u · ∇)u = −∇p+

1
Re

∇2u in �× (0; T ) (1)

∇ · u = 0 in �× (0; T ) (2)

u = 0 on @�× (0; T ); u= u0 on �×{0} (3)

where � is a smooth open bounded connected domain in Rd, d=2 or 3. For the sake of
simplicity we consider only homogeneous Dirichlet conditions for the convergence analysis,
but other boundary conditions can be considered and are actually used in the numerical
simulations reported in Section 4.
The standard Lebesgue spaces are denoted by Lp. We denote the usual Sobolev spaces

by Ws;p(�), 06s6∞, 06p6∞ and the corresponding norms and semi-norms by ‖:‖s;p,
|:|s;p. For p=2 we set Hs=Ws;2 and the related norm (semi-norm) is denoted by ‖:‖s(|:|s).
Sobolev and Lebesgue spaces with a zero subscript are the completion of the space of the
smooth functions compactly supported in �. We �nally introduce V = {v∈H 1

0 (�)
d;∇ · v=0}.

Throughout the paper we use c to denote a generic constant that depends only on the data of
the problem, that is, c does not depend on h or �t. The value of this constant may change at
each occurrence.
For the spatial discretization we consider a sequence of quasi-uniform triangulations, and

we denote by h the mesh size. The velocity is approximated in H 1
0 (�)

d by using continuous
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PROJECTION=CHARACTERISTIC SCHEME 537

�nite elements composed of piecewise polynomial functions of degree less than or equal to l.
The corresponding discrete space is denoted by Xh. Likewise, the pressure is approximated in
L2(�) by using continuous �nite elements of polynomial degree less than or equal to l′. The
discrete pressure space is denoted by Mh. From now on, we assume that the discrete spaces
Xh and Mh satisfy the LBB condition

∃c¿0; sup
vh∈Xh

(∇ · vh; qh)
‖vh‖1‖qh‖0¿c; ∀qh ∈Mh (4)

We now introduce elliptic interpolations of u(t) and p(t) as follows. We de�ne wh(t)∈Xh

and qh(t)∈Mh as the solution of the following problem:

(∇wh(t);∇vh)− (qh(t);∇ · vh) = (∇u(t);∇vh)− (p(t);∇ · vh); ∀vh ∈Xh (5)

(∇ ·wh(t); rx) = (∇ · v(t); rx); ∀rx ∈Mh (6)

We recall the following standard results (see e.g. Reference [3] for other details).

Lemma 2.1
Provided that u( j) ∈L�(0; T ;Hl+1(�)d ∩V ), p( j) ∈L�(0; T ;Hl(�)∩L20(�)), for 16�6∞, there
exists c¿0 such that

‖u( j) − w( j)h ‖L�(0; T ;L2(�)d) + h
[‖u( j) − w( j)h ‖L�(0; T ;H 1(�)d) + ‖p( j) − q( j)h ‖L�(0; T ;L2(�))

]
6chl+1[‖u( j)‖L�(0; T ;Hl+1(�)d) + ‖p( j)‖L�(0; T ;Hl(�))

]
(7)

Lemma 2.2
Provided that u( j) ∈L�(0; T ;H 2(�)d ∩H 1

0 (�)
d), p( j) ∈L�(0; T ;H 1(�)∩L20(�)), for 16�6∞,

there exists c¿0 such that

‖w( j)h ‖L�(0; T ;W 0;∞(�)d ∩W 1;3(�)d)6c
(‖u( j)‖L�(0; T ;H 2(�)d) + ‖p( j)‖L�(0; T ;H 1(�))

)
(8)

Lemma 2.3
Under the conditions of Lemma 2.2

‖∇q( j)h ‖L�(0; T ;L2(�)d)6c
(‖p( j)‖L�(0; T ;H 1(�)) + ‖u( j)‖L�(0; T ;H 2(�))

)
(9)

2.2. Operator splitting and the method of characteristics

It is well known (see e.g. Reference [4]) that if we use the method of characteristics to
discretize the total time derivative in the Navier–Stokes equations, we obtain the following
generalized Stokes problem:

un+1(x)− un(x)
�t

+∇pn+1(x)−∇2un+1(x) = 0

∇ · un+1(x) = 0
(10)

where the advected velocity un(x) is de�ned below (see (12)). As usual, the superscript
n denotes the nth time level, and we suppose that the time interval [0; T ] is discretized
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by a uniform grid {t0 = 0; t1; : : : ; tN =T} with a grid size �t. The Reynolds number can be
eliminated via a proper rescaling but, of course, the constants in the error estimates will
depend implicitly on it. Since in this paper we analyse a �rst-order projection=characteristic
scheme, we present the splitting for the case of the �rst-order Euler backward time stepping.
The same approach can be used to derive second-order schemes.
To de�ne the underlined velocity un(x), we introduce the so-called characteristic curve

