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1. Introduction

The use of artificial viscosity to solve nonlinear conservation
equations has been pioneered by von Neumann and Richtmyer
[49] and has been popularized later by Smagorinsky [44] for Large
Eddy Simulation purposes and by Ladyženskaja [30,29] for theoret-
ical purposes in the analysis of the Navier–Stokes equations. With
the early versions of artificial viscosities being overly dissipative,
interest in these technique have faded over the years, especially
in the Discontinuous Galerkin Finite Element Method (DGFEM) lit-
erature, where up-winding and limiters have been shown to be
efficient and to yield high-order accuracy [43,15,13,12]. Despite
their un-disputable success story, limiters have some disadvan-
tages. For instance, as argued in [48, Section 3.5, 23], some limiters
may not be consistent in the steady-state limit, and thus may
sometimes lead to difficulties when trying to use time stepping
schemes to reach steady-state solutions. Furthermore, with a few
exceptions [15, Section 3.4], slope limiting is essentially a one
dimensional concept that does not generalize easily to unstruc-
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tured meshes in two and more dimensions. The theoretical under-
standing of the stability and convergence of limiters is currently
restricted to uniform grids and scalar equations in one space
dimension [32,35,40,51,52]. A true two-dimensional non-oscilla-
tory reconstruction which could be applied to arbitrary unstruc-
tured meshes (without any additional post processing) seems to
be available only in the piecewise linear case [9], and extensions
to higher degree polynomial reconstructions do not seem to be evi-
dent at the present time. Note however that slope limiters can be
interpreted in term of shock capturing mechanism and artificial
viscosity as argued in Cockburn [10]. It is shown in particular in
[10] that ‘‘shock capturing terms or generalized slope limiting pro-
cedures are different ways of incorporating the information of the
dissipation effects’’ that is required to ensure convergence to the
entropy solution. In other words, the effect of slope limiting can
in general be compared to that of a nonlinear artificial viscosity.
For the above reasons and the fact that artificial viscosities are easy
to implement, the interest for artificial viscosity has lately been re-
vived in the DG literature [7,5,23,38,48] and in the Continuous
Galerkin (CG) literature as well [8,21].

A new technique for generating high-order numerical approxi-
mations for nonlinear conservation equations has recently been
introduced in [21,20,22] using continuous finite elements and
spectral elements. Contrary to the viscosity-based shock-capturing
introduced in [24] and analyzed in [27,11], it has been shown in
[8,21,22] that nonlinear viscosity does not need additional linear
stabilization to work properly and be high-order. The main
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stabilization mechanism in this method is a nonlinear dissipation
proportional to the local size of an entropy production. For this rea-
son the method is called entropy viscosity. It is reasonably argued
in [5,38] that good artificial viscosities can be computed from mea-
sures of the local regularity of the solution. The same case is made
in [7,23] by proposing to make the viscosity proportional to the lo-
cal residual of the PDE. In this paper we take a slightly different
route by proposing to use the local residual of an entropy equation
to construct the artificial viscosity. One immediate consequence of
this choice is that the viscosity is proportional to the entropy pro-
duction, which is known to be large in shocks and to be zero in
contact discontinuities. As a result, this strategy makes an auto-
matic distinction between shocks and contact discontinuities,
and this subtle distinction cannot be made by any of the two clas-
ses of methods mentioned above. We also think that using the
residual of the conservation equation may be less robust than
using the entropy residual. This argument is based on the observa-
tion that consistency requires the residual of the PDE to converge
to zero in the distribution sense as the mesh-size goes to zero,
whereas the very nature of entropy implies that the entropy resid-
ual converges to Dirac measures supported in the shocks. There-
fore, the entropy residual focuses far better on shocks than the
PDE residual, and it is in this sense that we claim that the PDE
residual is less reliable than the entropy residual.

Although no convergence proof of the entropy viscosity method
has been produced yet (only stability for nonlinear scalar conserva-
tions has been proven), the method has been shown in [21,20,22]
to deliver high-order accuracy by testing it on a large variety of
benchmark problems. The objective of the present paper is to ex-
tend the entropy viscosity method to discontinuous finite ele-
ments, which, to the best of our knowledge, has not been done
yet. The convergence properties of the proposed extensions are
investigated here numerically.

The paper is organized as follows. Notation and other prelimi-
naries are introduced in Section 2. The DG discretization in space
is presented in Section 3. The highlights in this section are the def-
inition of the entropy viscosity and the entropy stability result
proved in Proposition 3.3. Implementation details of the method
including the time discretization are reported in Section 4. One
key novelty with respect to [21,22] is that we show how the entro-
py viscosity can be computed on-the-fly. The capabilities of the
method are illustrated numerically in Section 5. It is confirmed in
this section (as was observed in [21,22]) that linear stabilization
is not mandatory to make the method convergent optimally, i.e.,
the method still converges optimally when the inviscid numerical
flux is centered. Sections 2–5 are restricted to scalar conservation
equations. Extensions of the method to compressible fluid dynam-
ics are introduced and tested numerically in Section 6. Conclusions
are reported in Section 7.

