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SUMMARY

The purpose of this paper is to validate a new highly parallelizable direction splitting algorithm. The paral-
lelization capabilities of this algorithm are illustrated by providing a highly accurate solution for the start-up
flow in a three-dimensional impulsively started lid-driven cavity of aspect ratio 1�1�2 at Reynolds numbers
1000 and 5000. The computations are done in parallel (up to 1024 processors) on adapted grids of up to 2
billion nodes in three space dimensions. Velocity profiles are given at dimensionless times t D 4, 8, and 12;
at least four digits are expected to be correct at Re D 1000. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The purpose of this paper is to validate a new highly parallelizable direction splitting algorithm for
solving the time-dependent incompressible Navier–Stokes equations. The central idea behind this
new algorithm is to replace the standard Poisson problem for the pressure correction by a series
of one-dimensional second-order boundary value problems. This algorithm has been announced in
[1], but the performance of the algorithm has not yet been documented anywhere. The intent of
the present paper is to illustrate the capabilities of this new method for massive parallelization by
computing a highly accurate solution for the start-up flow in a three-dimensional impulsively started
lid-driven cavity of aspect ratio 1�1�2 at Reynolds numbers 1000 and 5000 using grids consisting
of up to 2� 109 nodes. The set of data that we provide herein could constitute a helpful benchmark
for developers of time-dependent three-dimensional incompressible Navier–Stokes codes.

The paper is organized as follows. A description of the new numerical method is provided in
Section 2. We pursue further the ideas introduced/announced in [1] in the sense that in addition
to splitting the pressure correction, we also apply a direction splitting technique to the momen-
tum equation, thus further reducing the overall computational cost of the method. The method
is validated in Section 3 by making comparisons with two-dimensional steady benchmark results
from [2, 3]. Our results coincide with the highly accurate computations of [2] up to the fifth digit.
The method is also validated by making comparisons with steady three-dimensional results from
[4]. In Section 4, we provide time-dependent benchmark results for the three-dimensional flow at
Re D 1000 and Re D 5000 and times t D 4, 8, and 12. The three-dimensional computations are
done on a non-uniform grid composed of 1000� 1000� 2000 grid points. The method presented in
Section 2 is new, and to the best of knowledge, the results presented in Section 4 are original.
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2. NUMERICAL PROCEDURE

The purpose of this section is to formulate the problem and to describe the new direction splitting
algorithm.

2.1. The continuous problem

We consider the time-dependent non-dimensional incompressible Navier–Stokes equations in the
dimensionless box �D Œ0,Lx�� Œ0,Ly �� Œ0,L´��R3:8̂̂

ˆ̂̂<
ˆ̂̂̂̂
:

@tuC .u�ru/�
1

Re
�uCrpD f , in �� .0,T �,

r�uD 0 in �� Œ0,T �,

uj@� D a in @�� .0,T �,

ujtD0 D u0 in �.

(1)

The quantity f is a source term, a is the boundary data, and u0 is the initial condition.

2.2. Heuristics

Virtually, all currently known incremental pressure-correction schemes are more or less semi-
discrete versions of the following singular perturbation of the linearized version of (1):8̂

ˆ̂̂<
ˆ̂̂̂
:

@tu� �
1

Re
�u� Crp� D f in �� .0,T �, u�j@��.0,T � D a, u�jtD0 D 0

��t��� Cr�u� D 0 in �� .0,T �, @n��j@��.0,T � D 0

�t@tp� D �� �
�

Re
r�u� p�jtD0 D p0

(2)

where p0 D pjtD0, �t is the perturbation parameter (i.e., � WD �t), and � 2 Œ0, 1� is an adjustable
parameter. The convergence properties of this singular perturbation have been analyzed in [5, §3.3]
and [6, §3.1], and u� has been shown therein to be a O.�t2/ perturbation of u in the L2-norm and

a O.�t 32 / perturbation in theH 1-norm for all 0 < �� 1.
We now introduce a generalization of (2) that allows for direction splitting by considering the

following alternative O.�t2/ perturbation of the linearized version of (1):8̂̂
ˆ̂<
ˆ̂̂̂
:

@tu� �
1

Re
�u� Crp� D f in �� .0,T �, u�j@��.0,T � D a, u�jtD0 D u0

�tA�� Cr�u� D 0 in �� .0,T �, �� 2D.A/,

�t@tp� D �� �
�

Re
r�u� p�jtD0 D p0,

(3)

where the operator A and its domain D.A/ are such that the bilinear form a.p, q/ WD
R
� qAp dx

satisfies the following properties:

a is symmetric, and krqk2
L2
� a.q, q/, 8q 2D.A/. (4)

It can be shown that this new singular perturbation has similar approximation properties as (2)
provided that the limit solution is smooth enough. The convergence analysis involves regularity of
the pressure in the norm kpkD.A/ WD a.p, p/

1
2 . There are many admissible choices for the opera-

tor A. For instance, one recovers the usual pressure-correction algorithm in incremental form by
using A D ��N , where ��N is the Laplace operator supplemented with homogeneous Neumann
boundary conditions. One could also use A D I ��N , where I is the identity operator. The key
to the method presented in this paper is that the operator A WD .1 � @xx/.1 � @yy/.1 � @´´/, with
appropriate boundary conditions, satisfies the requirement (4) in three space dimensions. In two
space dimensions, the operator A WD .1� @xx/.1� @yy/ with appropriate boundary conditions also
satisfies (4).
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2.3. The direction splitting algorithm

Let us now describe the new algorithm (announced in [1]). The main idea consists of proceeding
as in traditional pressure-correction algorithms by uncoupling the velocity and the pressure. This is
done by solving (3) using a splitting technique that uncouples the momentum equation and the mass
conservation equation. The momentum equation is solved by means of the second-order accurate
direction splitting of Douglas [7], and the pressure correction is computed by using the operator
A WD .1� @xx/.1� @yy/.1� @´´/. The complete algorithm is as follows:

� Pressure predictor: Denoting by p0 the pressure field at t D 0, the algorithm is initialized by

setting p�
1
2 D p0 and ��

1
2 D 0. Then, for all n � 0, a pressure predictor is computed as

follows:

p�,nC 12 D pn�
1
2 C �n�

1
2 . (5)

� Velocity update: The velocity field is initialized by setting u0 D u0, and for all n � 0, the
velocity update is computed by solving the following series of one-dimensional problems:

�nC1 � un

�t
�

1

Re
�unCrp�,nC 12 CNLnC1.un,un�1/D 0, �nC1j@� D a.