Xn+1
x (s) as the solution to the following kinematic problem:

dXn+1
x

ds
=−u(Xn+1

x (s); t n+1 − s); s∈ (0; �t]

Xn+1
x (0) = x

(11)

where u(y; t) is the Navier–Stokes velocity �eld, and x is an arbitrary point within the solution
domain where the characteristic curve terminates at time level t n+1. We refer to the point
Xn+1
x (�t) as the foot of the characteristic, and we henceforth denote this �eld by Xn+1

x . The
convected velocity �eld un(x) is de�ned by

un(x)= un(Xn+1
x ; t n) (12)

Since in general u(Xn+1
x (s); t n+1 − s) cannot be computed exactly, we replace this �eld by

an approximate one un∗ (yet to be de�ned clearly and assumed to be constant in time). For
instance, it is standard to replace the time-dependent velocity �eld in (11) by u(·; t n). The
resulting scheme can be shown to be �rst-order accurate in time. As shown by Boukir et al.
[5], if a second-order extrapolation is used, say 2u( · ; t n)−u(·; t n−1), and the time stepping in
(10) is modi�ed accordingly, the entire scheme is second-order accurate despite the �rst-order
approximation of the foot of the characteristic.
Henceforth, when an approximate velocity �eld is used to approximate the characteristic

Xn+1
x (s), say un∗, the approximated foot of the characteristic is denoted by X

n+1
x . For any

vector- or scalar-valued �eld in �, say �, we denote

�(x)= �(Xn+1
x ) and �(x)= �(X

n+1
x ) (13)

Let us now recall some stability and approximation results for the method of characteristics.
These results are largely due to Douglas and Russell [6] and S�uli [7].

Lemma 2.4
Assume that

�t‖u‖L∞(W 1;∞(�)d)61=6; �t‖un∗‖1;∞6� (14)

where � is such that the mapping

x→X
n+1
x (s)=x − sun∗ (15)

has a Jacobian which is greater than or equal to 1
2 (it has been proved in the above-mentioned

studies that such an � exists). Then, if the exact solution is smooth enough (see for details
Reference [1]).
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(i) for any �∈H 1(�)

‖ ��− �‖0;16c �t(‖un − un∗‖0;2 + �t‖ut‖L∞(L2(�)d))‖∇�‖0;2 (16)

(ii) for any �∈L2(�)

‖�− �‖−162�t‖u‖C(C0; 1(�)d)‖�‖0 (17)

3. ANALYSIS OF THE MODIFIED PROJECTION=CHARACTERISTIC SCHEME

3.1. Presentation of the fully discrete scheme

If we approximate (10) by using the �rst-order pressure-correction projection method we
obtain the following semidiscrete scheme:

ũn+1 − un + ũn − ũn

�t
−∇2ũn+1 = −∇pn; ũn+1|@� = 0

un+1 − ũn+1

�t
= −∇(pn+1 − pn); ∇ · un+1 =0; un+1 · n|@� = 0

(18)

where ũn(x) is computed by using the following de�nition:

un∗= ũn (19)

Now we choose the discrete setting for the two velocities and the pressure as follows ũh ∈Xh,
uh ∈Yh=Xh+∇Mh, and ph ∈Mh. This setting is discussed in details by Guermond and Quar-
tapelle [3]. We denote by ih the injection of Xh into Yh. It is clear that the adjoint of ih, say
iTh , is the L2 projection of Yh onto Xh. Using these notations, we can write the fully discrete
Galerkin formulation of the projection=characteristic scheme as follows:

Find ũn+1
h ∈Xh; un+1

h ∈Yh; pn+1
h ∈Mh such that(

ũn+1
h − iThu

n
h + ũ

n
h − ũn

h

�t
; vh

)
= (pn

h ;∇ · vh)− (∇ũn+1
h ;∇vh); ∀vh ∈Xh (20)

