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CONVERGENCE ANALYSIS OF A CLASS OF MASSIVELY

PARALLEL DIRECTION SPLITTING ALGORITHMS FOR

THE NAVIER-STOKES EQUATIONS IN SIMPLE DOMAINS

JEAN-LUC GUERMOND, PETER D. MINEV, AND ABNER J. SALGADO

Abstract. We provide a convergence analysis for a new fractional time-
stepping technique for the incompressible Navier-Stokes equations based on
direction splitting. This new technique is of linear complexity, unconditionally
stable and convergent, and suitable for massive parallelization.

1. Introduction

This work is concerned with the analysis of a new class of approximation tech-
niques for the solution of the time-dependent incompressible Navier-Stokes equa-
tions based on direction splitting. The complexity of this new technique is linear
since it requires to solve a sequence of one-dimensional problems at each time step.
The main claims of this paper are that this technique is unconditionally stable and
superlinearly convergent with respect to the time discretization parameter and is
suitable for massive parallelization.

We consider the Stokes equations written in terms of velocity u and pressure p

on a finite time interval [0, T ] and in a cubic domain Ω = (0, 1)d with d = 2 or 3:

(1.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut −Δu+∇p = f, in Ω× (0, T ],

∇·u = 0, in Ω× [0, T ],

u|∂Ω = 0, in (0, T ],

u|t=0 = u0, in Ω,

where f is a smooth source term and u0 is a solenoidal initial velocity field with zero
normal trace. The nonlinear term in the momentum equation of the Navier-Stokes
equations is not accounted for since it does not interfere with the incompressibility
constraint. The fluid density is assumed to be constant and has been put into the
normalization constants.
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Once time is discretized, (1.1) reduces to a generalized Stokes system at each
time step. Solving this coupled system often proves computer intensive and is not
easy to solve efficiently in parallel due to the saddle point structure induced by
the incompressibility constraint. Alternative more efficient approaches consist of
uncoupling the velocity and the pressure using so-called projection algorithms.

Projection algorithms date back to the late 1960s and stem from the seminal
works of Chorin [4] and Temam [27]. These methods and various improvements
thereof are still, to the best of our knowledge, the methods of choice in the CFD
community. Although in the 1980s and 1990s these techniques underwent some evo-
lution and their properties are now fairly well understood [19, 24, 25, 26, 29, 12, 9]
(the reader is referred to [10] for an overview), the same fundamental idea of de-
composing vector fields into a divergence-free part and a gradient has remained
unchanged over the years and has been challenged only recently in [13]. For all
these schemes, the total cost per time step is that of solving one vector-valued
advection-diffusion equation and one scalar-valued Poisson equation with homoge-
neous Neumann boundary conditions. For very large size problems, the cost of
solving the Poisson equation is dominant. To address this issue, Guermond and
Minev have proposed a new method in [11]. The main idea consists of abandon-
ing the projection paradigm, as in [13], and replacing the Poisson equation by a
direction splitting strategy. This requires to solve a sequence of one-dimensional
elliptic problems instead of one multidimensional Poisson equation. The first-order
accurate variant of method has been shown to be unconditionally stable in [11].

In this paper we pursue further the ideas introduced/announced in [11] in the
sense that in addition to splitting the pressure-correction, we also apply a direction
splitting technique to the momentum equation, thus further reducing the overall
computational cost of the method. We prove that the totally split method is con-
vergent and we provide error estimates.

Applying direction splitting to the momentum equation is not a new idea. For
instance, in [28, Section 3.7.2] Temam studies a projection method where the solu-
tion of the momentum equation is obtained using direction splitting and the incom-
pressibility constraint is enforced by means of a Poisson equation. Stability and
convergence of the scheme are proved therein but no error estimates are provided.
Lu, Neittaanmäki and Tai show in [20, 21] that this scheme is O(τ

1
2 ) accurate, τ

being the time-step. Our work differs from these previous results mainly in two
directions. First, we adopt a direction splitting strategy for the computation of the
pressure-correction which renders the method extremely fast and massively paral-
lelizable. Second, we provide error estimates for the proposed scheme, and we show
that the so-called standard version of the scheme is O(τ )-accurate in all quantities

irrespective of the space dimension and the rotational version is O(τ
3
2 )-accurate in

two space dimensions. Numerical experiments show that the result holds true also

in three space dimensions and the actual convergence rate is higher than O(τ
3
2 ) in

two and three space dimensions. The algorithm has been implemented in a parallel
code which has been observed to have optimal weak scalability. This code has been
used to compute the transient regime on the three-dimensional lid-driven cavity at
Re = 1000 and Re = 5000 on a mesh composed of 2×109 nodes on 512 processors
only.

This paper is organized as follows. Section 1.1 introduces the notation and
establishes some preliminary results. The new algorithm is described in Section 2;
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two-dimensional and three-dimensional variants of the algorithm are presented in
§2.1 and §2.2, respectively. The convergence analysis of the standard form of the
algorithm is done in Section 3 and the analysis of the rotational form is done in
Section 4. In Section 5 we briefly discuss the BDF2 technique to march in time.
Finally, we present numerical experiments in Section 6 to illustrate the performance
of this new class of algorithms.

1.1. Notation and preliminaries. We consider the time-dependent Stokes sys-
tem (1.1) on the finite time interval [0, T ] and in the cubic domain Ω := (0, 1)d with
d = 2 or 3.

We henceforth consider only the time discretization of the system to simplify the
discussion. Handling the space discretization is a secondary issue, and the reader is
referred to [9, 14] for the techniques that can be used for this purpose. Let τ > 0 be
a time step (for simplicity taken uniform) and let tk = kτ for 0 ≤ k ≤ K := �T/τ�.
Let E be a normed space, with norm ‖ · ‖E . For any time-dependent function
ψ : [0, T ] → E, we denote ψk := ψ(tk) and the sequence {ψk}k=0,...,K is denoted
by ψτ . To simplify the notation we define the time-increment operator δ acting on
time sequences by setting

(1.2) δψk := ψk − ψk−1,

and we define the time-average operation as follows:

(1.3) ψ̄k+ 1
2 :=

ψk+1 + ψk

2
.

We also define the following discrete norms:

(1.4) ‖ψτ‖�2(E) :=

(
τ

K∑
k=0

‖ψk‖2E

) 1
2

, ‖ψτ‖�∞(E) := max
0≤k≤K

{
‖ψk‖E

}
.

The space of functions ψ : [0, T ] −→ E that are such that the map (0, T ) � t −→
‖ψ(t)‖E ∈ R is Lp-integrable is indifferently denoted Lp((0, T );E) or Lp(E).

No notational distinction is made between scalar or vector-valued functions but
spaces of vector-valued functions are identified with bold fonts. We use the standard
Sobolev spaces Wm,p(Ω), for 0 ≤ m ≤ ∞ and 1 ≤ p ≤ ∞. The closure with respect
to the norm ‖ · ‖Wm,p of the space of C∞-functions compactly supported in Ω
is denoted Wm,p

0 (Ω). To simplify the notation, the Hilbert space W s,2(Ω) (resp.

W s,2
0 (Ω)) is denoted Hs(Ω) (resp. Hs

0(Ω)). We define L2∫
=0(Ω) (resp. H1∫

=0(Ω)) the

space that is composed of those functions in L2(Ω) (resp. H1(Ω)) that are of zero
mean. The scalar product of L2(Ω) and L2∫

=0(Ω) is denoted 〈·, ·〉 and we define

‖q‖H1 := ‖∇q‖L2 , ∀q ∈ H1∫
=0(Ω),(1.5)

‖v‖H1 := ‖∇v‖L2 , ∀v ∈ H1
0(Ω).(1.6)

Finally, we recall that

(1.7) ‖v‖2H1 = ‖∇·v‖2L2 + ‖∇×v‖2L2 , ∀v ∈ H1
0(Ω).

Henceforth c denotes a generic constant whose value may change at each oc-
currence. This constant may depend on the data of the problem and its exact
solution, but it does not depend on the discretization parameter τ or the solution
of the numerical scheme.
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1.2. The pressure operator. We assume that we have at hand an unbounded
closed operator A : D(A) ⊂ L2∫

=0
(Ω) → L2∫

=0
(Ω) with domain D(A) ⊂ H1∫

=0
(Ω) and

we assume that the following holds:

(1.8)

{
‖∇q‖2L2 ≤ 〈Aq, q〉, ∀q ∈ D(A),

〈Ap, q〉 = 〈p,Aq〉, ∀p, q ∈ (A).

This property implies that the map D(A) � q �→ ‖q‖A ∈ R where

(1.9) ‖q‖A := 〈Aq, q〉 1
2 , ∀q ∈ D(A),

is a norm. We also define the scalar product

(1.10) 〈p, q〉A := 〈Ap, q〉, ∀p, q ∈ D(A).

Finally, we introduce the Hilbert space Y to be the completion of the space of
smooth scalar-valued functions with respect to the norm ‖ · ‖A:

(1.11) Y := C∞(Ω)
‖·‖A ∩ L2∫

=0(Ω).

The extension of the scalar product 〈·, ·〉A to Y is abusively denoted 〈·, ·〉A.
The symmetry and coercivity hypotheses (1.8) for the operator A are the only

hypotheses required for the stability and convergence results stated in this paper
to hold true unless explicitly mentioned otherwise.