�nC1 � �nC1

�t
�

1

2Re
@xx.�

nC1 � un/D 0, �nC1jxD0,Lx D a,

�nC1 � �nC1

�t
�

1

2Re
@yy.�

nC1 � un/D 0, �nC1jyD0,Ly D a,

unC1 � �nC1

�t
�

1

2Re
@´´.u

nC1 � un/D 0, unC1j´D0,L´ D a.

(6)

where NLnC1.un,un�1/D 3
2
.un�r/un � 1

2
.un�1�r/un�1.

� Penalty step: The pressure increment �nC
1
2 is computed for all n � 0 via the following

sequence of one-dimensional problems:

 � @xx D�
1
�t
r�unC1, @x jxD0,Lx D 0I

' � @yy' D  , @y'jyD0,Ly D 0.

�nC
1
2 � @´´�

nC 12 D ', @´�
nC 12 j´D0,L´ D 0.

(7)

� Pressure update: The last substep of the algorithm consists of updating the pressure as follows:

pnC
1
2 D pn�

1
2 C �nC

1
2 �

�

Re
r�.1

2
.unC1C un//, (8)

where the parameter � is set to 1 in all the simulations reported thereafter.

The two-dimensional version of the algorithm is obtained by skipping the last substeps in (6) and
(7) and setting unC1 D �nC1, �nC

1
2 D ', respectively. It is shown in [8] that this scheme is

unconditionally stable in the Stokes regime.

2.4. MAC/parallel implementation

We have implemented the algorithms (5)–(8) with the discretization in space done on the MAC
(Marker-And-Cell) stencil using central differences for the first-order and second-order derivatives.
The algorithm has been implemented in parallel on a Cartesian domain decomposition (see Figure 1)
using Message Passing Interface (MPI). Once approximated in space, all the one-dimensional linear
problems give rise to tridiagonal linear systems that are solved in parallel using direct solves of the
Schur complement induced by the domain decomposition.

The procedure goes as follows. In each direction, the domain partitioning induces a splitting of
the unknowns into internal unknowns ui and interface unknowns, ue; as a result, a large number of

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:856–871
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(a) Communications (b) Processors in charge
of the Schur complement
for x-solves

(c) Processors in charge
of the Schur complement
for y-solves

(d) Processors in charge
of the Schur complement
for z-solves

Figure 1. Communications and processors in charge of the Schur complements.

partitioned linear systems of the following type have to be solved at each time step in each space
direction d , d 2 ¹1, 2, 3º: �

Ai i Aie
Aei Aee

��
ui
ue

�
D

�
fi
fe

�
. (9)

The solution to the previously mentioned system is constructed by first solving .Aee �
AeiA

�1
i i Aie/ue D fe � AeiA

�1
i i fi and then by solving Ai iui D fi � Aieue . Denoting by ne the

number of interfaces in the d th direction, the Schur complement, S WD Aee � AeiA
�1
i i Aie , is an

ne �ne tridiagonal matrix. This matrix is constructed once at the pre-processing stage and stored in
one of the Pd processors that are involved in the solve in the d th direction. Denoting by P the total
number of processor available, Pd D P

1
3 if the domain decomposition is isotropic.

More specifically, the algorithm proceeds by first solving the local tridiagonal systems Ai ixi D
fi , and then the quantity Aeixi is communicated to the processor where the Schur complement
is stored. On this processor, the quantity fe � AeiA�1i i fi is assembled, and the linear system
Sue D fe �AeiA

�1
i i fi is solved. Finally, the quantity Aieue is communicated back to each proces-

sor, and the linear system Ai iui D fi � Aieue is solved on each processor. Note that solving the
linear system Ai i´i D gi does not involve any communication. Thus, the total amount of commu-
nication per processor in each direction consists of sending a vector of size equal to the number of
interface unknowns (each internal domain has two interfaces in the given direction) and receiving
the same amount of data. The communication process is illustrated in Figure 1.

Of course, for each direction solve, there is a large number of tridiagonal systems to solve. Actu-
ally, denoting by N the total number of grid points and assuming that the domain decomposition is
isotropic, there are n2 D .N=P /2=3 linear systems to solve in each row of processors. The solution
technique described earlier can be accelerated by storing the Schur complement in each processor
in the considered row and assigning each processor to solve n2=P 1=3 Schur complement systems
instead of assigning the entire work to one processor only.

We have verified that the weak scalability of the code described earlier is quasi-perfect up to the
maximum number of processors that were available to us without special request for allocation, that
is, 1024 processors.

Extensive numerical tests have shown that the algorithm is stable under CFL condition in the
Navier–Stokes regime. Numerical tests using analytical solutions of the Navier–Stokes equations
have also shown that this algorithm is second-order accurate with respect to time in the L2-norm
for the velocity.

2.5. Parallelization: Poisson versus direction splitting

The pressure correction in traditional pressure-correction algorithms is computed by solving

���nC1 D�
1

�t
r�unC1, @n�j@��.0,T � D 0. (10)
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For large size problems and large Reynolds numbers, the cost of solving the above-mentioned
Poisson equation becomes dominant. In particular, the solution of (10) may not be very easy to par-
allelize efficiently on very large numbers of processors. In the proposed new method, the pressure
correction is evaluated by solving the following sequence of one-dimensional problems:

 � @xx D�
1
�t
r�unC1, @x jxD0,Lx D 0,

' � @yy' D  , @y'jyD0,Ly D 0

�nC
1
2 � @´´�

nC 12 D ', @´�
nC 12 j´D0,L´ D 0,

(11)

which we believe is easier to solve in parallel than (10).
Although it could be argued that FFT methods are very efficient to solve (10), we claim that

solving (11) is always more efficient in terms of communications than solving (10) with FFT. To
make this point clear, let us assume that we have a cubic domain containing N grid points and
that we employ P processors. To the best of our knowledge, all current parallel implementations
of FFT-based methods use codimension-one partitioning of the data; that is to say, in three space
dimensions, the data are distributed in parallelepipeds, each containing N=P grid points, and the
distribution changes at each directional solve (see e.g. [9,10] for more details on FFT and paralleliza-
tion). Codimension-one data partitioning is necessary because of the global nature of the one-
dimensional FFT. This concept is illustrated in Figure 2 for P D 4. After each FFT solve, each
processor re-uses only .N=P /=

p
P data out of the totalN=P data that it contains, and the remaining

.1� 1=
p
P /N=P data must be sent to P 1=2 � 1 other processors so that the one-dimensional FFT

can be done in the next direction. Meanwhile, each processor must receive the same amount of data.
All in all, each processor sends and receives 2.1 � 1=

p
P /N=P data per direction solves, which

makes 6.1� 1=
p
P /N=P data exchanges per time step per processor.