(
un+1
h − ihũn+1

h

�t
; yh

)
=−(∇(pn+1

h − pn
h ); yh); ∀yh ∈Yh (21)

(un+1
h ;∇qh) = 0; ∀qh ∈Mh (22)

As proved by Guermond and Quartapelle [3] (their Proposition 3.3), the projection part of
this scheme (i.e. (21), (22) is equivalent to the following problem:

Find pn+1
h ∈Mh such that

(∇(pn+1
h − pn

h );∇qh) =− 1
�t
(∇ · ũn+1

h ; qh); ∀qh ∈Mh (23)

un+1
h = ũn+1

h − �t∇(pn+1
h − pn

h ) (24)
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Further on, Guermond and Quartapelle [3] and Achdou and Guermond [1] substitute (24) into
(20) and thus eliminate the end-of-step velocity un+1

h from the system. Since (24) is no longer
present, the resulting formulation is somewhat more computationally e�ective than the original
one. However, the actually computed velocity �eld ũn+1

h is generally non-solenoidal and one
may suspect that its divergence is greater than the divergence of the projected �eld iThu

n+1
h ,

though no a priori estimate is known to support this claim. Since characteristic schemes
rely on the incompressibility of the convecting �eld for stability, the lack of control on the
divergence of ũn+1

h may be a drawback. Therefore, in the present paper we discuss a scheme
which does not eliminate the projected velocity but explicitly computes an approximation to
it. As the numerical results reported at the end of this paper seem to con�rm, in some cases
it may be wise to ‘waste’ resources in this computation to produce a velocity �eld which
allows for the use of larger time steps (although the theoretical limitations on the time step
remain of the same order).
Since the projection equation (24) produces a discontinuous (although weakly solenoidal)

velocity which cannot be used as the convective �eld in the Lagrangian step, we simply
project it onto Xh via the following Galerkin formulation:

Find iThuh ∈Xh such that

(iThu
n+1
h ; vh)= (ũn+1

h ; vh)− �t(∇(pn+1
h − pn

h ); vh); ∀vh ∈Xh (25)

iTh being a projection, we clearly have

‖iThun
h‖06‖un

h‖0 (26)

A small extra computational e�ort is necessary for inverting the mass matrix that arises from
(25). However, since the mass matrix is well conditioned, a properly preconditioned iterative
method (using for example its lumped version) can invert it very e�ectively. In fact, this
scheme is close in spirit to the one of Gresho and Chan [8], part II. From now on we use
the following de�nition for computing the foot of characteristics:

un∗= iThu
n
h (27)

Consequently, we modify our projection scheme as follows:

Find ũn+1
h ∈Xh; un+1

h ∈Yh; and pn+1
h ∈Mh such that(

ũn+1
h − iThu

n
h

�t
; vh

)
= (pn

h ;∇ · vh)− (∇ũn+1
h ;∇vh); ∀vh ∈Xh (28)

(
un+1
h − ihũn+1

h

�t
; yh

)
=−(∇(pn+1

h − pn
h ); yh); ∀yh ∈Yh (29)

(un+1
h ;∇qh) = 0; ∀qh ∈Mh (30)

The convergence analysis of this scheme is reported in the next section.

3.2. Convergence analysis

The main result of this paper is the following theorem.
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Theorem 3.1
If the exact solution u, p, and the initial data are smooth enough, (see for details Reference
[1]), there exist ce; cs¿0 and hs such that for all h∈ ]0; hs], and �t6cshd=3

‖u − uh‖‘∞(L2(�)d) + ‖u − ũh‖‘∞(L2(�)d)6 ce(hl+1 + �t) (31)

‖u − ũh‖‘2(H 1(�)d)6 ce(hl + �t) (32)

Proof
Let us �rst introduce the following notations for the approximation errors:

ẽnh =w
n
h − ũn

h ; enh =w
n
h − un

h ; �nh = qn
h − pn

h (33)

and the interpolation error
ẽnI =w

n
h − un (34)

Similarly to References [1, 5, 7] the proof proceeds by induction. Let �¿0 be such that the
hypotheses of Lemma 2.4 hold. Under proper initialization assumptions we can show (see
Reference [1]) that

‖u0 − u0h‖0 + ‖u0 − ũ0h‖0 + h‖u0 − u0h‖16 c hl+1 (35)

�t‖iThu0h‖1;∞6 � (36)