2. Preliminaries

The objective of the section is to introduce notation and to for-
mulate the problem we are interested in. We restrict ourselves to
scalar conservation equations from Sections 2 to 5.
2.1. Scalar conservation equations

We are interested in approximating the solutions of scalar-val-
ued conservation equations

@tuþr � f ðuÞ ¼ 0; uðx;0Þ ¼ u0ðxÞ; ðx; tÞ 2 X� Rþ; ð2:1Þ

where X is a domain in Rd; d is the space dimension, and
f 2 C1ðR; RdÞ. For the sake of simplicity we assume that there are
no issues with the boundary conditions; for instance, either the
boundary conditions are periodic, or the initial data is compactly
supported and we are interested in the solution before the domain
of dependence of u0 reaches the boundary of X.

It is known that the scalar-valued Cauchy Problem (2.1) may
have infinitely many weak solutions, but only one of them is phys-
ical and satisfies the additional inequalities

@tEðuÞ þ r � FðuÞ 6 0; ð2:2Þ

for all convex functions E 2 C0ðR; RÞ, where FðuÞ :¼
R

E0ðvÞf 0ðvÞdv
[28]. This physical solution is henceforth called the entropy solu-
tion. The function EðuÞ is called entropy and FðuÞ is the associated
entropy flux. The most well known pairs are the Kružkov pairs gen-
erated by fEðuÞ ¼ ju� cj; c 2 Rg. It is also known for strictly convex
fluxes in one space dimension that if a weak solution satisfies one
entropy inequality (2.2) (provided the entropy E is strictly convex),
then it is the unique entropy solution and therefore all the entropy
inequalities are satisfied [37].

2.2. Discontinuous finite elements

We consider a mesh family fT hgh>0. Members of T h are
equivalently called elements or cells. The diameter of K 2 T h is
denoted dK and the diameter of the largest ball inscribed in K is
qK . The mesh family is assumed to be shape regular, meaning that
the quantity suph>0maxK2T h

dK=qK is finite, i.e., the elements are
not too flat. For all K 2 T h the collection of elements in T h that
touch K is denoted DK . We assume that the mesh family is locally
quasi-uniform in the sense that the quantity suph>0maxK2T h

dK=ðminK 02DK
dK 0 Þ

� �
is finite, i.e., all the elements that touch K have

a diameter of order dK .
The reference element is denoted bK and the map between bK

and an arbitrary element K 2 T h is denoted TK : bK ! K. We define
the scalar-valued finite element approximation space

Xh :¼ fv 2 L1ðX; RÞ; vjK � TK 2 QbK ; 8K 2 T hg; ð2:3Þ

where QbK is a polynomial space over bK . Let Pl and Ql denote the set
of multivariate polynomials of total degree and partial degree at
most l, respectively. We denote k P 1 the largest integer so that
Pk � QbK . The integer k defines the approximation order of the space
Xh. Denoting sK the smallest distance between all possible pairs of
vertices in K we define

hK :¼ sK

k
: ð2:4Þ

Note that the shape regularity of the mesh family implies that

ci :¼ inf
h>0

inf
v–0
v2Xh

R
K jv j

2 dK

hK
R
@K jv j

2 d@K
ð2:5Þ

is bounded away from zero. It is shown in [42] that ci � dK
kqK
� dK

k2hK
.

Let F i
h be the set of all the internal interfaces in the mesh T h.

The reference face is denoted bF and the map between bF and an
arbitrary face F 2 F i

h is denoted TF : bF ! F. Denoting by
K1;F 2 T h; K2;F 2 T h the two cells so that F ¼ K1;F \ K2;F , and assum-
ing that v is a scalar- or vector-valued function over K1;F [ K2;F that
is continuous over K1;F and K2;F , we define

vf gðxÞ :¼ 1
2
ðv jK1;F

ðxÞ þ v jK2;F
ðxÞÞ; ð2:6Þ

the average of v across F at x.
The outward unit normal at the boundary of the cell K is de-

noted by nK . Assume that F is an interface between K1;F and
K2;F; then we construct the jump of a function v across F as
follows:

svtðxÞ :¼ 2 vnf gðxÞ ¼ vjK1;F
ðxÞnK1;F ðxÞ þ v jK2;F

ðxÞnK2;F ðxÞ: ð2:7Þ
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The jump function svt is vector-valued and parallel to the normal
vector nK . For instance we have svtðxÞ � nK1;F ¼ v jK1;F

ðxÞ � v jK2;F
ðxÞ

and svtðxÞ � nK2;F ¼ v jK2;F
ðxÞ � v jK1;F

ðxÞ.
We define the piecewise constant mesh-size function h : X! R

so that hðxÞ ¼ hK for all x 2 K. Note that h is two-valued over F i
h.

3. Space approximation

We describe the DG approximation in space in this section.

3.1. DG space discretization

The main idea of the entropy viscosity method is to regularize
(2.1) with a nonlinear dissipative term

@tuþr � f ðuÞ � r � ðlðru; @tuÞruÞ ¼ 0; uðx;0Þ ¼ u0ðxÞ;
ðx; tÞ 2 X� Rþ; ð3:1Þ

where the dissipation lðru; @tuÞ is proportional to an entropy pro-
duction. Details on the construction of l will be given later. It suf-
fices to know for the time being that lðru; @tuÞ is zero if u is
smooth so that (3.1) is consistent with (2.1).