A more natural way of distributing the grid points when solving (11) consists of dividing the
processors into a cubic Cartesian grid composed of P 1=3 processors in each direction so that each
processor contains n3 grid points, where n D .N=P /1=3, as shown in Figure 3. Then, when using
a Schur complement technique to solve the one-dimensional problems, each processor needs to

Figure 2. Domain partitioning for parallel implementation of FFT with PD4 processors. The arrows
indicate the direction in which the transform is performed.

Figure 3. Domain partitioning for parallel implementation of the direction splitting algorithm using the
Schur complement technique on P D27 processors. The arrows indicate the communications that are

involved in each direction solve.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:856–871
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exchange only the interface data with the processor that is in charge of solving the Schur comple-
ment system. Thus, the total amount of data exchange (sending and receiving) is not more than
3� 4� n2 D 12.N=P /2=3 per processor per time step; see Figure 3.

It then becomes clear that the number of communications per processor per time step for FFT
solves, 6.1 � 1=

p
P /N=P , is significantly larger than 12.N=P /2=3. For instance, if N=P D 106

and P D 1000, then 1
2
.1� 1=

p
P /.N=P /

1
3 	 49; in this case, the FFT solution of (10) involves 50

times more communications than solving (11) with a Schur complement technique.

3. VALIDATION OF THE METHOD

The purpose of this section is to validate our numerical technique by comparing two-dimensional
and three-dimensional results produced by the algorithm (5)–(8) with well-established driven cavity
benchmark data. Geometric descriptions of the two-dimensional and three-dimensional cavities are
shown in Figure 4.

3.1. Steady two-dimensional cavity flow at ReD 1000

We start with steady-state computations in the two-dimensional driven cavity � D .0, 1/2 at
Reynolds number 1000. The problem is formulated as follows:

8̂̂
<
ˆ̂:
@tuC .u�ru/�

1

Re
�uCrpD 0 in �� .0,T �, ujtD0 D 0 in �,

r�uD 0 in �� Œ0,T �,

ujxD0 D 0, ujxDLx D ey , ujyD0,Ly D 0, in (0,T]

(12)

where .x,y/ denote the Cartesian coordinates and ey is the unit vector in the y-direction. This is a
driven cavity problem where the side ¹Lxº � Œ0,Ly � slides upward with unit speed. The velocity is
non-dimensionalized with respect to the velocity of the lid; see Figure 4.

Beside obvious scientific and engineering applications, flows in lid-driven cavities are among
the configurations that are the most frequently used to validate numerical codes. It is therefore very
important to have highly accurate numerical data that can be used for such validations. Because two-
dimensional flows in rectangular cavities are far less demanding in terms of computing power than
their three-dimensional counterparts, there are many articles in the literature that provide benchmark

Figure 4. Notation for two-dimensional cavity (left) and three-dimensional cavity (right).
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data in the two-dimensional case. Ghia et al. [11] provide a comprehensive analysis of steady solu-
tions in the square cavity up to Reynolds number Re D 10,000. The computations reported in [11]
used grids composed of 257�257 nodes and a multigrid solver to solve the steady two-dimensional
Navier–Stokes equations formulated in terms of stream function and vorticity, that is,  –!.

We first make comparisons with the benchmark results of [2, 3]. The data from [2] have been
obtained from a highly accurate spectral method using 160 spectral modes in each direction. Spe-
cial care has been given to remove the corner singularities. The results of [3] have been computed
on a uniform second-order finite difference grid of 1024�1024 nodes. Our computations have been
done on a uniform grid composed of 5000�5000 nodes with time step�t D 10�4. The computation
at Re D 1000 has been run up to T D 125. We do not claim having reached complete steady state
because doing so would require developing a radically different strategy based on Newton iterations,
which is not the purpose of the present paper. By monitoring the time evolution of the solutions and
repeating the computation on various nested grids, we have come to the conclusion that at least the
first four (and possibly five digits) of our results should be correct.

We compare in Table I the vertical and horizontal components of the velocity along the verti-
cal and horizontal mid-sections of the cavity at points that have been selected in [2]. Because our
results are computed at points that generally differ from those used by the other studies, our results
are interpolated at the required points by piecewise linear interpolation. It is clear that our results
coincide with the spectrally accurate results of [2] up to the fifth digit. Because the results of [2] and
ours have been obtained by totally different techniques, we conjecture that our results are correct up
to ˙5� 10�6 at ReD 1000. Note that the results from [3] seem to be converged to the fourth digit
only, that is, the accuracy of the results from [3] seems to be correct up to˙1� 10�4.

3.2. Steady three-dimensional cavity flows at ReD 1000

We now turn our attention to the three-dimensional driven cavity problem formulated as follows:
8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

@tuC .u�ru/�
1

Re
�uCrpD 0 in �� .0,T �,

r�uD 0 in �� Œ0,T �,

ujxD0 D 0, ujxDLx D ey , ujyD0,Ly D 0, uj´D0,L´ D 0, in (0,T]

ujtD0 D 0 in �,

(13)

Table I. Comparison of the vertical/horizontal components of the velocity along the segment
¹x 2 Œ0, 1�,y D 1=2º/¹y 2 Œ0, 1�, x D 1=2º at ReD 1000 with the results of [2, 3].