1.2.1. Example 1: A natural choice for A consists of setting A = −ΔN , where
ΔN is the Laplace operator supplemented with homogeneous Neumann boundary
conditions. This operator is the workhorse of classical projection methods. The
quasi-totality of the literature dedicated to projections methods uses this operator.
Another less known legitimate choice is A = I−ΔN where I is the identity operator.

1.2.2. Example 2: The main originality of the method that we are going to con-
sider is that incomplete factorizations of I −ΔN are legitimate also. In two space
dimensions we define
(1.12){
A := (1− ∂xx)(1− ∂yy),

D(A) :=
{
p ∈ H1∫

=0(Ω) : ∂yyp,Ap∈L2(Ω) : ∂yp|y=0,1 = 0, ∂x(1− ∂yy)p|x=0,1 = 0
}
,

and in three dimensions
(1.13)⎧⎪⎨
⎪⎩
A := (1− ∂xx)(1− ∂yy)(1− ∂zz),

D(A) :=
{
p ∈ H1∫

=0(Ω) : ∂zzp, (1− ∂yy)(1− ∂zz)p,Ap ∈ L2(Ω) :

∂zp|z=0,1 = 0, ∂y(1− ∂zz)p|y=0,1 = 0, ∂x(1− ∂yy)(1− ∂zz)p|x=0,1 = 0} ,

The graph norm is denoted ‖ · ‖D(A) both in two and three space dimensions.

Proposition 1.1. The operator A defined in (1.12) or (1.13), in two or three space
dimensions, respectively, satisfies (1.8).

Proof. See [11]. �

One interesting feature of the operators defined by (1.12) and (1.13) is that
solving the equation Ap = g for g ∈ L2(Ω) only requires to solve one-dimensional
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problems. For instance, the solution of Ap = g in three space dimensions is obtained
by solving for p1, p2, and p so that

(1.14)

p1 − ∂xxp1 = g, ∂xp1|x=0,1 = 0,

p2 − ∂yyp2 = p1, ∂yp2|y=0,1 = 0,

p− ∂zzp = p2, ∂zp|z=0,1 = 0.

When A is defined as in (1.12) or (1.13), the space Y is characterized as follows:

(1.15) Y =

{
{q ∈ H1∫

=0(Ω); ∂xyq ∈ L2(Ω)}, in R
2,

{q ∈ H1∫
=0(Ω); ∂xyq, ∂yzq, ∂zxq, ∂xyzq ∈ L2(Ω)} in R

3.

Note that the boundary conditions associated with D(A) have disappeared from Y
and the ‖ · ‖A-norm (which is also the norm in Y ) is characterized by

(1.16) ‖q‖2A =

{
‖q‖2H1 + ‖∂xyq‖2L2 , in R

2,

‖q‖2H1 + ‖∂xyq‖2L2 + ‖∂yzq‖2L2 + ‖∂zxq‖2L2 + ‖∂xyzq‖2L2 , in R
3.

1.2.3. Example 3: As a final example, let A be either the operator ΔN or I −ΔN

(or suitable discretizations thereof), and let Π be a symmetric preconditioner of A
that we assume to be uniformly spectrally equivalent to A. In other words, let us
assume that there are constants c1 and c2 independent of the mesh size so that the
following inequalities hold:

c1〈Π−1q, q〉 ≤ 〈Aq, q〉 ≤ c2〈Π−1q, q〉, ∀q ∈ D(Π−1) ∩D(A).

Then, it is clear that for all γ ≥ 1
c2

(i.e., γ large enough) the operator A := γΠ−1

satisfies the symmetry and coercivity hypotheses (1.8). Note that the solution of
the equation Ap = g reduces to p = γ−1Πg which is just an application of the
preconditioner, which, by design, is easy to perform.

Natural choices for Π are the so-called BPX-type preconditioners (see [2] and [3,
Chapter II, Section 4] for the proof of uniform spectral equivalence) or the multigrid
V-cycle with a variable number of smoothing steps per level (see [3, Chapter II,
Section 7.4]).

1.3. Direction splitting for the velocity. To be able to handle the two-dimen-
sional and three-dimensional error analysis in a unified framework we introduce the
following unbounded closed operator

(1.17) Bv :=

{
∂xxyyv in R

2,

(∂xxyy + ∂yyzz + ∂zzxx − τ
2∂xxyyzz)v in R

3,

with domain

(1.18) D(B) := {v ∈ H1
0(Ω); Bv ∈ L2(Ω)}.

The graph norm is denoted ‖ · ‖D(B).

Lemma 1.1. The bilinear form D(B)×D(B) � (v, w) �−→ 〈v,Bw〉 ∈ R is symmet-
ric positive and the following holds for all v ∈ D(B):

(1.19) 〈v,Bv〉 =
{
‖∂xyv‖2L2 in R

2,

‖∂xyv‖2L2 + ‖∂yzv‖2L2 + ‖∂xzv‖2L2 +
τ
2‖∂xyzv‖2L2 in R

3.
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Proof. Let us consider the two-dimensional case first. Using the Fubini-Tonelli
Theorem and integrating by parts repeatedly we obtain

〈∂xxyyv, v〉 =
∫ x=1

x=0

[
v∂yxxv

∣∣∣y=1

y=0
−
∫ y=1

y=0

∂yv∂yxxv diff y

]
diff x

= −
∫ y=1

y=0

[
∂yv∂yxv

∣∣∣x=1

x=0
−
∫ x=1

x=0

(∂yxv)
2 diff x

]
diff y

= ‖∂xyv‖2L2 .

Note that we used v|y=0,1 = 0 and ∂yv|x=0,1 = 0 which is a consequence of v|x=0,1 =
0. The three-dimensional result is obtained similarly; the details are left to the
reader. �

To simplify notation we now define the norm

(1.20) ‖v‖B := 〈v,Bv〉 1
2 , v ∈ D(B),

and we define the Hilbert space

(1.21) Z := C∞(Ω)
‖·‖B ∩H1

0(Ω).

The extension of the scalar product 〈·, ·〉B to Z is abusively denoted 〈·, ·〉B.

1.4. The right-inverse of the Stokes operator. To describe solenoidal vector
fields we introduce the classical spaces

(1.22) H :=
{
v ∈ L2(Ω) : ∇·v = 0, v·n|∂Ω = 0

}
, V := H ∩H1

0(Ω),

where n is the outer unit normal to ∂Ω and we denote by PH the L2-projection
onto H. It is also useful to introduce the right-inverse of the Stokes operator S :
L2(Ω) → V defined as follows: for any f ∈ L2(Ω) we denote (Sf, q) ∈ V×L2∫

=0(Ω)
the pair such that

(1.23)

⎧⎪⎨
⎪⎩
−ΔSf +∇q = f, in Ω,

∇·Sf = 0, in Ω,

Sf = 0, on ∂Ω.

Given the particular domain that we consider in this work, the inverse Stokes
operator is bounded from L2(Ω) to H2∩V (cf. [5]), i.e., ‖Sf‖H2 ≤ c‖f‖L2 . Finally,
we introduce the semi-norm

(1.24) |v|2� := 〈Sv, v〉, ∀v ∈ L2(Ω),

and, we recall (see e.g. [26, 9, 15]), that for every γ ∈ (0, 1), there exists c(γ) ≥ 0
so that the following holds for every v ∈ H1

0(Ω):

(1.25) 〈∇Sv,∇v〉 ≥ (1− γ)‖v‖2L2 − c(γ)‖v − PHv‖2L2 .

2. Description of the scheme

We describe the direction splitting algorithm in two and three space dimensions
in this section. The stability and convergence analysis is done in the subsequent
sections.
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2.1. Two space dimensions. To simplify the presentation, we assume for the time
being that the space dimension is two (d = 2) and we defer to §2.2 the discussion
of the three-dimensional case.

The scheme computes three sequences of variables {uk}, {φk− 1
2 }, and {pk− 1

2 }
that approximate the velocity, the pressure-correction, and the pressure, respec-
tively.

• Pressure predictor: Denoting by p0 the exact pressure field at t = 0 and

φ�,− 1
2 an approximation of 1

2τ∂tp(0), the algorithm is initialized by setting

p−
1
2 = p0 and φ− 1

2 = φ�,− 1
2 . Then, for all k ≥ 0 a pressure predictor is

computed as follows:

(2.1) p�,k+
1
2 = pk−

1
2 + φk− 1

2 .

• Velocity update: The velocity field is initialized by setting u0 = u0, and for
all k ≥ 0 the velocity update is computed by solving the following series of
one-dimensional problems: Find ξk+1, ηk+1, and uk+1 such that

ξk+1 − uk

τ
−Δuk +∇p�,k+

1
2 = fk+ 1

2 , ξk+1|∂Ω = 0,(2.2)

ηk+1 − ξk+1

τ
− 1

2
∂xx(η

k+1 − uk) = 0, ηk+1|x=0,1 = 0,(2.3)

uk+1 − ηk+1

τ
− 1

2
∂yy(u

k+1 − uk) = 0, uk+1|y=0,1 = 0.(2.4)

• Penalty step: The pressure-correction φk+ 1
2 is computed by solving

(2.5) Aφk+ 1
2 = −1

τ
∇·uk+1.

• Pressure update: The last sub-step of the algorithm consists of updating
the pressure as follows:

(2.6) pk+
1
2 = pk−

1
2 + φk+ 1

2 − χ∇·ūk+ 1
2 .

Remark 2.1. Note that we use two different sets of symbols to distinguish the exact
solution of (1.1), say (u, p), from the approximate solution (u, p).