Then, the induction hypothesis is that there exist cs¿0, ce¿0 and hs¿0 such that at time
step tm, 06m6T=�t and for all h¡hs and �t6cshd=3 we have

‖u − uh‖‘∞(0; tm;L2(�)d) + ‖u − ũh‖‘∞(0; tm;L2(�)d)6 ce (hl+1 + �t) (37)

‖u − ũh‖‘2(0; tm;H 1(�)d)6 ce (hl + �t) (38)

�t‖iThumh ‖1;∞6 � (39)

Now we shall prove that these estimates hold at the next time level m+ 1.
Given the particular choice we have made for the interpolating functions wh and qh, the

exact solution of the boundary-value problem (1–3) satis�es(
wn+1

h − iThw
n
h

�t
; vh

)
+ (∇wn+1

h ;∇vh)− (qn+1
h ;∇ · vh) =

(
wn+1

h − wn
h

�t
; vh

)
−
(
Du
Dt
(x; t n+1); vh

)
(40)

Note that we have used iThwh=wh. Subtracting this equation from (28), we obtain(
ẽn+1h − iTh e

n
h

�t
; vh

)
+ (∇ẽn+1h ;∇vh)− ( n

h ;∇ · vh)

=
(
wn+1

h − wn
h

�t
; vh

)
−
(
Du
Dt
(x; t n+1); vh

)
(41)
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After rearranging the terms, we have(
ẽn+1h − iTh e

n
h

�t
; vh

)
+ (∇ẽn+1h ;∇vh)− ( n

h ;∇ · vh)

=
(
wn+1

h − wn
h

�t
; vh

)
+

(
iTh e

n
h − iTh e

n
h

�t
; vh

)

−
(
un+1 − un

�t
; vh

)
− 1

�t

(∫ t n+1

t n
(t − t n)

D2u
Dt2

(x(t); t) dt; vh

)

=− 1
�t

(∫ t n+1

t n
(t − t n)

D2u
Dt2

(x(t); t) dt; vh

)
+
(
un − un

�t
; vh

)

+
(
en+1I − enI

�t
; vh

)
+

(
iTh e

n
h − iTh e

n
h

�t
; vh

)
=

4∑
i=1

Ri(vh) (42)

where we have set

R1(vh) =− 1
�t

(∫ t n+1

t n
(t − t n)

D2u
Dt2

(x(t); t) dt; vh

)
; R2(vh)=

(
un − un

�t
; vh

)

R3(vh) =
(
en+1I − enI

�t
; vh

)
; R4(vh)=

(
iTh e

n
h − iTh e

n
h

�t
; vh

) (43)

and  n
h = qn+1

h − qn
h + �nh . Choosing vh=2�tẽ

n+1
h and using the equality 2(a; a − b)= ‖a‖2 +

‖a − b‖2 − ‖b‖2 together with the Poincar�e–Friedrichs inequality (the constant � is precisely
the ellipticity constant of the bilinear form (∇ ·;∇ ·)) we obtain

‖ẽn+1h ‖20 + ‖ẽn+1h − iTh e
n
h‖20 − ‖iTh enh‖20 + 2��t‖ẽn+1h ‖21 + 2�t(ẽn+1h ;∇ n

h )62�t
4∑

i=1
|Ri(ẽn+1h )|

(44)

From (24) we easily obtain

en+1h − ihẽn+1h

�t
+∇(�n+1h −  n

h )=0 (45)

and from (22)

(en+1h ;∇qh)=0 (46)

Multiplying (45) by 2�t2∇ n
h and using Lemma 2.3 we infer

−2�t(ẽn+1h ;∇ n
h ) + �t2‖∇�n+1h ‖20 − ‖en+1h − ihẽn+1h ‖20 = �t2‖∇ n

h ‖20
6 �t2(1 + �t)‖∇�nh‖20 + c�t3 (47)
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Multiplying the same equation by 2�ten+1h we have

‖en+1h ‖20 + ‖en+1h − ihẽn+1h ‖20 − ‖ẽn+1h ‖20 = 0 (48)

Summing (44), (47), and (48) and taking into account (26) we obtain

‖en+1h ‖20 + ‖ẽn+1h − iTh e
n
h‖20 + 2��t‖ẽn+1h ‖21 + �t2‖∇�n+1h ‖20

62�t
4∑

i=1
|Ri(ẽn+1h )|+ ‖enh‖20 + �t2(1 + �t)‖∇�nh‖20 + c�t3 (49)