Re D 1000, vertical component Re D 1000, horizontal component

x [3] [2] Present y [3] [2] Present

1.0000 1.00000 1.0000000 1.0000000 0.0000 1.00000 1.0000000 1.0000000
0.9766 NA 0.6644227 0.6644194 0.0312 NA �0.2279225 �0.2279177
0.9688 0.58031 0.5808359 0.5808318 0.0391 �0.29330 �0.2936869 �0.2936814
0.9609 NA 0.5169277 0.5169214 0.0469 NA �0.3553213 �0.3553154
0.9531 0.47239 0.4723329 0.4723260 0.0547 �0.41018 �0.4103754 �0.4103691
0.8516 NA 0.3372212 0.3372128 0.0937 NA �0.5264392 �0.5264320
0.7344 0.18861 0.1886747 0.1886680 0.1406 �0.42634 �0.4264545 �0.4264492
0.6172 NA 0.0570178 0.0570151 0.1953 NA �0.3202137 �0.3202068
0.5000 �0.06205 �0.0620561 �0.0620535 0.5000 0.02580 0.0257995 0.2579868
0.4531 NA �0.1081999 �0.1081955 0.7656 NA 0.3253592 0.3253529
0.2813 �0.28040 �0.2803696 �0.2803632 0.7734 0.33398 0.3339924 0.3339860
0.1719 NA 0.3885691 �0.3885624 0.8437 NA 0.3769189 0.3769119
0.1016 �0.30029 �0.3004561 �0.3004504 0.9062 0.33290 0.3330442 0.3330381
0.0703 NA �0.2228955 �0.2228928 0.9219 NA 0.3099097 0.3099041
0.0625 �0.20227 �0.2023300 �0.2023277 0.9297 0.29622 0.2962703 0.2962650
0.0547 NA �0.1812881 �0.1812863 0.9375 NA 0.2807056 0.2807005
0.0000 0.00000 0.0000000 0.0000000 1.0000 0.00000 0.0000000 0.0000000

NA indicates that the data at this point are not available in this reference.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:856–871
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where .x,y, ´/ denote the Cartesian coordinates and ey is the unit vector in y-direction. The
side ¹Lxº � Œ0,Ly � � Œ0,L´� of the cavity slides upward with unit speed. The velocity is
non-dimensionalized with respect to the velocity of the lid; see Figure 4.

We validated our code in three space dimensions by computing the steady-state flow in a three-
dimensional cavity � D .0, 1/ � .0, 1/ � .0, 2/ at Re D 1000. This flow has been studied by many
authors; detailed and comprehensive results are reported in the paper of Albensoeder and Kuhlmann
[4] (see the references therein for a thorough list of articles focusing on the steady lid-driven cavity
flow). The reference [4] provides extensive data at ReD 1000 for various cavity aspect ratios using
a pseudo-spectral method on grids composed of up to 963 grid points.

We have computed the solution to the time-dependent problem up to TD250, and we expect the re-
sults to be close to steadiness within a tolerance of order e�250=

p
1000 	 4�10�4. The computations

are done with time step�t D 1.5�10�3 on a non-uniform grid composed of 400�400�800 points
defined as follows. Let Nx be the number of grid points in the x direction, then the coordinates of
the grid points in the x direction, say xi , i D 1, : : : ,Nx , are defined by the following formula:

Cx D 1C .2=Lx/
1
2 (14)

Xi D
.i � 1/

Nx � 1
Lx , i D 1, : : : ,Nx (15)

xi D

8<
:
CxX

3
2

i .1CX
1
2

i /
�1 if Xi � Lx=2

Lx �Cx.Lx �Xi /
3
2 .1C .Lx �Xi /

1
2 /�1 otherwise.

(16)

We use similar formulae to distribute the grid points in the y and ´ directions. The purpose of this
grid arrangement is to resolve well the boundary layers without having extremely stretched grid
cells at the boundary, which cosine and sine distributions would produce when Nx is large (see e.g.
[12] where cosine distributions are used with moderate Nx).

The evaluation of the velocity profiles at the benchmark locations that are reported in [4] is done
by piecewise linear interpolation from our 400� 400� 800 grid. We show in Table II values of the
vertical component of the velocity along the segment Œ0, 1��¹1=2º�¹1º and values of the horizontal
component along the segment ¹1=2º� Œ0, 1��¹1º. The results from [4] and ours agree up to the third
digit and differ very slightly in the fourth digit at some points.

Table II. Velocity profiles in median plane ¹´D 1º at ReD 1000.

Vertical velocity, y D 1=2, ´D 1, Re D 1000 Horizontal velocity, x D 1=2, ´D 1, Re D 1000

x [4] Present y [4] Present

1.0000 1.0000000 1.000000 1.0000 0.0000000 0.00000
0.9766 0.6081626 0.608220 0.9688 0.2103534 0.21040
0.9688 0.5111673 0.511170 0.9609 0.2685775 0.26863
0.9609 0.4352632 0.435310 0.9531 0.3229981 0.32306
0.9531 0.3800975 0.380120 0.9453 0.3716805 0.37173
0.8516 0.2124395 0.212340 0.9063 0.4720530 0.47176
0.7344 0.1037698 0.103720 0.8594 0.3472198 0.34697
0.6172 0.0333083 0.033307 0.8047 0.2042160 0.20416
0.5000 -0.0129662 -0.012960 0.5000 0.0006955 0.00070
0.4531 -0.0305044 -0.030500 0.2344 -0.2378601 -0.23784
0.2813 -0.1385097 -0.138540 0.2266 -0.2461943 -0.24618
0.1719 -0.2937825 -0.293660 0.1563 -0.2924917 -0.29239
0.1016 -0.3054909 -0.305220 0.0938 -0.2773856 -0.27705
0.0703 -0.2586761 -0.258430 0.0781 -0.2627359 -0.26234
0.0625 -0.2418095 -0.241580 0.0703 -0.2528278 -0.25240
0.0547 -0.2225479 -0.222340 0.0625 -0.2405949 -0.24015
0.0000 0.0000000 0.000000 0.0000 0.0000000 0.00000
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3.3. Transient in the three-dimensional cavity at ReD 1000

Validation of the code on transient solutions in cavities is a little more problematic than for steady
solutions because of the lack of accurate data available in the literature. For instance, transient
solutions in a cubic cavity have been computed in [13] by means of a least-squares finite ele-
ment discretization of the velocity–vorticity–pressure formulation. This reference presents results
at Re D 1000, 2000, and 3200 on grids composed of up to 61 � 61 � 30 P1 hexahedral finite ele-
ments. Unfortunately, the data therein are reported in a qualitative manner in the form of graphs and
pictures making accurate comparisons difficult. We refer to [14] for a review on the dynamics in
three-dimensional cavities of various aspect ratios. Plots of transient velocity profiles can be found
therein but again none of these results satisfy the high accuracy requirements that we are looking
for.