Remark 2.2. The parameter χ ≥ 0 in (2.6) is user dependent. By analogy with the
projection-based pressure correction schemes, we say that the method is in standard
form if χ = 0 and the method is in rotational form if χ > 0.

Remark 2.3. By making the linear combinations (2.2)+(2.3) and (2.2)+(2.3) +

2×(2.4) and by setting uk+ 1
2 := 1

2 (η
k+1 + uk), we observe that the splitting of

the momentum equation in (2.2)-(2.3)-(2.4) is equivalent to original alternating
directions (ADI) scheme of Peaceman and Rachford, see [22]:

uk+ 1
2 − uk

τ/2
− ∂xxu

k+ 1
2 − ∂yyu

k +∇p�,k+
1
2 = fk+ 1

2 , uk+ 1
2 |x=0,1 = 0,(2.7)

uk+1 − uk+ 1
2

τ/2
− ∂xxu

k+ 1
2 − ∂yyu

k+1 +∇p�,k+
1
2 = fk+ 1

2 , uk+1|y=0,1 = 0.(2.8)

Remark 2.4. The quantity φ�,− 1
2 can be estimated in many ways. For instance, one

can take φ�,− 1
2 = 0; this limits the convergence of the scheme to first-order. One

can also take φ�,− 1
2 = p�,

1
2 − p0 where is p�,

1
2 is an estimate of p( τ2 ).
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Remark 2.5. During the review of this paper it has come to our attention that
somewhat similar lower-order versions of the above algorithm have been explored
in the Russian literature, e.g. see algorithm (13.6.12)-(13.6.13) from [30].

A remarkable feature of the algorithm (2.1) to (2.6) is that, although the Dirichlet
boundary condition on the velocity is not enforced on the entire boundary at the
integer time steps, it is indeed fulfilled as claimed in the following.

Proposition 2.1. Let {uk} be the velocity sequence from the algorithm (2.1) to
(2.6). Then uk|∂Ω = 0 for all k = 0, . . . ,K.

Proof. Let us prove this by induction. The boundary condition is satisfied by u0

by construction. It is clear also by definition of uk+1 that the boundary condition
is satisfied at y = 0, 1. Let us consider (2.4) at x = 1, the other boundary can be
treated similarly. The boundary condition at x = 1 on the quantity ηk+1 implies
that

uk+1(1, y) =
τ

2
∂yy(u

k+1(1, y)− uk(1, y)).

Moreover, the boundary conditions on uk+1 and uk at y = 0 and y = 1 imply that
the above equation can be rewritten into the following form:

uk+1(1, y)− uk(1, y)− τ

2
∂yy(u

k+1 − uk)(1, y) = 0, (uk+1 − uk)(1, ·)|y=0,1 = 0.

This immediately implies that uk+1(1, y) = uk(1, y) = 0, which concludes the
proof. �

This result turns out to be crucial for the error analysis.

2.2. Three space dimensions. The purpose of this section is to propose a three-
dimensional version of the above splitting technique. Since the alternating direc-
tions method of Peaceman and Rachford described in [22] (i.e., (2.7)-(2.8)) does
not extend to three dimensions, we use the alternating directions method proposed
by Douglas [6] instead to approximate the momentum equation.

The algorithm is again composed of four steps: pressure predictor, velocity up-
date, penalty step, pressure update.

• Pressure predictor: Denoting by p0 the pressure field at t = 0 and φ�,− 1
2 an

approximation of 1
2τ∂tp(0), the algorithm is initialized by setting p−

1
2 = p0

and φ− 1
2 = φ�,− 1

2 . Then for all k ≥ 0 a pressure predictor is computed as
follows:

(2.9) p�,k+
1
2 = pk−

1
2 + φk− 1

2 .

• Velocity update: The velocity field is initialized by setting u0 = u0, and for
all k ≥ 0 the velocity update is computed by solving the following series of
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DIRECTION SPLITTING 1959

one-dimensional problems: Find ξk+1, ηk+1, ζk+1, and uk+1 such that

ξk+1 − uk

τ
−Δuk +∇p�,k+

1
2 = fk+ 1

2 , ξk+1|∂Ω = 0,(2.10)

ηk+1 − ξk+1

τ
− 1

2
∂xx(η

k+1 − uk) = 0, ηk+1|x=0,1 = 0,(2.11)

ζk+1 − ηk+1

τ
− 1

2
∂yy(ζ

k+1 − uk) = 0, ζk+1|y=0,1 = 0,(2.12)

uk+1 − ζk+1

τ
− 1

2
∂zz(u

k+1 − uk) = 0, uk+1|z=0,1 = 0.(2.13)

• Penalty step: The pressure-correction φk+ 1
2 is computed by solving

(2.14) Aφk+ 1
2 = −1

τ
∇·uk+1.

• Pressure update: The last sub-step of the algorithm consists of updating
the pressure as follows:

(2.15) pk+
1
2 = pk−

1
2 + φk+ 1

2 − χ∇·ūk+ 1
2 .

Remark 2.6. As mentioned in Section 1, the advection term in the full Navier-
Stokes equations does not pose any particular theoretical difficulty with respect to
the pressure-velocity splitting, and we do not include it in the numerical analysis
to avoid unnecessary technicalities. There are several ways to incorporate the ad-
vection into the scheme. The simplest technique consists of treating it explicitly
with a second- or third-order Adams-Bashforth scheme; this introduces a CFL-type
stability condition, which in our opinion is reasonable and does not spoil the par-
allel performance of the algorithm (see [16, 17] for details). In all computations
presented below (see Section 6), the momentum equation (2.2) in 2D and (2.10) in
3D is replaced by
(2.16)
ξk+1 − uk

τ
− 1

Re
Δuk +∇p∗,k+

1
2 +NLk+1(uk, uk−1) = fk+ 1

2 , ξk+1|∂Ω = ak+1,

where NLk+1(uk, uk−1) := 3
2 (u

k·∇)uk − 1
2 (u

k−1·∇)uk−1 and ak+1 is the Dirichlet
boundary condition on the velocity at time level k+1. Moreover, the pressure cor-
rection is rewritten as follows to properly account for the presence of the Reynolds
number:

(2.17) pk+
1
2 = pk−

1
2 + φk+ 1

2 − χ

Re
∇·ūk+ 1

2 .

In conclusion the full algorithm is (2.9)-(2.16)-(2.10)-(2.11)-(2.12)-(2.13)-(2.14)-
(2.17) when solving the nonlinear Navier-Stokes equations in three space dimen-
sions.

Remark 2.7. The above method is an extension of the alternating direction method
proposed by Douglas [6]. In order to see this, we add (2.10) and (2.11) to obtain

ηk+1 − uk

τ
− 1

2
∂xx(η

k+1 + uk)− (∂yy + ∂zz)u
k +∇p�,k+

1
2 = fk+ 1

2 .

Adding (2.10)–(2.12) we obtain

ζk+1 − uk

τ
− 1

2
∂xx(η

k+1 + uk)− 1

2
∂yy(ζ

k+1 + uk)− ∂zzu
k +∇p�,k+

1
2 = fk+ 1

2 .
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Finally, adding (2.10)–(2.13) we obtain

uk+1 − uk

τ
−1

2
∂xx(η

k+1+uk)−1

2
∂yy(ζ

k+1+uk)−1

2
∂zz(u

k+1+uk)+∇p�,k+
1
2 = fk+ 1

2 .

These equations correspond to (3.1a)–(3.1c) of [6], respectively.

Proposition 2.2. Let {uk} be the velocity sequence from the algorithm (2.9)–
(2.15). Then uk|∂Ω = 0 for all k = 0, . . . ,K.

(2.18) uk|∂Ω = 0, ∀k ≥ 0.

Proof. Proceed as in the proof of Proposition 2.1. �

2.3. Compatibility conditions. Note that p0 := p|t=0 is not part of the initial
data but this quantity can be computed by solving

(2.19) Δp0 = ∇·(f0 +Δu0), ∂np0|Γ = (f0 +Δu0)·n,
where we have set f0 := f |t=0. This then requires the initial data to satisfy the
following compatibility condition at the boundary (−Δu0 +∇p0 − f0)|Γ = 0 which
we assume to hold. This condition holds, for instance, if u0 = 0 and f0 = 0,
i.e., the fluid is at rest at t = 0 and the source term is zero at t = 0. If the
above compatibility condition is not satisfied, the error analysis must be adapted
to account for weighted error estimates by proceeding as in [18, 23].

3. Error analysis of the standard scheme

The purpose of this section is to study the convergence of the algorithms (2.7)–
(2.6) in two space dimensions and (2.9)–(2.15) in three space dimensions for χ =
0. The main claim of this section is that the standard version of our scheme is
unconditionally stable and first-order convergent in all quantities.

3.1. Consistency of the momentum equation. To evaluate the consistency
error on the momentum equation, we rewrite the momentum equation in a more
recognizable Crank-Nicolson form. This is done in two space dimensions by adding
(2.2), (2.3) and (2.4) as follows:

(3.1)
uk+1 − uk

τ
− 1

2
∂yyu

k+1 − 1

2
∂xxη

k+1 − 1

2
Δuk +∇p�,k+

1
2 = fk+ 1

2 .