Let us now recall how DG approximations of second-order PDE’s
are usually constructed. Let us test (3.1) with a discrete function
vh 2 Xh with support in one cell, say K 2 T h, and let us integrate
by partsZ

K
vh@tudK �

Z
K

f ðuÞ � rvh dK þ
Z
@K

vhf ðuÞ � nK d@K

þ
Z

K
lðru; @tuÞru � rvh dK �

Z
@K

vhlðru; @tuÞru � nK d@K ¼ 0:

ð3:2Þ

We would like to replace the exact solution u by an approximate
one, say uh, but since uh 2 Xh is discontinuous across the boundary
of K; @K, the functions f ðuhÞ, and lðru; @tuÞru are multi-valued
over @K . To obtain unique values on @K we replace the ambiguous
functions by numerical fluxes f̂ and ĝ, respectively (the numerical
fluxes are defined in the next section). The DG formulation of
(3.1) consists of seeking uh 2 C1ð½0; T�; XhÞ with uhjt¼0 ¼ u0;h, where
u0;h is an appropriate approximation of u0, so that the following hold
for all t > 0, all K 2 T h and all functions vh 2 Xh with support in K:Z

K
vh@tuh dK �

Z
K

f ðuhÞ � rvh dK þ
Z
@K

vh f̂ � nK d@K

þ
Z

K
lðruh; @tuhÞruh � rvh dK �

Z
@K

vhĝ � nK d@K ¼ 0: ð3:3Þ
3.2. Definition of fluxes

Numerical fluxes can be defined in many ways. In the hyper-
bolic literature it is common to use the so-called upwind flux
[41,33]. In the elliptic/parabolic literature the numerical flux asso-
ciated with diffusion is defined in many (equivalent) ways depend-
ing on the personal taste of the authors (IPG [1], NIPG, LDG [14], BR
[6], etc.). Both the hyperbolic and elliptic numerical fluxes can be
defined in a unified way [2,15,17] as the sum of the average flux
plus a stabilizing term proportional to the jump of the dependent
variable. The choice we made is the following:

f̂ ð uhf g; suhtÞ ¼ f ð uhf gÞ þxaFðuhÞsuht; ð3:4Þ
ĝðuhÞ ¼ lruhf g � dbFðuhÞsuht; ð3:5Þ

where x P 0;b P 0, and the maps aFðuhÞand bFðuhÞ are singled-val-
ued and defined in 3.6,3.7. Using jumps and averages ensures that
the numerical fluxes are single-valued, thereby implying conserva-
tion. The purpose of the averages is to ensure consistency and that
of the jumps to ensure stability.

For instance, assuming that the exact solution is smooth, we
have f̂ ðu;0Þ ¼ f ðuÞ and ĝðuÞ ¼ lðru; @tuÞru which implies that
(3.3) is consistent with (3.1), which in turn is consistent with
(2.1) since lðru; @tuÞ ¼ 0 when u is smooth with respect to space
and time.

The functions aFðuhÞand bFðuhÞ are defined as follows:

aFðuhÞðxÞ ¼ max
jn� uhf gðxÞj61

2jsuhtðxÞj

1
2
jf 0ðnÞ � nK j; ð3:6Þ

bFðuhÞðxÞ ¼
l
h

n o
ðxÞ; ð3:7Þ

for every interface F 2 F i
h and every x 2 F. In general we take

x 2 f0;1g and d 2 f0;1g.

Remark 3.1. It is also possible to use the so-called Lax–Friedrichs/
Rusanov flux to define f̂ ð uhf g; suhtÞ, meaning

f̂ LFRð uhf g; suhtÞ :¼ f ðuhÞf g þxaFðuhÞsuht: ð3:8Þ

We chose to work with (3.4) because the proof of monotonicity (see
Lemma 3.2) is slightly simpler for (3.4) than for the Lax-Fredrichs/
Rusanov flux.
Remark 3.2. Note that in the particular case of the linear transport
equation, i.e., f ðuÞ ¼ uV , using x ¼ 1 and (3.6) in either (3.4) or
(3.8) is equivalent to using the upwind flux, since

f̂ ð uhf g; suhtÞ � nK ¼ V � nK
ui

h þ ue
h

2
þ 1

2
V � nKj jðui

h � ue
hÞ

¼
ue

hV � nK if V � nK 6 0;
ui

hV � nK if V � nK > 0:

�
ð3:9Þ
Remark 3.3. It is possible to symmetrize the viscous flux in the
spirit of the IP method [1] to enforce the adjoint consistency as
done in [23], but we did not feel the need to add this additional
complexity. Actually the adjoint consistency [2] is not required
since the viscous flux is consistent with 0. We could also have used
a more sophisticated penalty term in the definition of the viscous
flux in the spirit of LDG [14] or the Brezzi et al. method [2] to make
the method work for all d > 0, or we could also have used the so-
called BRMPS method [7] to have the method work for all d > 1.
All these alternative methods involve additional computations that
we think are not really needed, since the method has been
observed to be stable with the pair ðx; dÞ ¼ ð1;0Þ and is proved
in Lemma 3.4 to be stable with d ¼ 0, if x P 1þ cmax

ci
.