We have compared our results with those from [12] (see Figure 5) and found reasonable agree-
ment with maximum deviation of order 5%. The results from [12] have been qualitatively cross
validated in [4, Figure 4] and have been produced on a P2 � P1 finite element cosine-type grid
composed of 456,300 tetrahedra for the half cavity, representing 	600,000 P2 grid points for the
velocity field on the entire cavity. We suspect that the 5% maximum difference observed comes
from the coarse grid resolution used in [12]; our finest grid has 3000 and 2000 times more grid
points than those used in [12] and [4], respectively.

3.4. Unsteady versus steady two-dimensional cavity flows at high Reynolds numbers

Steady-state results for the two-dimensional driven cavity are reported by many authors. Many of
them also attempted to determine the critical Reynolds number at which the Hopf bifurcation occurs,
and there is a wide variety of claims in the literature about this critical value. Baragy and Carey [15]
obtained steady results up to Re D 12,500 by solving the  –! equations with high-resolution p
finite elements. In [16], it is claimed that steady state can be reached at ReD 21,000 on a 600� 600
grid. On the other hand, the linear stability study of Ramanan and Homsy [17] indicates that the
two-dimensional cavity flow is unstable to two-dimensional perturbations when the Reynolds num-
ber is of order 7000. By using a highly accurate spectral method with regularization of the corner
singularities and by carefully studying the energy behavior of the flow, it is concluded in [18] that
the Hopf bifurcation must occur at a Reynolds number comprised between 8017.6 and 8018.8. This
result is consistent with the linear stability analysis of [3], which indicates that the critical Reynolds
number is in the range of 8000 < Re < 8050.

Figure 5. Comparisons between results from [12] (lines) and results from Tables III and IV (symbols) at
ReD 1000.
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The objective of the present study is not to confirm or contradict any of the claims mentioned ear-
lier but we would like to mention in passing that our time-dependent simulations up to T D 250 at
ReD 12,500 and ReD 21,000 on 600�600 and 5000�5000 grids using time steps�t D 0.0015 and
10�4, respectively, did not converge to steady state. In each case, the time records show unsteady
oscillatory solutions with large amplitude that do not seem to decrease as time grows. One possible
explanation for the steady states reported in [15,16] at ReD 12,500 is that the semi-implicit pseudo-
time integration techniques used therein follow an unstable steady branch of the solution after the
Hopf bifurcation has occurred. We suspect that the numerical techniques that use pseudo-time step-
ping and semi-implicit approximations with large time steps bypass the Hopf bifurcation happening
at a smaller Reynolds number and produce instead one trivial branch of the bifurcated solution.

4. TIME-DEPENDENT BENCHMARK IN THE THREE-DIMENSIONAL CAVITY

The previous discussion shows that benchmarking codes and algorithms on steady-state solutions
may be controversial. Moreover, reaching steadiness requires a very long time integration or spe-
cialized Newton-time iterative algorithms. Finally, testing steady solutions quantifies only the spatial
accuracy and says nothing about the time accuracy. To avoid the steady-state ambiguity and the long-
time integration waste, and to quantify both the space and time accuracy of algorithms, we provide
here benchmark data for the early unsteady development of the flow in a three-dimensional cavity.
Contrary to more traditional steady-state benchmarks, time-dependent benchmarks both validate the
space and the time accuracy and eliminate the long-time integration waste of resource.

The purpose of this section is to report highly accurate results for the velocity field in the three-
dimensional driven cavity � D .0, 1/� .0, 1/� .0, 2/ in the transient regime at times t D 4, 8, and
12 at ReD 1000 and ReD 5000.

4.1. Parameters of the discretization and accuracy assessment

The computations are done on a non-uniform grid composed of 1000�1000�2000MAC cells with
time step �t D 5� 10�4 for ReD 1000 and 4� 10�4 at ReD 5000. The parameter � is set to 1 in
all cases. The mesh is refined using the grid distribution defined in (14)–(16).

Comparisons between results at Re D 1000 produced on a non-uniform grid composed of
400 � 400 � 800 MAC cells and with time step 1.5 � 10�3, and a grid of 800 � 800 � 1600 cells
and a time step of 6.25 � 10�4 revealed that the results on the latter grid are converged up to the
fourth digit at least. Further comparisons between the results on the 800 � 800 � 1600 grid and a
grid of 1000� 1000� 2000 MAC cells for the horizontal and vertical velocity profiles on the lines
x D 1=2, ´ D 1 and y D 1=2, ´ D 1 at Re D 1000 are presented in the top panels of Figure 6. The
results from the finer grid are interpolated at the nodes of the coarser grid using piecewise linear
interpolation. This comparison suggests that the first four digits of the 1000 � 1000 � 2000 results
are correct for t D 4, t D 8, and t D 12.

The difference in the velocity profiles at ReD 5000 on the 800�800�1600 and 1000�1000�2000
grids with time steps � D 5� 10�4 and � D 4� 10�4 are reported in the bottom panels of Figure 6.
The two velocities differ only in the fifth digit at t D 4 and in the fourth digit at t D 8 at most
locations, but at t D 12, there are differences in the third digit.

4.2. Profiles

We report in Tables III–X various velocity profiles in the cavity along the segments ¹x D 1=2,y 2
Œ0, 1�, ´D 1º, ¹x 2 Œ0, 1�,y D 1=2, ´D 1º, and ¹x D 1=2,y D 1=2, ´ 2 Œ0, 2�º at times t D 4, 8, and
12 and at ReD 1000 and 5000.