Then using (2.4) to eliminate ηk+1 from the above equality, i.e., ηk+1 = uk+1 −
τ
2∂yy(u

k+1 − uk), we obtain the following evolution equation for the integer steps,

(3.2)
uk+1 − uk

τ
−Δūk+ 1

2 +∇p�,k+
1
2 +

τ

4
∂xxyyδu

k+1 = fk+ 1
2 ,

where the time increment δ(·) and the time averaging (·) operators are defined in
(1.2) and (1.3), respectively.

The same trick can be used in three space dimensions as suggested in [6]. By pro-
ceeding as above, the intermediate steps, ξk+1, ηk+1, and ζk+1, can be eliminated,
so that the momentum equation becomes:

uk+1 − uk

τ
−Δūk+ 1

2 +
τ

4
(∂xxyy + ∂yyzz + ∂zzxx − τ

2
∂xxyyzz)δu

k+1

+∇p�,k+
1
2 = fk+ 1

2 .

(3.3)
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Owing to the definition of the operator B (see (1.17)), the momentum equation can
be rewritten as follows independently of the space dimension:

(3.4)
uk+1 − uk

τ
−Δūk+ 1

2 +
τ

4
Bδuk+1 +∇p�,k+

1
2 = fk+ 1

2 .

3.2. Consistency analysis of the algorithm. Let u, p be the solution of (1.1).
We define the following velocity and pressure errors:

(3.5) ek+1 := u
k+1 − uk+1, εk+

1
2 := p

k+ 1
2 − pk+

1
2 ,

where uk+1 := u(tk+1) and pk+
1
2 := p(tk+ 1

2
).

Next, we obtain equations controlling the errors. Since χ = 0, the pressure
update implies that the pressure predictor can also be written as follows:

(3.6) p�,k+
1
2 = 2pk−

1
2 − pk−

3
2 ;

that is, the pressure predictor is a second-order extrapolation of the pressure at
time level k + 1

2 . Upon subtracting (3.4) from the momentum equation (1.1), we
obtain

(3.7) (1 +
τ2

4
B)(ek+1 − ek)− τΔēk+

1
2 + τ∇ε�,k+

1
2 = τRk+ 1

2 ,

where we have set ε�,k+
1
2 := 2εk−

1
2 − εk−

3
2 and the residual Rk+ 1

2 is defined by
(3.8)

Rk+ 1
2 =

[
δuk+1

τ
− (ut)

k+ 1
2

]
−Δ

[
ūk+

1
2 − uk+

1
2

]
−∇

[
pk+

1
2 − p�,k+

1
2

]
+
τ

4
B
[
δuk+1

]
,

where we have again set p�,k+
1
2 := 2pk−

1
2 − pk−

3
2 . Finally, using (2.6) (or (2.15))

with χ = 0 to eliminate φk+ 1
2 from (2.5) (or (2.14)) and using the incompressibility

constraint, we obtain

(3.9) 〈δεk+ 1
2 , q〉A =

1

τ
〈ek+1,∇q〉+ 〈δpk+ 1

2 , q〉A, ∀q ∈ Y.

Note that it is not legitimate to write the equality in strong form, i.e., Aδεk+
1
2

is equal to − 1
τ∇·ek+1 + Aδpk+

1
2 since δpk+

1
2 is not in D(A) (i.e., δpk+

1
2 does not

satisfy the artificial boundary conditions associated with D(A)).

Lemma 3.1. Let u ∈ W 2,∞(H2(Ω)) ∩W 1,∞(D(B)) and p ∈ W 2,∞(H1(Ω)). Then

(3.10) 2τ 〈Rk+ 1
2 , v〉 ≤ cτ5 +

τ

4
‖v‖2L2 , ∀v ∈ L2(Ω).

Proof. Each of the terms in Rk+ 1
2 is O(τ2), given the smoothness of the exact

solution. Note that pk+
1
2 − p�,k+

1
2 = δ2pk+

1
2 . �

3.3. First-order estimates on the velocity. Let us assume that the quantity
φ�, 12 is estimated so that the following holds:

(3.11) ‖p( τ2 )− p�,
1
2 ‖L2 ≤ cτ.

This is the case if φ�, 12 = 0 and if the pressure is smooth enough, say p ∈
C0([0, T ], L2(Ω)). Then, the main result of this section is the following first-order
convergence statement.
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Theorem 3.1. Assume that the solution (u, p) to (1.1) is smooth enough (say u ∈
W 2,∞(H2(Ω))∩W 1,∞(D(B)) and p ∈ W 2,∞(Y )). Then, provided that (3.11) holds,
the solution (uτ , pτ ) to the discrete scheme (2.1)–(2.6) in two space dimensions and
(2.9)–(2.15) in three space dimensions, with χ = 0, satisfies the following error
estimate:

(3.12) ‖eτ‖�∞(L2) + ‖eτ‖�2(H1) + τ‖eτ‖�∞(B) + τ‖ετ‖�∞(A) +
√
τ‖δeτ‖�2(B) ≤ cτ.

Proof. Multiply equation (3.7) by 2ek+1 and integrate over Ω. Since both the exact
velocity and the approximate one at integer time steps satisfy the full boundary
conditions, we obtain

(3.13)

(1− τ

4
)‖ek+1‖2L2 + ‖δek+1‖2L2 +

τ

2
‖ek+1‖2H1 + 2τ‖ēk+ 1

2 ‖2H1 + 2τ 〈∇ε�,k+
1
2 , ek+1〉

+
τ2

4
‖ek+1‖2B +

τ2

4
‖δek+1‖2B ≤ ‖ek‖2L2 +

τ

2
‖ek‖2H1 +

τ2

4
‖ek‖2B + cτ5,

where we have used the identity 2a(a± b) = a2 − b2 + (a± b)2.

By using 2τ2ε�,k+
1
2 as a test function in (3.9), we obtain

2τ2〈δεk+ 1
2 , ε�,k+

1
2 〉A = 2τ 〈ek+1,∇ε�,k+

1
2 〉+ 2τ2〈δpk+ 1

2 , ε�,k+
1
2 〉A.

Clearly,

〈δεk+ 1
2 , ε�,k+

1
2 〉A = 〈δεk+ 1

2 , εk+
1
2 〉A − 〈δεk+ 1

2 , δ2εk+
1
2 〉A,

so that using again the identity 2a(a− b) = a2 − b2 + (a− b)2 we obtain

(3.14) τ2
[
‖εk+ 1

2 ‖2A − ‖εk− 1
2 ‖2A + ‖δεk− 1

2 ‖2A
]
− τ2‖δ2εk+ 1

2 ‖2A

= 2τ 〈ek+1,∇ε�,k+
1
2 〉+ 2τ2〈δpk+ 1

2 , ε�,k+
1
2 〉A.

To obtain a control on ‖δ2εk+ 1
2 ‖2A, we apply the time increment operator δ to (3.9)

(assuming that k ≥ 2) and we use the test function τδ2εk+
1
2 :

τ‖δ2εk+ 1
2 ‖2A = 〈δek+1,∇δ2εk+

1
2 〉+ τ 〈δ2pk+ 1

2 , δ2εk+
1
2 〉A

≤ ‖δek+1‖L2‖∇δ2εk+
1
2 ‖L2 + τ‖δ2pk+ 1

2 ‖A‖δ2εk+
1
2 ‖A

≤
(
‖δek+1‖L2 + τ‖δ2pk+ 1

2 ‖A
)
‖δ2εk+ 1

2 ‖A,

so that

(3.15) τ2‖δ2εk+ 1
2 ‖2A ≤ ‖δek+1‖2L2 + τ2‖δ2pk+ 1

2 ‖2A + 2τ‖δ2pk+ 1
2 ‖A‖δek+1‖L2 .

Adding (3.13), (3.14) and (3.15) we obtain

(1− τ

4
)‖ek+1‖2L2 +

τ

2
‖ek+1‖2H1 + 2τ‖ēk+ 1

2 ‖2H1 + τ2
[
‖εk+ 1

2 ‖2A + ‖δεk− 1
2 ‖2A

]
+

τ2

4

[
‖ek+1‖2B + ‖δek+1‖2B

]
≤ cτ5 + ‖ek‖2L2 +

τ

2
‖ek‖2H1 + τ2‖εk− 1

2 ‖2A

+
τ2

4
‖ek‖2B + 2τ2〈δpk+ 1

2 , ε�,k+
1
2 〉A + τ2‖δ2pk+ 1

2 ‖2A + 2τ‖δ2pk+ 1
2 ‖A‖δek+1‖L2 .
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Let us examine the last three terms in detail:
• τ2‖δ2pk+ 1

2 ‖2A. Given the smoothness of p this term is O(τ5).

• 2τ‖δ2pk+ 1
2 ‖A‖δek+1‖L2 . We estimate it as follows:

2τ‖δ2pk+ 1
2 ‖A‖δek+1‖L2 ≤ cτ3(‖ek+1‖L2 + ‖ek‖L2) ≤ cτ5 +

τ

4
‖ek+1‖2L2 +

τ

2
‖ek‖2L2 .

• 2τ2〈Aδpk+
1
2 , ε�,k+

1
2 〉. Given the smoothness of p we obtain

2τ2〈δpk+ 1
2 , ε�,k+

1
2 〉A = 2τ2〈δpk+ 1

2 , εk−
1
2 〉A + 2τ2〈δpk+ 1

2 , δεk−
1
2 〉A

≤ cτ3‖εk− 1
2 ‖A + cτ3‖δεk− 1

2 ‖A
≤ cτ3 + τ3‖εk− 1

2 ‖2A + τ2‖δεk− 1
2 ‖2A.