3.3. Viscosity

The viscosity l is defined to be piecewise constant over the
mesh. Upon choosing one or more entropy functionals, say
E1; . . . ; EnE , the entropy viscosity l is defined as follows over each
cell K 2 T h:

ljK ¼ minðcmaxhK max
x2K
jf 0ðuhðx; tÞÞj; cEh2

K maxðD1ðuhÞ; . . . ;DnE ðuhÞÞÞ;

ð3:10Þ

where DiðuhÞ :¼maxðmaxx2K jRiðuhÞj;maxx2@K jJiðuhÞjÞ=Ni;1 6 i 6 nE,
is defined as follows:

RiðuhÞ :¼ @tEiðuhÞ þ f 0ðuhÞ � rEiðuhÞ; ð3:11Þ
JiðuhÞ :¼ h�1

K f 0ðuhÞ
� �

� sEiðuhÞt; ð3:12Þ

Ni :¼max
x2X
jEiðuhðx; tÞÞ �

1
jXj

Z
X

EiðuhÞdXj: ð3:13Þ
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Ri is the entropy residual associated with the entropy Ei; Ji is the en-
tropy residual induced by the jump of entropy across the boundary
@K , and Ni is a normalization factor.

We generally use only one entropy. For instance we use nE ¼ 1
and E1ðuÞ ¼ 1

2 ðu�m0Þ2 where m0 ¼ 1
2 ðmaxx2Xu0ðxÞ þminx2Xu0ðxÞÞ2

in the numerical tests reported in the rest of the paper, unless
explicitly stated otherwise.

3.4. Entropy stability

The purpose of this section is to derive sufficient conditions on
the numerical flux so that the resulting approximation satisfies a
local entropy inequality in the spirit of [25], see (3.17).

Definition 3.1. A numerical flux bG : R� Rd ! Rd, consistent with
G, is said to be monotone if the following holds:
bGða;bÞ � GðnÞ
� �

� b P 0; 8n; ja� nj 6 1
2
jbj; 8a 2 R;

8b 2 spanðnKÞ: ð3:14Þ
Lemma 3.2. Assume that f is of class C1. The numerical fluxes (3.4)
and (3.8) with (3.6) are monotone if x P 1. More precisely, upon
setting either ĥ ¼ f̂ or ĥ ¼ f̂ LFR, we have

ĥða;bÞ � f ðnÞ
� �

� b P xaF � max
ja�nj61

2jbj

1
2
jf 0ðnÞ � nK j

 !
jbj2;

8a 2 R; 8b 2 spanðnKÞ: ð3:15Þ
Proof. Consider first the flux (3.4). Using the mean value Theo-
rem and the fact that f is of class C1, we infer that

f̂ ða;bÞ � f ðnÞ
� �

� b ¼ ðf ðaÞ þxaF b� f ðnÞÞ � b

¼ ðf ðaÞ � f ðnÞÞ � bþxaF jbj2

¼ b � f 0ðfÞða� nÞ þxaF jbj2; for some f

2 ða; nÞP �jbjjf 0ðfÞ � nK jja� nj þxaF jbj2;

P xaF � max
ja�nj61

2jbj

1
2
jf 0ðnÞ � nK j

 !
jbj2:

The conclusion is now a consequence of the definition of aF , (3.6).
The proof for the Lax-Freidrichs/Rusanov flux is similar. Using again
the mean value Theorem and the fact that f is of class C1, we infer
that

f̂ LFRða;bÞ� f ðnÞ
� �

�b

¼ 1
2

f aþjbj
2

	 

� f ðnÞ

	 

þ1

2
f a�jbj

2

	 

� f ðnÞ

	 

þxaFb

	 

�b

¼1
2

b � f 0ðf1Þ aþjbj
2
�n

	 

þ f 0ðf2Þ a�jbj

2
�n

	 
	 

þxaF jbj2

for some f1 2 ða� jbj2 ; nÞ and some f2 2 ðn; aþ jbj2 Þ. This in turn im-
plies that

f̂ LFRða;bÞ � f ðnÞ
� �

� b P � jbj
2

maxðjf 0ðf1Þ � nK j; jf 0ðf2Þ � nK jÞ

� aþ jbj
2
� n

���� ����þ a� jbj
2
� n

���� ����	 

þxaF jbj2;

P xaF � max
ja�nj61

2jbj

1
2
jf 0ðnÞ � nK j

 !
jbj2

and we conclude again as above. h
Proposition 3.3. Let uh 2 C1ð½0; T�; XhÞ solve (3.3). Assume that the
numerical fluxes are defined by (3.4) or (3.8) and (3.5). The following
discrete entropy inequality holds:

d
dt

Z
K

1
2

u2
h dK þ

Z
@K

bH � nK d@K 6 0; 8K 2 T h; 8t > 0; ð3:16Þ

where bH is conservative and defined in (3.21), if the following holds:

xaFðuhÞþdbFðuhÞ� max
j uhf g�nj61

2jsuhtj

1
2
jf 0ðnÞ �nK j�

1
2ci

l
h

n o
P 0: ð3:17Þ
Proof. Let us take vh ¼ uh in (3.3). ThenZ
K

1
2
@tjuhj2 dK �

Z
K

f ðuhÞ � ruh dK þ
Z
@K

uh f̂ � nK d@K

þ
Z

K
ljruhj2 dK �

Z
@K

uhĝ � nK d@K ¼ 0:

Let KðvÞ :¼
R v

0 f ðsÞds be the anti-derivative of f ; thenZ
K

f ðuhÞruh dK ¼
Z

K
K 0ðuhÞruh dK ¼

Z
K
r � ðKðuhÞÞdK

¼
Z
@K

nK � KðuhÞd@K:

Let x 2 @K; we denote ui
hðxÞ the interior limit of uh at x and ue

hðxÞ the
exterior limit (i.e., ui

hðxÞ ¼ lim�!0�uhðxþ �nKÞ and ue
hðxÞ ¼

lim�!0þuhðxþ �nKÞ). Using that ui
hnK ¼ uhf gnK þ 1

2 suht we have

�
Z

K
f ðuhÞ � ruh dK þ

Z
@K

ui
h f̂ � nK d@K

¼
Z
@K

nK � ðui
h f̂ � Kðui

hÞÞd@K

¼
Z
@K

nK � ð uhf gf̂ � KðuhÞf gÞd@K

þ 1
2

Z
@K
ðsuht � f̂ � nK � ðKðui

hÞ � Kðue
hÞÞÞd@K:

Then using the mean-value Theorem, we obtain
Kðui

hÞ � Kðue
hÞÞ ¼ ðui

h � ue
hÞf ðnÞ for some n 2 ðui

h;u
e
hÞ. The above

equality can be re-written as follows:

�
Z

K
f ðuhÞ � ruh dK þ

Z
@K

ui
h f̂ � nK d@K

¼
Z
@K

nK � ð uhf gf̂ � KðuhÞf gÞd@K þ 1
2

Z
@K

suht � ðf̂ � f ðnÞÞd@K:

Lemma 3.2 then implies

�
Z

K
f ðuhÞ � ruh dK þ

Z
@K

ui
h f̂ � nK d@K

P
Z
@K

nK � ð uhf gf̂ � KðuhÞf gÞd@K

þ 1
2

Z
@K

xaF � max
j uhf g�nj61

2jsuhtj

1
2
jf 0ðnÞ � nK j

 !
jsuhtj2 d@K: ð3:19Þ

Let us now focus on the viscous flux. Using again that
ui

hnK ¼ uhf gnK þ 1
2 suht we haveZ

K
ljruhj2 dK �

Z
@K

uhĝ � nK d@K

¼
Z

K
ljruhj2 dK þ

Z
@K

uhf gð� lruhf g þ dbFsuhtÞ

� nK d@K
Z
@K
�1

2
suht lruhf g þ 1

2
dbF jsuhtj2

	 

d@K:

The upon using the inequality jabj 6 1
2k a2 þ k

2 b2 with k ¼ 1
2, together

with the inverse inequality property (2.5) we infer that



Table 4.1
Butcher tableaux for the explicit SSP RK3 (left) and RK4 (right) methods.
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Z
K
ljruhj2 dK�

Z
@K

uhĝ �nK d@K

P
Z
@K

uhf gð� lruhf gþdbFsuhtÞ �nK d@Kþ
Z

K

3
4
ljruhj2 dK

þ2ci

8

Z
@K

hilijrui
hj

2 d@Kþ
Z
@K

1
2

dbF �
1

8ci

li

hi
þle

he

	 
	 

jsuhtj2 d@K

�ci

8

Z
@K
ðhilijrui

hj
2þhelejrue

hj
2Þd@K;

which can be re-writtenZ
K
ljruhj2 dK �

Z
@K

uhĝ � nK d@K

P
Z
@K

uhf gðdbFsuht� lruhf gÞ þ ci

8
shljruhj2t

� �
� nK d@K

þ
Z

K

3
4
ljruhj2 dK þ 1

2

Z
@K

dbF �
1

2ci

l
h

n o	 

jsuhtj2 d@K: ð3:20Þ

The conclusion follows upon defining the following conservative
flux:

bHðuhÞ :¼ uhf gf̂ � KðuhÞf gþ uhf gðdbFsuht� lruhf gÞþci

8
shljruhj2t;

ð3:21Þ

and combining (3.19) and (3.20) into (3.18). h
Remark 3.4. Observe that the flux bH is consistent with the
entropy flux FðuÞ :¼

R u
0 f 0ðnÞE0ðnÞdn associated with the entropy

EðuÞ :¼ 1
2 u2. Actually, if u is a smooth function so that

lðru; @tuÞ ¼ 0; sut ¼ 0, uf g ¼ u, we have f̂ ð uf g;vsutÞ ¼ f ðuÞ,
KðuÞf g ¼ KðuÞ and

bHðuÞ ¼ uf � KðuÞ ¼ uf ðuÞ �
Z u

0
f ðsÞds ¼

Z u

0
f 0ðsÞsds

¼
Z u

0
f 0ðsÞE0ðsÞds ¼ FðuÞ:
Lemma 3.4. Assuming bF is defined by (3.7), the inequality (3.17)
holds under each of the following conditions:

(i) aF is defined by (3.6) and x ¼ 1 and d P 1
2ci

.