Estimates for Ri(ẽn+1h ), i=1; 2; 3; 4 can be obtained as follows:

(i) Using the classical inequality (a; b)6�‖a‖2 + 1=4�‖b‖2, ∀�¿0, we deduce.
2�t|Rn+1

1 (ẽn+1h )|6��t‖ẽn+1h ‖21 + c�t3 (50)

where � is a constant to be �xed later.
(ii) Concerning the second non-linear residual we have

2�t|Rn+1
2 (ẽn+1h )|6 �t

(
�‖ẽn+1h ‖20 +

1
�

∣∣∣∣∣∣∣∣un − un

�t

∣∣∣∣∣∣∣∣2
0

)

6 �t(�‖ẽn+1h ‖20 + c‖un‖21;∞‖un − iThu
n
h‖20)

6 �t(�‖ẽn+1h ‖20 + c(‖un − wn
h ‖20 + ‖wn

h − iThu
n
h‖20))

6 �t(�‖ẽn+1h ‖21 + c′h2(l+1) + c‖enh‖20) (51)

In the last estimate we used the interpolation property of wn
h given by Lemma 2.1.

(iii) For the third non-linear residual we proceeds as follows:

2�t|Rn+1
3 (ẽn+1h )| = 2|(en+1I − enI ; ẽn+1h )|

6 2(|(ẽn+1h ; en+1I − enI )|+ |(ẽn+1h ; enI − enI )|+ |(ẽn+1h ; enI − enI )|)

6 2(‖ẽn+1h ‖0‖en+1I − enI ‖0 + ‖ẽn+1h ‖1‖enI − enI ‖−1

+ ‖ẽn+1h ‖0;∞‖enI − enI ‖0;1) (52)

Each of the three terms in the right-hand side of the last inequality can be estimated as
follows:

2‖ẽn+1h ‖0‖en+1I − enI ‖06 ��t‖ẽn+1h ‖21 + c‖@teI‖2L2(t n;t n+1;L2(�)d)

6 ��t‖ẽn+1h ‖21 + c�th2(l+1) (53)
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Using Lemma 2.4 and the interpolation properties stated in Lemma 2.1 we have

‖ẽn+1h ‖1‖enI − enI ‖−16 2�t‖ẽn+1h ‖1‖u‖C(C0; 1(�)d)‖enI ‖0
6 ��t‖ẽn+1h ‖21 + c�th2(l+1) (54)

Upon using an inverse inequality (see Reference [9, p. 140]) we obtain

2‖ẽn+1h ‖0;∞‖enI − enI ‖0;16 c�tD(h)‖ẽn+1h ‖1(‖un − iThu
n
h‖0;2 + �t‖@tu‖L∞(L2(�)d))‖∇enI ‖0;2

6 c�tD(h)‖enI ‖1(‖enI ‖0 + ‖iTh enh‖0 + c�t)‖ẽn+1h ‖1 (55)

Here D(h) comes from the inverse estimate (of course, we assume that the grid satis�es the
inverse assumption, see Reference [9])

D(h)=

{
(1 + | log h|)1=2 in 2D

h−1=2 in 3D
(56)

The interpolation properties of wh now clearly imply that if hs is small enough then cD(h)‖enI ‖1
61. Therefore,

2‖ẽn+1h ‖0;∞‖enI − enI ‖0;16��t‖ẽn+1h ‖21 + �t‖enh‖20 + c�t(�t2 + hl+1)2 (57)

Finally we obtain the following bound:

2�t|Rn+1
3 (ẽn+1h )|63��t‖ẽn+1h ‖21 + �t‖enh‖20 + c�t(�t2 + hl+1)2 (58)

(iv) We treat the fourth non-linear residual as follows:

2�t|Rn+1
4 (ẽn+1h )|62(‖iTh enh − iTh e

n
h)‖−1‖ẽn+1h ‖1 + ‖iTh enh − iTh e

n
h)‖0;1‖ẽn+1h ‖0;∞) (59)

Using Lemma 2.1 and Young’s inequality, we obtain the following estimates for the terms in
the right-hand side:

2‖iTh enh − iTh e
n
h‖−1‖ẽn+1h ‖16 c�t‖enh‖0‖ẽn+1h ‖16�t(c‖enh‖20 + �‖ẽn+1h ‖21) (60)