Note that this term is the only one in the entire error analysis that spoils the game.
This consistency term does not allow us to obtain directly an error estimate of order
larger than O(τ ).

We have finally proved that the following holds for all k ≥ 2:

(1− τ

2
)‖ek+1‖2L2 +

τ

2
‖ek+1‖2H1 + 2τ‖ēk+ 1

2 ‖2H1 + τ2‖εk+ 1
2 ‖2A

+
τ2

4

[
‖ek+1‖2B + ‖δek+1‖2B

]
≤ cτ3 + (1 +

τ

2
)‖ek‖2L2 +

τ

2
‖ek‖2H1

+ τ2(1 + τ )‖εk− 1
2 ‖2A +

τ2

4
‖ek‖2B.

Upon observing that the initialization process (p−
1
2 = p0) implies

τ2‖δ2ε 3
2 ‖2A ≤ (1 + τ )‖e2‖2 + τ3,

we infer that the above inequality holds also for k = 1. As a consequence of (3.11),
we also deduce that

‖e1‖2L2 + τ‖e1‖2H1 + τ‖ē 1
2 ‖2H1 + τ2‖ε 1

2 ‖2A + τ2‖e1‖2B ≤ cτ4.

By summing the above relation from k = 1 to K and by applying the discrete
Grönwall lemma allows us to conclude. �

The ability of δuk+1/τ to approximate ut is made explicit in the following.

Lemma 3.2. Let the solution (u, p) to (1.1) be smooth enough such that
u ∈ W 3,∞(H2(Ω))∩W 2,∞(D(B)) and p ∈ W 3,∞(Y ). Then the solution (uτ , pτ ) to
the discrete scheme (2.1)–(2.6) in two space dimensions and (2.9)–(2.15) in three
space dimensions, with χ = 0, satisfies the following error estimate:

(3.16) ‖δeτ‖�∞(L2) + ‖δeτ‖�2(H1) + τ‖δετ‖�∞(A) + τ‖δeτ‖�∞(B) ≤ cτ2.

Proof. Apply the arguments in the proof of Theorem 3.1 to the time increments. �

3.4. Error estimates on the pressure. It is known that for the incremental
projection scheme in standard form it is possible to prove that the error on the
pressure in the 2(L2)-norm is O(τ ) (cf. [9, 10, 26]). The purpose of this paragraph
is to show that, although on a weaker norm, a similar result holds for the proposed
algorithm. Let us define the norm

(3.17) ‖q‖� = sup
0�=v∈Z

〈∇q, v〉
‖v‖Z

.
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Theorem 3.2. Assume that the hypotheses of Lemma 3.2 hold, then

(3.18) ‖ετ‖�2(�) ≤ cτ.

Proof. Using the error equation (3.7) we obtain

‖ε�,k+ 1
2 ‖� = sup

0�=v∈Z

1

‖v‖Z

[
〈δe

k+1

τ
, v〉+ 〈∇ēk+

1
2 ,∇v〉+ τ

4
〈δek+1, v〉B + 〈Rk+ 1

2 , v〉
]

≤ ‖δek+1‖L2

τ
+ ‖ēk+ 1

2 ‖H1 +
τ

4
‖δek+1‖B + cτ2

≤ cτ + ‖ēk+ 1
2 ‖H1 ,

where the last estimate holds in view of Lemma 3.2. Take the square of this in-
equality, multiply it by τ and sum over k. The result follows by using the conclusion
of Theorem 3.1. �

Remark 3.1. It seems that it may be possible to obtain a first-order error estimate
on the pressure in the 2(L2)-norm in the fully discrete case under the additional
(somewhat restrictive) condition

(3.19) τ ≤
{
ch in R

2,

ch
4
3 in R

3.

This is a CFL condition in two space dimensions. The reasoning behind this con-
jecture is the following. Assume that the velocity is approximated using a finite-
dimensional space Xh and that the norm in B is appropriately approximated, say
‖ · ‖Bh

. In view of (1.19) it is reasonable to expect that the following inverse
inequalities hold:

‖v‖Bh
≤

{
ch−1‖v‖H1 in R

2,

ch−1(1 + τ
1
2h−1)‖v‖H1 in R

3,
∀v ∈ Xh.

Then, assuming that the pressure is approximated using a space Mh ⊂ H1∫
=0(Ω) so

that the pair (Xh,Mh) satisfies the so-called LBB condition, [7, 8], we obtain

c‖ε�,k+ 1
2 ‖L2 ≤ sup

0�=v∈Xh

〈∇ε�,k+
1
2 , v〉

‖v‖H1

≤ sup
0�=v∈Xh

1

‖v‖H1

[
〈δek+1/τ, v〉+ 〈∇ēk+

1
2 ,∇v〉+ τ

4
〈δek+1, v〉Bh

+ 〈Rk+ 1
2 , v〉

]

≤ ‖δek+1/τ‖L2 + ‖ēk+ 1
2 ‖H1 +

τ

4
sup

0�=v∈Xh

‖δek+1‖Bh
‖v‖Bh

‖v‖H1

+ cτ2.

The two-dimensional inverse inequality implies

‖ε�,k+ 1
2 ‖L2 ≤ cτ2 + ‖τ−1δek+1‖L2 + ‖ēk+ 1

2 ‖H1 + cτ2h−2‖τ−1δek+1‖H1 ,

whereas the three-dimensional inverse inequality implies

‖ε�,k+ 1
2 ‖L2 ≤ cτ2 + ‖τ−1δek+1‖L2 + ‖ēk+ 1

2 ‖H1 + c(τ2h−2 + τ3h−4)‖τ−1δek+1‖H1 .

Take the square of this inequality, multiply it by τ and sum over k, then the
estimates of Lemma 3.2 together with condition (3.19) yield the desired estimate,
‖ετ‖�2(L2) ≤ cτ .
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3.5. Second-order estimates on the velocity. Despite the fact that numerical
experiments suggest that the standard form of the above algorithm is close to
second-order on the velocity in the L2-norm, (see Section 6), a proof of such a
statement eludes us at the moment. We briefly elaborate in this section on the
difficulties that arise when trying to establish a second-order error estimate.

The argument one usually invokes to prove a second-order error estimate consists

of multiplying the error equation by Sēk+
1
2 , where S is the right-inverse Stokes

operator (see (1.23)). Following this reasoning, and using property (1.25), we obtain
that the following holds

(3.20)
1

2

(
|ek+1|2� − |ek|2�

)
+

3τ

4
‖ēk+ 1

2 ‖2L2 +
τ2

4
〈δek+1, Sēk+

1
2 〉B

≤ τ 〈Rk+ 1
2 , Sēk+1〉+ cτ‖ēk+ 1

2 − PHēk+
1
2 ‖2L2 .

Provided the exact solution is smooth enough, we can estimate the residual term
in a way similar to Lemma 3.1,

τ 〈Rk+ 1
2 , Sēk+

1
2 〉 ≤ cτ5 +

τ

8
‖ēk+ 1

2 ‖2L2 .

Using the estimates of Lemma 3.2 we can control the B-norm as follows:∣∣∣∣τ24 〈δek+1, Sēk+
1
2 〉B

∣∣∣∣ ≤ τ2

4
‖δek+1‖B‖Sēk+

1
2 ‖B ≤ cτ3‖Sēk+ 1

2 ‖B.

In two space dimensions the H2-regularity of S implies ‖Sēk+ 1
2 ‖B ≤ c‖ēk+ 1

2 ‖L2 so
that ∣∣∣∣τ24 〈δek+1, Sēk+

1
2 〉B

∣∣∣∣ ≤ cτ5 +
τ

8
‖ēk+ 1

2 ‖2L2 .

Note that the above reasoning does not apply in three space dimensions. In con-
clusion, in two space dimensions (3.20) becomes

|ek+1|2� − |ek|2� + τ‖ēk+ 1
2 ‖2L2 ≤ cτ (τ4 + inf

v∈H
‖ēk+ 1

2 − v‖2L2)

= cτ (τ4 + ‖ēk+ 1
2 − PHēk+

1
2 ‖2L2),

which in turn yields

(3.21) ‖ēτ‖2�2(L2) ≤ c(τ4 + ‖ēτ − PHēτ‖2�2(L2)).

This inequality shows the estimate on ‖ēτ‖�2(L2) is controlled by ‖ēτ −PHēτ‖�2(L2).
Let us now try to bound ‖ēτ − PHēτ‖�2(L2) uniformly.

By definition, there is μk+ 1
2 ∈ H1∫

=0
(Ω) so that ēk+

1
2 − PHēk+

1
2 = ∇μk+ 1

2 . In

other words, μk+ 1
2 solves −Δμk+ 1

2 = −∇·ēk+ 1
2 and ∂nμ

k+ 1
2 |∂Ω = 0. Then the

penalty equation (3.9) together with the assumed smoothness of the pressure and
the estimates of Lemma 3.2 imply that

‖ēk+ 1
2−PHēk+

1
2 ‖2L2 = ‖∇μk+ 1

2 ‖2L2

= 〈ēk+ 1
2 ,∇μk+ 1

2 〉 = τ

2
〈δεk+ 1

2 − δpk+
1
2 + δεk−

1
2 − δpk−

1
2 , μk+ 1

2 〉A

≤ τ

2

(
‖δεk+ 1

2 ‖A + ‖δpk+ 1
2 ‖A + ‖δεk− 1

2 ‖A + ‖δpk− 1
2 ‖A

)
‖μk+ 1

2 ‖A

≤ cτ2‖μk+ 1
2 ‖A.
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This finally gives the estimate

‖ēk+ 1
2 − PHēk+

1
2 ‖L2 ≤ cτ2

‖μk+ 1
2 ‖A

‖∇μk+ 1
2 ‖L2

,

which can be controlled uniformly if ‖ · ‖A induces a norm equivalent to H1. This
is unfortunately not true with the operators A defined in (1.12) and (1.13).