(ii) aF is defined by aFðuhÞjF ¼ 1
2 maxx2K1;F[K2;F jf

0ðuhðx; tÞÞj, where
recall that F ¼ K1;F \ K2;F ; l is defined by (3.10) and
x P 1þ cmax

ci
; d ¼ 0.
Proof. Statement (i) is evident. Statement (ii) is just a consequence
of the definition of aF together with the observation that
l=hf g 6 cmaxmaxx2K1;F[K2;F jf

0ðuhðx; tÞÞj. h
Remark 3.5. We have observed numerically that the proposed
algorithm performs very well with the following pairs
ðx; dÞ 2 fð1;1Þ; ð1;0Þ; ð0;1Þg and we conjecture that xþ d P 1
and x; d P 0 should be a sufficient condition.
Table 4.2
CN and BDF2 coefficients.

an�2 an�1 an bn�1 bn

CN 0 � 1
sn�1

1
sn�1

1
2

1
2

BDF2 sn�1

sn�2 sn�2þsn�1ð Þ � sn�2þsn�1

sn�2sn�1
sn�2þ2sn�1

sn�1 sn�2þsn�1ð Þ
0 1
Remark 3.6. Note that aF depends on the information on the
approximate solution on the two neighboring cells in a way that
is similar to what is done for the so-called Local-Lax–Friedrichs
flux, see item (ii) from Lemma 3.4, and (4.4).

4. Implementation details

We give implementation details on the method in this
section.
4.1. Time integration

Upon choosing a basis for Xh, say fwig16i6I , and denoting
UðtÞ 2 RI the coordinate vector of uhð�; tÞ in this basis, the semi-dis-
crete problem (3.3) can be re-written as follows:

M@tU ¼ SðUðtÞÞ; ð4:1Þ

where the components of the nonlinear map S : C1ð½0; T�; RIÞ
! C0ð½0; T�; RIÞ are defined as follows:

SiðUðtÞÞ ¼
Z

K
f ðuhÞ � rwi dK �

Z
@K

wi f̂ � nK d@K

�
Z

K
lðruh; @tuhÞruh � rwi dK þ

Z
@K

wiĝ � nK d@K; ð4:2Þ

for all i 2 f1; . . . ; Ig, where K is the cell supporting wi. Initialization of
(4.1) is done by setting Uð0Þ ¼ U0;h where U0;h is the coordinate vec-
tor of u0;h.

The time stepping to solve (4.1) is done using an explicit Runge–
Kutta method. We have tested various techniques of second-,
third- and fourth-order. All work similarly. Most of the tests re-
ported in the present paper have been done using either the
strongly-stable explicit Runge–Kutta algorithm RK3 described in
[18] or the standard RK4 method. The Butcher tableaux of these
two methods are shown in Table 4.1. We have not noticed signifi-
cant differences in behavior of the entropy viscosity method when
using either SSP RK3 or RK4, besides the fact that RK4 is more accu-
rate than SSP RK3 on problems with smooth solutions.

One remaining detail that needs to be settled is the actual com-
putation of the viscosity. We have chosen to make the viscosity ex-
plicit and it is assumed to be constant over the time interval
ðtn; tn þ snÞ. It is computed by using the past values of uh. More pre-
cisely, let un

h and tn; sn, be the current solution, time, and time step,
and let un�1

h ; tn�1; sn�1;un�2
h ; tn�2, and sn�2 be the solution, time, and

time step from the previous two times. The entropy residual is as-
sumed to be constant over the time interval ðtn; tn þ snÞ and is com-
puted as follows:

RðuhÞ¼ an�2Eðun�2
h Þþan�1Eðun�1

h ÞþanEðun
hÞþbn�1f 0ðun�1

h;i ÞrEðun�1Þ
þbnf 0rEðun

hÞ: ð4:3Þ

The coefficients an�2; an�1; an and bn�1; bn depend on the time-
stepping technique. The coefficients corresponding to the Crank-
Nicolson and BDF2 schemes are shown in Table 4.2. RðuhÞ is
initialized to 0 when the values of un�2

h and un�1
h are not available.

The jump term (3.12) is computed by using un
h , i.e., JðuhÞ ¼

h�1
K f 0ðun

hÞ
� �

� sEðun
hÞt.

The above approximation of the entropy residual implies that
the entropy viscosity is of order ðs2 þ hpÞh2. In particular the



Table 5.1
Convergence test for one-dimensional linear transport with smooth data, P1;P2, and
P3 finite elements.

h dofs L1-error Rate L2-error Rate

(a) P1

2e�01 10 6.355e�01 – 6.951e�01 –
1e�01 20 5.325e�01 0.26 5.917e�01 0.23
5e�02 40 2.276e�01 1.23 2.573e�01 1.20
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second-order approximation of the time derivative implies that the
entropy viscosity if fourth-order in smooth regions, i.e., this tech-
nique limits the overall accuracy of the method to fourth-order.
This is not a issue if the time stepping to solve (4.1) is fourth-order
or less or if the polynomial degree of the space approximation is at
most 3. If necessary, it is possible to increase the consistency order
of the method by using a higher-order approximation of the time
derivative in (4.3).