The complete set of data at each grid point for the profiles presented in Tables III–X as well as
the data for the pressure distribution in the corresponding planes can be found at the following web
site http://www.math.ualberta.ca/~pminev/cavity.
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Figure 6. Difference in horizontal (continuous line) and vertical (dashed line) velocity profiles on segment
¹x D 1=2,y 2 Œ0, 1�, ´D 1º and ¹x 2 Œ0, 1�,y D 1=2, ´D 1º between grid 800�800�1600, � D 6.25�10�4,
and grid 1000 � 1000 � 2000, � D 5 � 10�4, at Re D 1000 (top) and � D 5 � 10�4, � D 4 � 10�4

correspondingly at Re D 5000 (bottom); t D 4 (left), 8 (center), and 12 (right).

Table III. First component of the velocity along the segment ¹x D 1=2,y 2 Œ0, 1�, ´D 1º, at ReD 1000 for
t D 4, 8, and 12.

x D 1=2, ´D 1, Re D 1000

y t D 4 t D 8 t D 12

0.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00
1.4034714e�04 1.4508133e�04 3.0865118e�04 5.2210372e�04
2.0387121e�03 2.0737393e�03 4.4125478e�03 7.4674594e�03
8.0061410e�03 7.7452512e�03 1.6486075e�02 2.7938534e�02
2.0521140e�02 1.7880155e�02 3.8051667e�02 6.4647070e�02
1.0064008e�01 4.6696601e�02 9.9178370e�02 1.7848742e�01
2.2124428e�01 5.1016412e�02 1.3002488e�01 2.5322428e�01
3.4925492e�01 5.1498407e�02 2.1882494e�01 1.6413073e�01
3.5771066e�01 5.1491324e�02 2.1964293e�01 1.5526669e�01
4.4944092e�01 4.9177857e�02 1.4235761e�01 7.0067168e�02
5.0064629e�01 4.4011313e�02 7.6719600e�02 3.1056902e�02
6.6872504e�01 7.5696050e�04 �9.9177224e�02 �9.8378888e�02
8.2575599e�01 �1.8011280e�01 �2.9331655e�01 �2.6639041e�01
8.9010354e�01 �1.2061613e�01 �4.1036179e�01 �4.3364671e�01
9.0027484e�01 �1.0405456e�01 �4.0451907e�01 �4.4774158e�01
9.0662275e�01 �9.3584182e�02 �3.9450664e�01 �4.5032835e�01
9.4947219e�01 �3.1599145e�02 �2.1532683e�01 �3.0853427e�01
9.7509665e�01 �8.8443544e�03 �8.3150307e�02 �1.3854079e�01
9.9908073e�01 �7.1766561e�05 �1.9895024e�03 �4.0488981e�03
1.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00

The maximum/minimum values of each profile are presented in boldface.

5. CONCLUSIONS

We have validated the new direction splitting algorithm introduced in [1, 8] for solving the
time-dependent incompressible Navier–Stokes equation. This algorithm only requires solving one-
dimensional problems. It is currently limited to simple Cartesian geometries, but generalizations
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Table IV. Second component of the velocity along the segment x 2 Œ0, 1�, y D 1=2, ´D 1, at ReD 1000
for t D 4, 8, and 12.

y D 1=2, ´D 1, Re D 1000

x t D 4 t D 8 t D 12

0.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00
1.4034714e�04 �8.2444153e�05 �1.1612837e�04 �3.0434609e�04
2.0387121e�03 �1.1814422e�03 �1.6679658e�03 �4.3678162e�03
8.0061410e�03 �4.4477533e�03 �6.3267108e�03 �1.6557052e�02
2.0521140e�02 �1.0441183e�02 �1.5109641e�02 �3.9864610e�02
1.0064008e�01 �3.0647620e�02 �5.1586542e�02 �1.7888451e�01
1.9850609e�01 �3.9971558e�02 �1.2238869e�01 �2.9845315e�01
3.2413757e�01 �5.6048571e�02 �2.7690680e�01 �1.7516767e�01
3.4925492e�01 �6.0720895e�02 �2.6864547e�01 �1.5005601e�01
4.4944092e�01 �8.3945004e�02 �1.6237848e�01 �7.7253657e�02
5.0064629e�01 �9.5903784e�02 �1.1142934e�01 �4.5571855e�02
5.5182543e�01 �1.0169440e�01 �6.4728958e�02 �1.2689309e�02
6.6872504e�01 �5.6109400e�02 5.1185578e�02 7.7361160e�02
8.2575599e�01 3.6110262e�02 1.7998007e�01 2.1094945e�01
9.0027484e�01 6.3777573e�02 1.7891472e�01 2.3724457e�01
9.4947219e�01 2.3043437e�01 2.8716755e�01 3.3224791e�01
9.7509665e�01 5.2690636e�01 5.5152071e�01 5.7434675e�01
9.9908073e�01 9.8114695e�01 9.8221866e�01 9.8308774e�01
1.0000000eC00 1.0000000eC00 1.0000000eC00 1.0000000eC00

The maximum/minimum values of each profile are presented in boldface.

Table V. First component of the velocity along the segment ¹x D 1=2,y D 1=2, ´ 2 Œ0, 2�º, at ReD 1000
for t D 4, 8, and 12.

x D 1=2, y D 1=2, Re D 1000

´ t D 4 t D 8 t D 12

0.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00
1.1626738e�04 2.3916656e�04 6.9695004e�04 6.3805342e�04
5.1359941e�03 9.8463370e�03 2.9291910e�02 2.6946040e�02
5.0385478e�02 5.1896922e�02 1.7849731e�01 1.6711660e�01
7.8102419e�02 5.6389753e�02 2.0708011e�01 1.8618114e�01
8.1858741e�02 5.6440430e�02 2.0857947e�01 1.8581070e�01
9.1041204e�02 5.6210738e�02 2.1011046e�01 1.8236238e�01
2.0069752e�01 4.3894856e�02 9.5074118e�02 5.5718368e�02
4.0086680e�01 4.4759855e�02 1.1413365e�01 4.5423388e�02
6.0027520e�01 4.5147427e�02 1.0773139e�01 3.6912602e�02
8.0039503e�01 4.4221491e�02 8.6504399e�02 2.7131040e�02
1.0006249eC00 4.4011313e�02 7.6719600e�02 3.1056902e�02
1.2008100eC00 4.4224604e�02 8.6624634e�02 2.7111414e�02
1.4008714eC00 4.5153831e�02 1.0782841e�01 3.7043443e�02
1.6001973eC00 4.4742780e�02 1.1406359e�01 4.5365408e�02
1.8002273eC00 4.3963703e�02 9.5732433e�02 5.6241196e�02
1.9089588eC00 5.6210738e�02 2.1011046e�01 1.8236238e�01
1.9181413eC00 5.6440430e�02 2.0857947e�01 1.8581070e�01
1.9218976eC00 5.6389753e�02 2.0708011e�01 1.8618114e�01
1.9502844eC00 5.1664283e�02 1.7736842e�01 1.6612522e�01
1.9952203eC00 9.2090395e�03 2.7357442e�02 2.5157873e�02
1.9998837eC00 2.3916656e�04 6.9695004e�04 6.3805342e�04
2.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00