In conclusion, the reasoning carried out above seems to indicate that the right-
inverse Stokes operator S is not the correct operator that should be used for the
duality argument. The operator that should be used instead still eludes us at the
moment.

4. Error analysis of the rotational scheme

The purpose of this section is to analyze the algorithms (2.1)–(2.6) and (2.9)–
(2.15) for χ �= 0 and to show that, as it is the case for the classical rotational
pressure-correction schemes (cf. [15]), these algorithms provide a better order of
convergence than the standard form.

4.1. Consistency analysis. Let u, p be the solution of (1.1). We define the
following velocity and pressure errors:

(4.1) ek+1 := u
k+1 − uk+1, εk+

1
2 := p

k+ 1
2 − pk+

1
2 ,

where uk+1 := u(tk+1) and pk+
1
2 := p(tk+ 1

2
). The error on the pressure correction

is measured by introducing the following quantity:

(4.2) Pk+ 1
2 := δεk+

1
2 + χ∇·ēk+ 1

2 .

Using the above notation we infer

pk+
1
2 − p�,k+

1
2 = pk+

1
2 − (pk−

1
2 + φk− 1

2 )

= p
k+ 1

2 − (pk−
1
2 + pk−

1
2 − pk−

3
2 + χ∇·ūk− 1

2 )

= δ2pk+
1
2 + (εk−

1
2 + δεk−

1
2 + χ∇·ēk− 1

2 )

= δ2pk+
1
2 + εk−

1
2 + Pk− 1

2 .

Then momentum equation is rewritten as follows:

(4.3) (1 +
τ2

4
B)(ek+1 − ek)− τΔēk+

1
2 + τ∇(εk−

1
2 + Pk− 1

2 ) = τRk+ 1
2 ,

where the residual Rk+ 1
2 is defined by

(4.4) Rk+ 1
2 =

[
δuk+1

τ
− (ut)

k+ 1
2

]
−Δ

[
ūk+

1
2 − uk+

1
2

]
−∇

[
δ2pk+

1
2

]
+
τ

4
B
[
δuk+1

]
.

The result of Lemma 3.1 holds again, Rk+ 1
2 = O(τ2), provided the exact solution

is smooth enough. The equation that controls the pressure correction is rewritten
as follows:

(4.5) 〈Pk+ 1
2 , q〉A =

1

τ
〈ek+1,∇q〉+ 〈δpk+ 1

2 , q〉A ∀q ∈ Y.
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4.2. A priori estimate on the divergence of the velocity. Let us assume that
the quantity φ�, 12 is estimated so that the following holds:

(4.6) ‖p( τ2 )− p�,
1
2 ‖L2 ≤ cτ.

This is the case if φ�, 12 = 0 and if the pressure is smooth enough, say p ∈
C0([0, T ], L2(Ω)). The main result of this section is the following.

Theorem 4.1. Assume that the solution (u, p) to (1.1) is smooth enough, (say
u ∈ W 2,∞(H2(Ω)) ∩W 1,∞(D(B)) and p ∈ W 2,∞(Y )). Then, provided (4.6) holds,
the solution (uτ , pτ ) to the discrete scheme (2.1)–(2.6) in two space dimensions and
(2.9)–(2.15) in three space dimensions, with 0 < χ ≤ 1, satisfies the following error
estimate:

‖δeτ‖2�∞(L2) + τ‖∇×δeτ‖2�∞(L2) + ‖∇×δeτ‖2�2(L2) + τ‖∇·eτ‖2�∞(L2) ≤ cτ4.(4.7)

Proof. Following [15], we derive an improved estimate on the divergence of the
velocity. This is done by working with the time increments of (4.3)-(4.5).

Apply the time increment operator δ to the momentum equation (4.3) and test
against 2δek+1 to obtain

(4.8)(
1− τ

4

)
‖δek+1‖2L2 + ‖δ2ek+1‖2L2 +

τ

2
‖δek+1‖2H1 + 2τ‖δēk+ 1

2 ‖2H1 +
τ

4
‖δek+1‖2B

+ 2τ
〈
∇
(
δεk−

1
2 + δPk− 1

2

)
, δek+1

〉
≤ cτ5 + ‖δek‖2L2 +

τ

2
‖δek‖2H1 +

τ

4
‖δek‖2B,

where we used the fact that the residual is O(τ2). Note that we could decrease the
consistency error to O(τ3) by assuming more regularity on u and p, but it would
not improve the overall accuracy of the method since the splitting error will turn
out to be O(τ2) (see below).

Apply the time increment operator δ to (4.5) and use 2τ2Pk+ 1
2 as a test function.

We obtain

τ2‖Pk+ 1
2 ‖2A + τ2‖δPk+ 1

2 ‖2A − τ2‖Pk− 1
2 ‖2A

= −2τ 〈∇·δek+1,Pk+ 1
2 〉+ 2τ2〈δ2pk+ 1

2 ,Pk+ 1
2 〉A

= −2τ 〈∇·δek+1, χ∇·ēk+ 1
2 + δεk+

1
2 〉+ 2τ2〈δ2pk+ 1

2 ,Pk+ 1
2 〉A,

where we used the identity 2a(a± b) = a2 + (a± b)2 − b2. This gives

(4.9) τ2‖Pk+ 1
2 ‖2A + τ2‖δPk+ 1

2 ‖2A + χτ‖∇·ek+1‖2L2 = τ2‖Pk− 1
2 ‖2A

+ χτ‖∇·ek‖2L2 + 2τ 〈δek+1,∇δεk+
1
2 〉+ 2τ2〈δ2pk+ 1

2 ,Pk+ 1
2 〉A.

Apply again the time increment operator δ to (4.5) and test with −2τ2δ2Pk+ 1
2 .

Using again, the identity 2a(a− b) = a2 + (a− b)2 − b2, we obtain

(4.10) − τ2
[
‖δPk+ 1

2 ‖2A + ‖δ2Pk+ 1
2 ‖2A − ‖δPk− 1

2 ‖2A
]
= −2τ 〈∇δ2Pk+ 1

2 , δek+1〉

− 2τ2〈δ2pk+ 1
2 , δ2Pk+ 1

2 〉A.

Observe that (4.9)+(4.10) amounts to testing the time increment of (4.5) with

2τ2(Pk− 1
2 + δPk− 1

2 ). We have split the two steps to make the argument clearer.
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By summing (4.8), (4.9) and (4.10) we deduce that(
1− τ

4

)
‖δek+1‖2L2 +

τ

2
‖δek+1‖2H1 + 2τ‖δēk+ 1

2 ‖2H1 +
τ

4
‖δek+1‖2B

+ χτ‖∇·ek+1‖2L2 + τ2‖Pk+ 1
2 ‖2A + τ2‖δPk− 1

2 ‖2A + ‖δ2ek+1‖2L2

− τ2‖δ2Pk+ 1
2 ‖2A − 2χτ 〈∇·δēk+ 1

2 ,∇·δek+1〉 ≤ cτ5 + ‖δek‖2L2

+
τ

2
‖δek‖2H1 +

τ

4
‖δek‖2B + χτ‖∇·ek‖2L2 + τ2‖Pk− 1

2 ‖2A

+ 2τ2〈δ2pk+ 1
2 ,Pk− 1

2 + δPk− 1
2 〉A,

(4.11)

where we used the following identities:

εk−
1
2 + δPk− 1

2 − δεk+
1
2 + δ2Pk+ 1

2 = χ∇·δēk+ 1
2 ,

Pk+ 1
2 − δ2Pk+ 1

2 = Pk− 1
2 + δPk− 1

2 .

Given the smoothness of p, the following holds:

2τ2〈δ2pk+ 1
2 ,Pk− 1

2 + δPk− 1
2 〉A ≤ cτ5 +

τ3

2
‖Pk− 1

2 ‖2A + τ2‖δPk− 1
2 ‖2A.

Observe that it is here that the irreducible splitting error comes into full light.
Although the consistency of the time increment of the momentum equation is O(τ3)
(provided enough regularity is assumed on u and p), the above inequality shows that
the splitting error of the method is O(τ2). Then (4.11) becomes(

1− τ

4

)
‖δek+1‖2L2 +

τ

2
‖δek+1‖2H1 − χ

τ

2
‖∇·δek+1‖2L2 + 2τ‖δēk+ 1

2 ‖2H1

− 2τχ‖∇·δēk+ 1
2 ‖2L2 +

τ

4
‖δek+1‖2B + χτ‖∇·ek+1‖2L2 + τ2‖Pk+ 1

2 ‖2A

+ ‖δ2ek+1‖2L2 − τ2‖δ2Pk+ 1
2 ‖2A ≤ cτ5 + ‖δek‖2L2 +

τ

2
‖δek‖2H1

− τ

2
χ‖∇·δek‖2L2 +

τ

4
‖δek‖2B + χτ‖∇·ek‖2L2 + τ2(1 +

τ

2
)‖Pk− 1

2 ‖2A,

(4.12)

where we used

−2χ〈∇·δēk+ 1
2 ,∇·δek+1〉 = −χ

[τ
2
‖∇·δek+1‖2L2 −

τ

2
‖∇·δek‖2L2 + 2τ‖∇·δēk+ 1

2 ‖2L2

]
.