4.2. Implementation using quadratures

All the integrals over interfaces and cells are approximated
using quadratures. The quadrature points are defined on the
reference interface bF , say x̂@1; . . . ; x̂@S , and reference element bK , say
x̂1; . . . ; x̂V , and mapped to the current interface F and element K
by the map TF and TK , respectively. We denote GF :¼
fTFðx̂@1Þ; . . . ; TFðx̂@S Þg the set of quadrature points over F and
GK :¼ fTKðx̂1Þ; . . . ; TKðx̂V Þg the set of quadrature points over K.

The function aF is piecewise constant over each interface F and
defined as follows in the code that we used to run the numerical
simulations reported in the rest of the paper:

aFðuhÞjF ¼ max
x2GK1;F

[GK2;F

1
2
jf 0ðuhðx; tÞÞj: ð4:4Þ

The definition of bFðuhÞ remains unchanged, i.e., see (3.7). We take
x ¼ 1 and d ¼ 1, unless specified otherwise.

The viscosity l is defined as follows over each cell K 2 T h:

ljK ¼minðcmaxhK max
x2GK

jf 0ðuhðx; tÞÞj; cEh2
K maxðD1ðuhÞ; . . . ;DnE ðuhÞÞÞ;

ð4:5Þ

where the quantities DiðuhÞ; 1 6 i 6 nE, are defined as follows:

DiðuhÞ :¼max max
x2GK

jRiðuhÞj;max
F�@K

max
x2GF

jJiðuhÞj
	 


1
Ni
: ð4:6Þ

The volume and interface residuals Ri and Ji are defined in (3.11)
and (3.12). The normalization coefficient Ni is computed as
follows:

Ni :¼ max
fracK2T hx2GK

Eiðuhðx; tÞÞ �
1
jXj

Z
X

EiðuhÞdX
���� ����: ð4:7Þ
2.5e�02 80 3.725e�02 2.61 4.276e�02 2.59
1.25e�02 160 5.198e�03 2.84 6.023e�03 2.83
6.25e�03 320 5.155e�04 3.33 6.097e�04 3.30
3.125e�03 640 6.864e�05 2.91 8.338e�05 2.87
1.5625e�03 1280 9.741e�06 2.82 1.262e�05 2.73
7.8125e�04 2560 1.631e�06 2.58 2.248e�06 2.49
3.90625e�04 5120 3.435e�07 2.25 4.712e�07 2.25
1.953125e�04 10,240 8.068e�08 2.09 1.090e�07 2.11
9.765625e�05 20,480 1.977e�08 2.03 2.710e�08 2.01

(b) P2

2e�01 15 5.570e�01 – 6.159e�01 –
1e�01 30 2.854e�01 0.97 3.217e�01 0.94
5e�02 60 1.771e�02 4.01 2.026e�02 3.99
2.5e�02 120 8.131e�04 4.45 8.920e�04 4.51
1.25e�02 240 7.221e�05 3.49 8.117e�05 3.46
6.25e�03 480 7.442e�06 3.28 8.367e�06 3.28
3.125e�03 960 8.357e�07 3.16 9.433e�07 3.15
1.5625e�03 1920 9.859e�08 3.08 1.117e�07 3.08
7.8125e�04 3840 1.196e�08 3.04 1.359e�08 3.04
3.90625e�04 7680 1.483e�09 3.01 1.687e�09 3.01

(c) P3

2e�01 20 4.610e�01 – 5.121e�01 –
1e�01 40 2.405e�01 0.94 2.678e�01 0.94
5e�02 80 3.817e�02 2.66 4.319e�02 2.63
2.5e�02 160 5.457e�04 6.13 6.347e�04 6.09
1.25e�02 320 2.850e�05 4.26 3.247e�05 4.29
6.25e�03 640 1.496e�06 4.25 2.026e�06 4.00
3.125e�03 1280 9.021e�08 4.05 1.279e�07 3.98
1.5625e�03 2560 5.554e�09 4.02 8.050e�09 3.99
7.8125e�04 5120 3.502e�10 3.99 5.036e�10 4.00
4.3. The viscosity parameters

As already mentioned in Remark 3.5, the proposed algorithm
performs equally well with the following pairs ðx; dÞ 2 fð1;1Þ;
ð1; 0Þ; ð0;1Þg. The largest CFL that can be reached with the pair
ðx; dÞ ¼ ð1;1Þ is slightly smaller than with the pairs
ðx; dÞ 2 fð1;0Þ; ð0;1Þg due to the combined explicit diffusion in-
duced by both x and d being nonzero.

We have observed that the method gives satisfactory results by
systemically using cE ¼ 1. We have also observed that cmax ¼ 1

2k is
always a good choice. For instance, assuming that the space dimen-
sion is one and f ðuÞ ¼ Vuex (i.e., linear transport), setting cmax ¼ 1

2 is
exactly equivalent to first-order up-winding if the transport term is
approximated with uniform centered second-order finite differ-
ences ðk ¼ 1Þ, thereby justifying the scaling cmax ¼ 0:5=k for
k ¼ 1. It is sometimes possible to be greedy when solving linear
problems by using a smaller value for cmax. Lowering cmax usually
allows for a larger CFL.