The maximum/minimum values of each profile are presented in boldface.
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Table VI. Second component of the velocity along the segment ¹x D 1=2,y D 1.2, ´ 2 Œ0, 2�º, at
ReD 1000 for t D 4, 8, and 12.

x D 1=2, y D 1=2, Re D 1000

z t D 4 t D 8 t D 12

0.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00
1.1626738e�04 �5.2585217e�05 2.4839746e�04 1.4967061e�04
5.1359941e�03 �2.4969248e�03 9.7988873e�03 5.4423061e�03
1.5504534e�02 �8.4019616e�03 2.2590113e�02 9.6174650e�03
2.7266599e�02 �1.5918923e�02 2.7253961e�02 5.2606189e�03
5.0385478e�02 �3.1026970e�02 1.4165686e�02 �2.1245248e�02
1.6267736e�01 �8.2909541e�02 �1.9805112e�01 �1.5654960e�01
1.9057506e�01 �9.0721179e�02 �2.1308555e�01 �1.4871038e�01
2.0069752e�01 �9.2931448e�02 �2.1131140e�01 �1.4323771e�01
2.8534467e�01 �9.9953893e�02 �1.5328221e�01 �9.3412059e�02
4.0086680e�01 �9.7571062e�02 �1.2093993e�01 �5.0125610e�02
6.0027520e�01 �9.6713492e�02 �1.2135150e�01 �4.6338516e�02
8.0039503e�01 �9.6353229e�02 �1.1261272e�01 �5.0640390e�02
1.0006249eC00 �9.5903784e�02 �1.1142934e�01 �4.5571855e�02
1.2008100eC00 �9.6357471e�02 �1.1263860e�01 �5.0655132e�02
1.4008714eC00 �9.6712714e�02 �1.2139948e�01 �4.6284343e�02
1.6001973eC00 �9.7590342e�02 �1.2098099e�01 �5.0365455e�02
1.7146553eC00 �9.9953893e�02 �1.5328221e�01 �9.3412059e�02
1.8002273eC00 �9.2743819e�02 �2.1159869e�01 �1.4377137e�01
1.8094249eC00 �9.0721179e�02 �2.1308555e�01 �1.4871038e�01
1.8373226eC00 �8.2909541e�02 �1.9805112e�01 �1.5654960e�01
1.9502844eC00 �3.0603230e�02 1.4864842e�02 �2.0259999e�02
1.9727334eC00 �1.5918923e�02 2.7253961e�02 5.2606189e�03
1.9844955eC00 �8.4019616e�03 2.2590113e�02 9.6174650e�03
1.9952203eC00 �2.3129445e�03 9.1958475e�03 5.1407613e�03
1.9998837eC00 �5.2585217e�05 2.4839746e�04 1.4967061e�04
2.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00

The maximum/minimum values of each profile are presented in boldface.

Table VII. First component of the velocity along the segment ¹x D 1=2,y 2 Œ0, 1�, ´D 1º, at ReD 5000
for t D 4, 8, and 12.

x D 1=2, ´D 1, Re D 5000

y t D 4 t D 8 t D 12

0.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00
1.4034714e�04 1.0953564e�04 2.2201547e�04 3.8426242e�04
2.0387121e�03 1.5439502e�03 3.1286679e�03 5.4333906e�03
8.0061410e�03 5.5197936e�03 1.1184627e�02 1.9601340e�02
2.0521140e�02 1.1638065e�02 2.3624778e�02 4.1938019e�02
1.0709938e�01 2.0250011e�02 4.3247461e�02 7.7916647e�02
3.4084031e�01 1.9095604e�02 5.7284717e�02 2.4310688e�01
4.4944092e�01 1.7241733e�02 1.1500871e�01 1.4033986e�01
4.9806146e�01 1.5217571e�02 2.1556927e�01 1.0601027e�01
6.6872504e�01 �1.1174660e�02 �1.0739649e�02 �9.2954442e�02
8.2679475e�01 �4.8657653e�02 �2.0069005e�01 �2.1806916e�01
9.0027484e�01 �4.2086790e�02 �3.0391051e�01 �2.3011339e�01
9.2332607e�01 �3.8148118e�02 �3.7289989e�01 �2.9769941e�01
9.5253947e�01 �2.9691275e�02 �2.1178171e�01 �4.3410527e�01
9.7509665e�01 �1.7925170e�02 �4.7367244e�02 �2.7481071e�01
9.9908073e�01 �6.3542999e�04 2.6645131e�04 �5.5758658e�03
1.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00

The maximum/minimum values of each profile are presented in boldface.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:856–871
DOI: 10.1002/fld



START-UP FLOW IN A THREE-DIMENSIONAL LID-DRIVEN CAVITY 869

Table VIII. Second component of the velocity along the segment x 2 Œ0, 1�, y D 1=2, ´D 1, at ReD 5000
for t D 4, 8, and 12.