Then the identity (1.7) gives(
1− τ

4

)
‖δek+1‖2L2 +

τ

2
‖∇×δek+1‖2L2 + (1− χ)

τ

2
‖∇·δek+1‖2L2

+ 2τ‖∇×δēk+
1
2 ‖2H1 + 2τ (1− χ)‖∇·δēk+ 1

2 ‖2L2 +
τ

4
‖δek+1‖2B

+ χτ‖∇·ek+1‖2L2 + τ2‖Pk+ 1
2 ‖2A + ‖δ2ek+1‖2L2 − τ2‖δ2Pk+ 1

2 ‖2A
≤ cτ5 + ‖δek‖2L2 +

τ

2
‖∇×δek‖2L2 + (1− χ)

τ

2
‖∇·δek‖2L2 +

τ

4
‖δek‖2B

+ χτ‖∇·ek‖2L2 + τ2(1 +
τ

2
)‖Pk− 1

2 ‖2A.

(4.13)

To conclude we are going to observe that the quantity ‖δ2ek+1‖2L2−τ2‖δ2Pk+ 1
2 ‖2A

is nonnegative up to some consistency error. To see this, let us apply the time

increment operator δ2 to (4.5) and test the equation with τδ2Pk+ 1
2 . After using

the Cauchy-Schwarz inequality and the inequality (1.8), we obtain

τ‖δ2Pk+ 1
2 ‖A ≤ ‖δ2ek+1‖L2 + τ‖δ3pk+ 1

2 ‖A,
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which, given the smoothness assumption on p, then implies

τ2‖δ2Pk+ 1
2 ‖2A ≤ ‖δ2ek+1‖2L2 + τ2‖δ3pk+ 1

2 ‖2A + 2τ‖δ2ek+1‖L2‖δ3pk+ 1
2 ‖A,

≤ cτ5 + ‖δ2ek+1‖2L2 +
τ

4
‖δek+1‖2L2 +

τ

2
‖δek‖2L2 .

Note again that the consistency error could be decreased to O(τ3) by assuming
p ∈ W 3,∞(Y ), but this would be useless since the splitting error of the method has
been shown to be O(τ2) above. By adding this last inequality to (4.13) we finally
obtain that the following holds for all k ≥ 2:(

1− τ

2

)
‖δek+1‖2L2 +

τ

2
‖∇×δek+1‖2L2 + (1− χ)

τ

2
‖∇·δek+1‖2L2 + 2τ‖∇

× δēk+
1
2 ‖2L2 + 2τ (1− χ)‖∇·δēk+ 1

2 ‖2L2 +
τ

4
‖δek+1‖2B + χτ‖∇·ek+1‖2L2

+ τ2‖Pk+ 1
2 ‖2A ≤ cτ5 + (1 +

τ

2
)‖δek‖2L2 +

τ

2
‖∇×δek‖2L2

+ (1− χ)
τ

2
‖∇·δek‖2L2 +

τ

4
‖δek‖2B + χτ‖∇·ek‖2L2 + τ2(1 +

τ

2
)‖Pk− 1

2 ‖2A.

The following estimate also holds as a consequence of the initialization hypothesis
(4.6):

‖δe2‖2L2 + τ‖∇×δe2‖2L2 + τ‖∇·δe2‖2L2 + τ‖δe2‖2B + χτ‖∇·e2‖2L2 + τ2‖P 3
2 ‖2A ≤ τ4.

By summing the above inequalities from k = 2 to K and by applying the discrete
Grönwall lemma we finally obtain the following error bound:

‖δeτ‖2�∞(L2) + τ‖∇×δeτ‖2�∞(L2) + ‖∇×δēτ‖2�2(L2) + χτ‖∇·eτ‖2�∞(L2)

+ τ2‖Pτ‖2�∞(A) ≤ cτ4.

This completes the proof. �
4.3. Error estimates. Having obtained the estimate of Theorem 4.1 we can now
show that the rotational version of the algorithm provides a better order of conver-
gence for the velocity in the 2(L2)-norm, at least in two space dimensions. To this

end, let us denote by ψ̄τ the sequence whose generic term is ψ̄k+ 1
2 := 1

2 (ψ
k+1+ψk).

Theorem 4.2 (2(L2) Velocity Estimates). Assume that the space dimension is
two. Under the assumptions of Theorem 4.1, the solution (uτ , pτ ) of the scheme
(2.1)–(2.6) in two space dimensions satisfies

‖uτ − uτ‖�2(L2) ≤ cτ
3
2 .

Proof. The proof proceeds by a duality argument using the right-inverse Stokes
operator S. By proceeding as in Section 3.5 we obtain (see (3.21)):

‖ēτ‖2�2(L2) ≤ c(τ4 + ‖ēτ − PHēτ‖2�2(L2)).

The estimate (4.7) then immediately implies

‖ēτ‖2�2(L2) ≤ c(τ4 + ‖∇·ēτ‖2�2(L2)) ≤ cτ3.

Now we observe that

‖ek+1‖2L2 = ‖ēk+ 1
2 + 1

2δe
k+1‖2L2 ≤ 3

2‖ē
k+ 1

2 ‖2L2 + 3
4‖δe

k+1‖2L2 ,

which, along with (4.7), implies

‖eτ‖2�2(L2) ≤ 3
2‖ēτ‖

2
�2(L2) + c‖δek+1‖2�∞(L2) ≤ cτ3,
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which completes the argument. �
Let us now show convergence of the velocity in the 2(H1)-norm without any

restriction on the space dimension.

Theorem 4.3 (2(H1) Velocity Estimates). Under the assumptions of Theorem 4.1,
the solution (uτ , pτ ) of the scheme (2.1)–(2.6) in two space dimensions and (2.9)–
(2.15) in three space dimensions satisfies

‖ūτ − ūτ‖�∞(H1) ≤ cτ.

Proof. Observe first that the following holds for all k ∈ {0, . . . ,K}:

‖∇×ēk+
1
2 ‖L2 ≤

k∑
i=1

‖∇×δēi+
1
2 ‖L2 + ‖∇×ē

1
2 ‖L2 ,

which implies

‖∇×ēk+
1
2 ‖L2 ≤ cτ−1‖∇×δēτ‖�2(L2) + cτ ≤ c(τ−1τ2 + τ ) ≤ cτ,

and, owing to (1.7), this concludes the proof since we have already established that

‖∇·ēk+ 1
2 ‖L2 ≤ cτ

3
2 . �

Remark 4.1 (Pressure Error Estimates). The same methods and ideas used in Sec-
tion 3.4 can be invoked to show that the pressure satisfies the following estimate:

‖ετ‖�2(Δ) ≤ cτ.

We omit the details for the sake of brevity.

Remark 4.2. Whether Theorem 4.2 holds in three space dimensions is not clear.
The main obstacle is the splitting error induced by the splitting of the momen-
tum equation. Based on our numerical experiments, we conjecture that both the

error estimates in Theorem 4.2 and Theorem 4.3 can be improved by a τ
1
2 factor

irrespective of the space dimension.

5. Other time marching techniques

As mentioned in Remark 2.7, the velocity update (2.10)–(2.13) is a sequence of
three approximations of the momentum equation where each approximation con-
sists of evaluating the second derivative in one of the spatial directions implicitly
with the Crank-Nicolson scheme whereas in the other directions it either employs
the solution from the previous time level, if no implicit approximation is yet com-
puted in the given direction, or uses the already computed implicit approximations.
This observation leads us to propose the following split version of the second-order
backward difference scheme (BDF2) to approximate the momentum equation:

3ηk+1 − 4uk + uk−1

2τ
− ∂xxη

k+1 − (∂yy + ∂zz)u
k +∇p�,k+1 = fk+1,

3ζk+1 − 4uk + uk−1

2τ
− ∂xxη

k+1 − ∂yyζ
k+1 − ∂zzu

k +∇p�,k+1 = fk+1,

3uk+1 − 4uk + uk−1

2τ
− ∂xxη

k+1 − ∂yyζ
k+1 − ∂zzu

k+1 +∇p�,k+1 = fk+1.

We now write the full BDF2 algorithm in a form similar to (2.9)–(2.15). To
simplify the presentation, let us assume that proper approximations of the velocity
and the pressure time derivative are available at t = −τ and t = 0. If these
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quantities are not available, we start the scheme with a lower-order approximation
at the first time step in order to compute those approximations.

• Pressure predictor: Denoting by p0 the pressure field at t = 0, by φ�,0 an

approximation of τ∂tp(0), and by φ�,−1 an approximation of τ∂tp(−τ ) the
algorithm is initialized by setting p0 = p0, φ

0 = φ�,0, and φ−1 = φ�,−1.
Then for all k ≥ 0 a pressure predictor is computed as follows:

(5.1) p�,k+1 = pk +
4

3
φk − 1

3
φk−1.