2‖iTh enh − iTh e
n
h‖0;1‖ẽn+1h ‖0;∞6 c�t(‖enI ‖0 + ‖iTh enh‖0 + �t‖@tu‖L∞(L2(�)d))‖iTh enh‖1D(h)‖ẽn+1h ‖1

(61)

Taking into account the induction hypothesis and the interpolation error estimate we obtain

2‖iTh (enh − enh)‖0;1‖ẽn+1h ‖0;∞6c�tD(h)(hl+1 + �t)‖ẽn+1h ‖1‖iTh enh‖1 (62)

It is at this point that the error analysis really departs from that in Reference [1]. Here we
have not yet an a priori control on ‖iTh enh‖21. To obtain such a control we proceed as follows:

‖iTh enh‖16 ‖ẽn+1h − iTh e
n
h‖1 + ‖ẽn+1h ‖1

6 ch−1‖ẽn+1h − iTh e
n
h‖0 + ‖ẽn+1h ‖1
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Then, we have

2‖iTh (enh − enh)‖0;1‖ẽn+1h ‖0;∞6 �t(�+D(h)(hl+1 + �t))‖ẽn+1h ‖21
+ c�t(h−1D(h)(hl+1 + �t))2‖ẽn+1h − iTh e

n
h‖20

It is clear that if h is small enough and �t6cshd=3 with cs small enough, then D(h)(hl+1+�t)6�
and c�t

(
h−1D(h)(hl+1 + �t)

)2
61=2. As a result,

2�t|Rn+1
4 (ẽn+1h )|63��t‖ẽn+1h ‖21 + c�t‖enh‖20 + 1

2‖ẽn+1h − iTh e
n
h‖20 (63)

Finally, substituting the estimates for Rn+1
i in (49) we obtain

‖en+1h ‖20 + �t2‖∇�n+1h ‖20 + 1
2‖ẽn+1h − iTh e

n
h‖20 + (2�− 8�)�t‖ẽn+1h ‖21

6(1 + c�t)(‖enh‖20 + �t2‖∇�nh‖20) + c′�t(�t + hl+1)2 (64)

We now choose �= �=8. Using the discrete Gronwall lemma and the initialization hypothesis
we obtain

‖em+1h ‖20 + �t2‖∇�m+1h ‖20 +
m∑

n=1
‖ẽn+1h − iTh e

n
h‖20 + ��t

m∑
n=1

‖ẽn+1h ‖216c(�t + hl+1)2 (65)

Note that in this estimate, the constant c depends only on the data. Provided T is bounded,
c does not depend on m, �t, or h. From this estimate, the induction hypothesis follows
immediately taking into account that

un − un
h = e

n
h − enI ; un − ũnh= ẽnh − enI (66)

Now it remains to prove the stability hypothesis of Lemma 2.4

‖iThum+1h ‖1;∞�t6�

At this point we cannot use the same argument as in Reference [1] since we do not control
the H 1 norm of iThu

m+1
h ; the only a priori control we have up to now is the one on the L2

norm of this quantity. To bridge the gap we use a new result stated below in Lemma 3.2.
Owing to this lemma we have ‖iThum+1h ‖16c‖ũm+1h ‖1. This estimate yields ‖iThum+1h ‖16c, for
‖ũm+1h ‖1 is bounded, thanks to the a priori error estimates already at hand and an inverse
inequality in time. Then the rest of the proof uses inverse inequalities in exactly the same
fashion as done by Achdou and Guermond [1] and Boukir et al. [5]. This completes the proof
of the theorem.

Lemma 3.1
Let ĩTh : L

2(�)d →Xh be the L2 projection onto Xh (note that ĩTh is an extension of iTh ). Then,
there is c¿0, independent of h, such that

‖ĩTh v‖16c‖v‖1; ∀v∈H 1(�)d
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Proof
Let Ih an interpolation operator on Xh stable in H 1(�)d and invariant on Xh, i.e., e.g. the
elliptic interpolation. Then we have

‖ĩTh v‖16 ‖ĩTh v −Ihv‖1 + ‖Ihv‖1
6 ‖ĩTh (v −Ihv)‖1 + c′‖v‖1
6 ch−1‖ĩTh (v −Ihv)‖0 + c′‖v‖1
6 ch−1‖v −Ihv‖0 + c′‖v‖1
6 c‖v‖1

The proof is complete.