y D 1=2, ´D 1, Re D 5000

x t D 4 t D 8 t D 12

0.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00
1.4034714e�04 �7.8951934e�05 �1.4888235e�04 �2.1538831e�04
2.0387121e�03 �1.1086342e�03 �2.1052791e�03 �3.0507066e�03
8.0061410e�03 �3.9225668e�03 �7.6120878e�03 �1.1095946e�02
2.0521140e�02 �8.1672575e�03 �1.6501923e�02 �2.4390783e�02
1.0064008e�01 �1.4637202e�02 �3.4410468e�02 �5.3750248e�02
2.4114697e�01 �1.8106839e�02 �4.7676083e�02 �2.7704685e�01
3.4925492e�01 �2.3160505e�02 �7.2872041e�02 �1.6557463e�01
4.6341611e�01 �3.0352982e�02 �1.7524624e�01 �7.8283783e�02
5.0064629e�01 �3.2620349e�02 �1.5461735e�01 �4.2887045e�02
5.8075701e�01 �3.5269859e�02 �6.1226153e�02 3.0510197e�02
6.6872504e�01 �3.0056446e�02 4.7583579e�02 8.9026616e�02
8.2575599e�01 �1.3680025e�04 7.4403155e�02 1.6804707e�01
9.0027484e�01 9.9327726e�03 7.5520824e�02 1.0416261e�01
9.4947219e�01 2.9825496e�02 8.2504271e�02 1.0430217e�01
9.7509665e�01 1.9907800e�01 2.2057524e�01 2.3231298e�01
9.9908073e�01 9.5838610e�01 9.5911207e�01 9.5941283e�01
1.0000000eC00 1.0000000eC00 1.0000000eC00 1.0000000eC00

The maximum/minimum values of each profile are presented in boldface.

Table IX. First component of the velocity along the segment ¹x D 1=2,y D 1=2, ´ 2 Œ0, 2�º, at ReD 5000
for t D 4, 8, and 12.

x D 1=2, y D 1=2, Re D 5000

´ t D 4 t D 8 t D 12

0.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00
1.1626738e�04 1.3072231e�04 1.1906843e�03 1.9477803e�03
5.1359941e�03 5.0786622e�03 4.4102217e�02 7.7953402e�02
3.1949132e�02 1.6624588e�02 1.2204385e�01 2.3283080e�01
6.1395893e�02 1.8188951e�02 1.5881491e�01 2.0744271e�01
9.6501915e�02 1.7777070e�02 2.1175088e�01 1.6913843e�01
2.0069752e�01 1.6422606e�02 2.0158864e�01 1.7391391e�01
4.0086680e�01 1.5316139e�02 2.0454002e�01 1.5042217e�01
6.0027520e�01 1.5182436e�02 2.1360982e�01 1.0931967e�01
8.9406943e�01 1.5088018e�02 2.1565678e�01 9.3570671e�02
1.0006249eC00 1.5072556e�02 2.1535840e�01 1.0407517e�01
1.1059306eC00 1.5088018e�02 2.1565678e�01 9.3570671e�02
1.4008714eC00 1.5182628e�02 2.1365667e�01 1.0956619e�01
1.6001973eC00 1.5318571e�02 2.0383110e�01 1.5026902e�01
1.8002273eC00 1.6431193e�02 2.0152264e�01 1.7408229e�01
1.9034981eC00 1.7777070e�02 2.1175088e�01 1.6913843e�01
1.9386041eC00 1.8188951e�02 1.5881491e�01 2.0744271e�01
1.9680509eC00 1.6624588e�02 1.2204385e�01 2.3283080e�01
1.9952203eC00 4.7692721e�03 4.1563665e�02 7.3077751e�02
1.9998837eC00 1.3072231e�04 1.1906843e�03 1.9477803e�03
2.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00

The maximum/minimum values of each profile are presented in boldface.

to more complex geometries using one-dimensional grid fitting and fictitious domain techniques
are currently being developed. This algorithm has enormous parallelization capabilities and should
scale very well on massively parallel computers composed of more than 104 processors.

The algorithm has been validated on the start-up flow in a three-dimensional lid-driven cavity of
size 1� 1� 2. Using up to 1000 processors on the distributed Linux Hurr HPC cluster of IAMCS at
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Table X. Second component of the velocity along the segment ¹x D 1=2,y D 1=2, ´ 2 Œ0, 2�º, at
ReD 5000 for t D 4, 8, and 12.

x D 1=2, y D 1=2, Re D 5000

z t D 4 t D 8 t D 12

0.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00
1.1626738e�04 �8.7124330e�05 8.1334795e�04 1.1464529e�03
5.1359941e�03 �3.6874993e�03 2.8761929e�02 3.4090661e�02
9.0700068e�03 �6.2864708e�03 4.1986175e�02 4.0536339e�02
2.0630611e�02 �1.2761813e�02 5.3685435e�02 1.0839406e�02
5.0385478e�02 �2.2238806e�02 3.2720764e�02 �5.7712142e�02
9.6501915e�02 �2.6190153e�02 �1.9274035e�01 �1.3029716e�01
1.2485572e�01 �2.7082594e�02 �2.3021265e�01 �1.1338662e�01
2.0069752e�01 �2.8964729e�02 �2.1273060e�01 �7.9028308e�02
4.0086680e�01 �3.1982541e�02 �1.3203556e�01 �7.1957800e�02
6.6275187e�01 �3.2682026e�02 �1.4716440e�01 �2.6920571e�02
1.0006249eC00 �3.2620349e�02 �1.5461735e�01 -4.2887045e�02
1.3372481eC00 �3.2682026e�02 �1.4716440e�01 �2.6920571e�02
1.6001973eC00 �3.1973178e�02 �1.3117666e�01 �7.1897476e�02
1.8751443eC00 �2.7082594e�02 �2.3021265e�01 �1.1338662e�01
1.9034981eC00 �2.6190153e�02 �1.9274035e�01 �1.3029716e�01
1.9502844eC00 �2.2115611e�02 3.3780729e�02 �5.6126086e�02
1.9793694eC00 �1.2761813e�02 5.3685435e�02 1.0839406e�02
1.9909300eC00 �6.2864708e�03 4.1986175e�02 4.0536339e�02
1.9952203eC00 �3.4423357e�03 2.7217172e�02 3.2750426e�02
1.9998837eC00 �8.7124330e�05 8.1334795e�04 1.1464529e�03
2.0000000eC00 0.0000000eC00 0.0000000eC00 0.0000000eC00

The maximum/minimum values of each profile are presented in boldface.

Texas A&M University, we were able to compute the flow on non-uniform grids of very high resolu-
tion, consisting of up to 2�109 MAC nodes. We provide in this paper data for the flow atRe D 1000
and 5000 with guaranteed accuracy of 5� 10�5 at Re D 1000 and 2.5� 10�3 at Re D 5000.
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