• Velocity update: The velocity update is computed by solving the following

series of one-dimensional problems: Find ξk+1, ηk+1, ζk+1, and uk+1 such
that

3ξk+1 − 4uk + uk−1

2τ
−Δuk +∇p�,k+1 = fk+1, ξk+1|∂Ω = 0,(5.2)

3(ηk+1 − ξk+1)

2τ
− ∂xx(η

k+1 − uk) = 0, ηk+1|x=0,1 = 0,(5.3)

3(ζk+1 − ηk+1)

2τ
− ∂yy(ζ

k+1 − uk) = 0, ζk+1|y=0,1 = 0,(5.4)

3(uk+1 − ζk+1)

2τ
− ∂zz(u

k+1 − uk) = 0, uk+1|z=0,1 = 0.(5.5)

• Penalty step: The pressure-correction φk+1 is computed by solving

(5.6) Aφk+1 = − 3

2τ
∇·uk+1.

• Pressure update: The pressure is updated as follows:

(5.7) pk+1 = pk + φk+1 − χ∇·ūk+1.

Note that this scheme is formally second-order consistent because eliminating the in-
termediate velocities results in a second-order perturbation of the classical pressure-
correction BDF2 scheme. Numerical experiments show that this algorithm is indeed
unconditionally stable when tested on the unsteady Stokes problem and its rate of
convergence is similar to that of (2.9)–(2.15).

6. Numerical experiments

We report in this section numerical tests aiming at evaluating the performance
of the algorithms (2.1)–(2.6) with A = (1− ∂xx)(1− ∂yy) in two space dimensions
and (2.9)–(2.15) with A = (1 − ∂xx)(1 − ∂yy)(1 − ∂zz) in three space dimensions.
The space approximation is done using the MAC stencil.

6.1. Accuracy tests. The standard and the rotational versions of the scheme
(2.1)–(2.6) have been tested numerically on a two-dimensional analytic solution
and the results have been reported in [11]. The rate of convergence with respect to
τ for the velocity in the L2-norm for both versions of the method is about 1.8 or
higher, whereas for the pressure in the L2-norm it is about 1.85 for the rotational
version and about 1.5 for the standard version.

We now investigate the convergence rates in three space dimensions in Ω = (0, 1)3

using the following solution of the unsteady Stokes problem (with the appropriate
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source term):

u1 = (sinx cos y sin z − sin x sin y cos z) sin t,

u2 = (sinx sin y cos z − cosx sin y sin z) sin t,

u3 = (cosx sin y sin z − sin x cos y sin z) sin t,

p = cos(x+ y + z + t).

Figure 1. Rotational form (χ = 1). Left: L2-norm of the er-
ror on the velocity (dashed line) at T = 2 on a uniform grid,
100×100×100; Right: L2-norm of the error on the pressure (dashed
line).

We display in the left panel of Figure 1 the L2-norm of the error on the velocity
at T = 2 versus the time step τ for the rotational scheme with χ = 1. The L2-
norm of the error on the pressure is displayed in the right panel of the figure. The
convergence rate on the velocity varies between 1.6 and 1.8 while the convergence
rate on the pressure is comprised between 1.5 and 1.7. From tests not reported
here, we have observed that the standard version of the scheme has a convergence
rate between 1.6 and 1.7 for the velocity and a convergence rate between 1.25 and
1.4 for the pressure. These results suggest that the actual convergence rates of
both schemes are higher than those theoretically estimated above. However, at the
present it is unclear how to improve these estimates.

6.2. Splitting vs. projection. To further illustrate the convergence properties of
the present schemes we now compare it with its unsplit pressure-correction counter-
part, i.e., the momentum equation is unsplit and the pressure correction is computed
by solving the Poisson problem (A = −ΔN ). The comparison is done in two space
dimensions in Ω = (0, 1)2 on the following analytical solution:

(6.1) u = (sinx sin(y + t), cosx cos(y + t)), p = cosx sin(y + t).

We show in Figure 2 the error on the velocity and the pressure as functions of
τ for the unsplit second-order projection and the corresponding results using the
present direction splitting schemes. Clearly, both the standard and the rotational
versions of the direction splitting schemes produce results that are very similar to
those produced by their unsplit counterpart. The largest differences are observed
on the velocity for the standard version of the schemes. But, even in this case, the
direction splitting produces errors which are only between 1.2 and 2 times larger
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DIRECTION SPLITTING 1973

Figure 2. L2-norm of the error on the velocity (top) and pressure
(bottom) at T = 2 on a uniform 40×40 grid; Left: unsplit projec-
tion scheme in standard form (dashed line) and scheme (2.7)–(2.6)
with χ = 0 (dash-dotted line). Right: unsplit projection scheme
in rotational form with χ = 1 (dashed line) and scheme (2.7)–(2.6)
with χ = 1 (dash-dotted line).

than the errors produced by the classical standard scheme. The computational
complexity of the present schemes, however, is significantly lower.

6.3. Lid driven cavity. We compare in this section the performance of the di-
rection splitting algorithm with its unsplit pressure-correction counterpart on the
so-called lid driven cavity. The computational domain is Ω = (0, 1)2. The bound-
ary conditions are u|x=0,1,y=0 = 0, u|y=1 = 1 and v|∂Ω = 0. The computation is
done at Reynolds number Re = 100 on a MAC grid composed of 40×40 nodes and
with time step τ = 0.01. The advection term is computed by means of the ex-
plicit second-order Adams-Bashforth approximation; the actual direction splitting
algorithm used for these tests is (2.1)-(2.16)-(2.3)-(2.4)-(2.5)-(2.6). The comparison
between the two codes is done at t = 1 and t = 10.

We show in Figure 3 the horizontal and vertical profiles of the velocity alongside
the vertical/horizontal lines through the center of the cavity. The results of the two
schemes (unsplit and split) are very close to each other; detailed examination (not
reported here) shows that the two sets of results differ in the fourth decimal digit.
For comparison, we also display with ◦ symbols the result of the split scheme on a
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MAC grid composed of 200×200 nodes and with time step τ = 0.0025. The three
sets of results are visually indistinguishable.

Figure 3. The horizontal (resp. vertical) profiles of the velocity
along the vertical (resp. horizontal) lines through the center of the
cavity at Re = 100 and at t = 1 (right panel) and t = 10 (left
panel) on a 40×40 MAC grid, τ = 0.01. Unsplit projection scheme
(solid line); direction splitting scheme (�, � symbols); direction
splitting on a 200×200 MAC grid with τ = 0.0025 (◦, ◦ symbols).

6.4. Backward facing step. Finally, the new direction splitting method is vali-
dated on the two-dimensional flow over a backward-facing step. Extensive exper-
imental and computational data on this flow is available in [1] and [19]. Here we
compute the solution to this problem in a rectangular cavity of size 1×16 with a
uniform grid of size h = 0.005 and a time step τ = 0.001. We prescribe the fully
developed parabolic profile with maximum velocity 3

2 at the upper half of the in-
flow side and we prescribe the no-slip condition at the lower half. At the outlet we
impose zero-Neumann conditions on the velocity and the zero Dirichlet condition
on the pressure. One important characteristic of the flow is the length of the recir-
culation zone behind the step, say r. We report in Table 1 the results of the present
computations at Reynolds numbers (based on the channel height) Re = 100, 200
and 400 and we compare these results with those from [19]. The present scheme
yields results which are in a very good agreement with the existing data.

6.5. Parallel implementation. We have implemented a parallel version of the
algorithm (2.9)–(2.15), with A = (1−∂xx)(1−∂yy)(1−∂zz), using the MAC stencil
together with central differences for the first- and second-order derivatives. The
algorithm has been implemented in parallel on a Cartesian domain decomposition
using MPI. Allthe one-dimensional linear systems are solved in parallel by means
of direct solves of the Schur complement induced by the domain decomposition.
We have verified that the weak scalability of the code is quasi-perfect up to the
maximum number of processors that were available to us without special request
for allocation, i.e., 1024 processors. The reader is referred to [16] for more details
on scalability tests.
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Table 1. Flow over a backward-facing step. Re-attachment length
r divided by the step height s as a function of the Reynolds number
Re for the present computations and for the computations of Kim
and Moin [19].

Re r/s
Current result Result in [19]

100 3.22 3.2
200 5.33 5.3
400 8.6 8.6

Extensive numerical tests have shown that the algorithm is stable under CFL
condition in the Navier-Stokes regime. We have computed a highly accurate bench-
mark solution for the start-up flow in a three-dimensional impulsively started lid-
driven cavity of aspect ratio 1×1×2 at Reynolds numbers 1000 and 5000. Successive
refinements have shown that the velocity field is four digit accurate at Re = 5000
for dimensionless times t = 4, 8 and 12. The computations have been done in
parallel on 512 processors on adapted grids of up to 2 billion nodes in three space
dimensions. All of these numerical experiments are reported in [17].

6.6. Further developments. We believe that the algorithm presented in the
present paper has a lot of potential for further developments; we are thinking in
particular of academic problems that can be solved in simple geometries with reg-
ular grids, e.g., simulation of turbulent flows in the atmosphere and in the ocean,
simulation of multiphase flows, stratified flows, variable density flows, combustion,
solution of subgrid problems as part of an homogenization procedure, etc.

As described in the present paper, the algorithm is suitable only for domains of
simple shape. However, there are possibilities to impose boundary conditions either
via penalty methods, or fictitious domain techniques, or via directional adjustment
of the grid at the boundary. The authors have implemented the directional ad-
justment procedure and have observed that the resulting scheme is unconditionally
stable and convergent for the time-dependent Stokes problem. These results will
be reported elsewhere.
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