Lemma 3.2
Let u∈H 1

0 (�)
d. De�ne �h ∈Mh s.t.

(∇�h;∇qh)= (u;∇qh); ∀qh ∈Mh

and set uh= u−∇�h. Then, provided � is smooth enough, there is a constant c independent
of h such that ‖iThuh‖16c‖u‖1.
Proof
Let v∈L2(�)d and �∈H 1(�) be such that

v+∇�= u

∇ · v=0; v · n|@� =0

It is clear that � is solution to the following Poisson problem (up to a constant):

∇2�=∇ · u
@n�|@� = 0

Owing to the regularizing properties of the Laplacian in smooth domains, we have ‖�‖26c
‖u‖1. By de�nition, �h is the Galerkin approximation of �; hence, we have

‖�h‖16 c‖�‖16c′‖u‖1 (67)

‖�h − �‖16 ch‖�‖26c′h‖u‖1 (68)

Since ĩTh is an extension of i
T
h , we have

‖iThuh‖1 = ‖ĩThuh‖1
= ‖ĩThu − ĩTh∇�h‖1
= ‖ĩThu‖1 + ‖ĩTh∇(�h − �)‖1 + ‖ĩTh∇�‖1
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Then, owing to Lemma 3.1 and estimates (67), (68), we infer

‖iThuh‖16 c(‖u‖1 + h−1‖ĩTh∇(�h − �)‖0 + ‖∇�‖1)
6 c(‖u‖1 + h−1‖∇(�h − �)‖0)
6 c‖u‖1

This completes the proof.

The pressure estimate follows from the inf-sup condition and can be proved in the same
fashion as done by Guermond and Quartapelle [3, Theorem 5.7].

Remark 3.1
Achdou and Guermond [1] proved that under stronger regularity assumptions on the solution
of the continuous problem one can weaken the stability assumption on the time step to
�t=O(hd=4). Because of the enormous technical details involved in this proof we do not
reproduce it here in the context of the present scheme.

4. NUMERICAL RESULTS

Before presenting the computational results with the �rst-order scheme, we point out that
from practical point of view it is more advantageous to use the second-order version of the
scheme discussed in this paper because it yields better accuracy while requiring almost the
same resources as the �rst-order one. It employs a second-order backward di�erence in time
for the time derivative and a second-order extrapolation for the advecting �eld. The error
estimate for such a characteristic scheme using Uzawa iteration for the generalized Stokes
problem has been analysed by Boukir et al. [5] yielding a stability condition of the form
�t=O(hd=6). We believe that a similar condition should hold if a second-order projection
rather than Uzawa iterations is used, but the proofs are very technical and we do not discuss
them here. Such a second-order characteristic scheme has been thoroughly tested numerically
by Minev and Ethier [2].
In the remainder of this section, we shall present a brief comparison of the present (�rst-

order) scheme with the (�rst-order) scheme of Reference [1]. In the present context, the
latter scheme has been implemented slightly di�erently. To compute the contribution of the
convected velocity �eld ũn

h , we �rst interpolate it on Xh and then compute the integrals using
a Gauss quadrature. Achdou and Guermond [1] trace the characteristics at the Gauss points in
each element thus directly integrating the convected �eld ũn

h . In both cases the integrals are
not exactly computed since the integrands are non-polynomial functions. The computation of
these integrals is one of the major problems of the characteristic based methods. The e�ect
of the inexact integration is very hard to evaluate and it is taken into account neither in
the present analysis nor the analysis of Achdou and Guermond [1]. Some results for several
integration schemes (not including the present one and the one employed in Reference [1])
are presented in Reference [10]. They indicate that some integration schemes can have a
destabilizing e�ect on the entire algorithm. The numerical results with both schemes and the
inexact integration as explained above, do not indicate such a behaviour. Note that the present
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integration scheme is potentially cheaper (especially in 3D) than the one used in Reference
[1] for it requires to evaluate the foot of only those characteristics that start from a node of
a velocity �nite element (excluding the boundary nodes). In the implementation of Achdou
and Guermond the same should be done for all the Gaussian points in each �nite element. In
3D this means at least 15 Gaussian points per element times the number of elements which
in many cases is much larger than the number of nodes.
To verify the convergence rate of the two schemes, we have used a ‘manufactured’ analytic

solution of the Navier–Stokes equations (see Reference [11]).

u=−[ex sin(y + z) + ez cos(x + y)]e−d2t

v=−[ey sin(z + x) + ex cos(y + z)]e−d2t

w=−[ez sin(x + y) + ey cos(z + x)]e−d2t

p=− 1
2 [e

2x + e2y + e2z + 2 sin(x + y) cos(z + x)ey+z

+2 sin(y + z) cos(x + y)ez+x + 2 sin(z + x) cos(y + z)ex+y]e−2t

The Navier–Stokes equations were solved in �= ]−0:5; 0:5[3 using a tetrahedral �nite element
grid, generated as follows. The solution domain was �rst subdivided into 83 uniform subcubes,
each of which was further subdivided into �ve tetrahedra. The resulting grid contained 4401
nodes and 2560 elements. Dirichlet boundary conditions derived from the analytical solution
were prescribed on the domain boundary. The Reynolds number was Re=1. We integrated
the equations with time steps 0.1, 0.05, 0.025, 0.0125 from time t=0 to 3. The results for
the ‘∞(0; 3;L2(�)d) error of both schemes are presented in Figure 1. Although the order of
convergence for both schemes are approximately identical, the present scheme produces an
error that is about three times smaller. Moreover, the L2 norm of the weak divergence of iThuh
is about ten times smaller than that of ũh.
The next test case is the �ow behind a backward facing step which has been thoroughly

studied in 2D. We solved the 3D equations imposing symmetry conditions on the front and
back faces of the channel. We used a grid consisting of 22 525 nodes and 11 800 elements
suitably clustered around the step (see Figure 2). One of the most representative and sensitive
characteristics of the �ow �eld is the length of the recirculation zone formed behind the step.
The recirculation lengths computed with the two schemes at various Reynolds number are
compared to available numerical and experimental data in Table I. For the sake of simplicity
the recirculation length was not computed from the interpolant of the velocity but we simply
recorded the �rst point in the layer of points neighbouring the wall of the channel (on a
distance of 0.1 from the wall), where the sign of the horizontal component of the velocity
(alongside the channel) changes. This typically underpredicts the actual length corresponding
to the �nite-element interpolant. The tests with both schemes, for a given Reynolds number and
time step, were run for the same number of time steps. Clearly, the present scheme produces
relatively accurate results for larger time steps. The scheme of Reference [1] generally does
not reach steady state within the prescribed integration time or even diverges with time steps
for which the present scheme works acceptably well. When steady state is not reached with
scheme [1] within the prescribed time, we have observed that any further time integration
also failed to reach steadiness. We point out that if both schemes reach steadiness and if the
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Figure 1. (a) ‘∞(0; 3;L2(�)d) norm of the error in velocity vs. time step: present scheme
(dashed line), Achdou and Guermond [1] (dotted line), �rst-order slope (solid line); and
(b) L∞(0; 3;L2(�)) norm of the velocity divergence vs. time step: present scheme (dashed

line); Achdou and Guermond [1] (dotted line), �rst-order slope (solid line).
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steady solution is unique, then both schemes must produce the same results since from (21)
and (29) we have un+1

h = ihũn+1
h at steadiness, that is iThu

n+1
h = ũn+1

h . The same backward facing
step �ow is simulated in Reference [2] using the second-order version of the present scheme
and the results are in excellent agreement with the available numerical and experimental data.
We �nally point out that in some other test cases (a 3D lid-driven cavity for example)

the two schemes yielded almost identical results for a wide range of Reynolds numbers. The
conclusion from all these numerical results is that if advection is important and the method
of characteristics is used, then one should use an advecting velocity �eld which is as close
as possible to a solenoidal �eld. The present results suggest that for this purpose iThuh is a
better candidate than ũh.
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Table I. Comparison of the dimensionless length of the recirculation zone
for �ow over backward-facing step with some experimental or numerical
data (for details see Reference [2]). In brackets we provide the time step

used to produce the given recirculation length.

Re Available data Present scheme Achdou and Guermond scheme

5 (�t=0:2) No st. state (�t=0:2)
200 5.4 5.1 (�t=0:1) No st. state (�t=0:1)

5.1 (�t=0:05) 5.1 (�t=0:05)

7.1 (�t=0:4) diverges (�t=0:4)
400 8.5 7.9 (�t=0:2) diverges (�t=0:2)

8.1 (�t=0:1) No st. state (�t=0:1)
7.8 (�t=0:05) 7.8 (�t=0:05)
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