Remark 4.1. (DG0) We can take cmax ¼ 0 (together with x ¼ 1 and
d ¼ 0) in the particular case of piecewise constant approximation
(i.e., k ¼ 0) since it is known that the upwind DG0 flux is equivalent
to first-order viscosity which is exactly the amount of dissipation
that is required.
5. Numerical illustrations

We illustrate the capabilities of the above technique by solving
various scalar conservation laws. The two-dimensional problems
are solved using the deal.II finite element library [4,3].

5.1. One-dimensional transport with smooth data

We consider the linear transport problem

@tuþ @xu ¼ 0; 8ðx; tÞ 2 ð0;1Þ � Rþ; ujt¼0 ¼ u0ðxÞ 8x 2 ð0;1Þ;
ð5:1Þ

with periodic boundary conditions and with the following smooth
initial data u0ðxÞ ¼ sinð2pxÞ. The time stepping is done with the
RK4 method. The computations are done with the following param-
eters: cmax ¼ 0:5=k; cE ¼ 1;x ¼ 1; d ¼ 1 and CFL ¼ 0:5. We did not
obtain significantly different results by using d ¼ 0 instead of d ¼ 1.

The solution is computed up to time T ¼ 1 on various uniform
meshes for polynomial degrees 1;2 and 3. We report the errors
measured in the L1- and L2-norm at T ¼ 1 in Table 5.1. The ob-
served convergence rates are 2;3 and 4 for both norms, respec-
tively. The method gives optimal convergence orders in one
space dimension.

5.1.1. One-dimensional transport with non-smooth data
We now evaluate the performance of the method with non

smooth data. We consider again the linear transport Eq. (5.1) with
periodic boundary conditions, but this time the initial data is

u0ðxÞ ¼
1 if 0:25 6 x 6 0:75;
0 otherwise:

�
ð5:2Þ



Table 5.2
Convergence test for one-dimensional linear transport with non-smooth data.
Convergence rates for L1- and L2-norms vs. polynomial degrees.

Polyn. degree 1 2 3 4 5

Rate (L1-norm) 0.76 0.82 0.87 0.91 0.94

Rate (L2-norm) 0.38 0.42 0.45 0.46 0.48

10-4

10-3

10-2

10-1

100

101 102 103 104

P1
P2
P3
P4
P5

Fig. 5.1. Linear transport with smooth data. L1-norm of error at T ¼ 1 vs. nb. dofs
for P1; . . . ;P5.

Fig. 5.2. Linear transport with smooth data. Graph of Q3 solution at T ¼ 1.

Table 5.3
Convergence test with Q2 finite elements.

h dofs L1-norm Rate L2-norm Rate

(a) Upwing flux
0.2929 180 2.685e�01 – 2.482e�01 –
0.1768 720 6.570e�02 2.03 7.464e�02 1.73
0.0937 2880 8.774e�03 2.90 1.162e�02 2.68
0.0496 11,520 7.655e�04 3.52 1.137e�03 3.35
0.0252 46,080 5.721e�05 3.74 1.132e�04 3.33
0.0128 184,320 5.699e�06 3.33 1.685e�05 2.81
0.0064 737,280 7.101e�07 3.01 2.261e�06 2.90

(b) Centered flux
0.2929 180 2.633e�01 – 2.415e�01 –
0.1768 720 9.589e�02 1.46 9.972e�02 1.28
0.0937 2880 1.895e�02 2.34 2.299e�02 2.12
0.0496 11,520 2.036e�03 3.22 2.469e�03 3.22
0.0252 46,080 1.895e�04 3.43 1.961e�04 3.65
0.0128 184,320 1.826e�05 3.38 1.604e�05 3.61
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The time stepping is done with the RK4 method. The computations
are done with the following parameters: cmax ¼ 0:5=k; cE ¼
1; x ¼ 1; d ¼ 1 and CFL ¼ 0:5.

The computations are done on 9 uniform meshes going from 5
cells up to 1280 ¼ 28 � 5 cells. The errors in the L1- and L2-norm
are computed at T ¼ 1. The method is tested with polynomials in
P1; . . . ;P5. The mean value of the observed convergence orders
are reported in Table 5.2. The convergence rates in the L1- and

L2-norm are compatible with the estimates kþ1
2

kþ1 and 1
2

kþ1
2

kþ1, respec-
tively. Recall that, assuming the time to be continuous, the stan-
dard a priori error estimate for the DG approximation of (5.1) is

ku� uhkL1ðð0;TÞ;L2Þ 6 chkþ1
2ku0kHkþ1 . Since the initial data (5.2) is in

H
1
2�� for all � > 0, the real method of interpolation implies that

ku� uhkL2 6 c0hð
1
2��Þ

kþ1
2

kþ1 (see for instance [34] or [46, Chapter 22]).
It is possible to get rid of the arbitrary number � by using the Besov
spaces Bs

2;1. A similar argument holds for the error in the L1-norm

by interpolating between Wkþ1;1 and L1 :¼W0;1 using the fact that
u0 is in W1��;1 for all � > 0. In conclusion the higher the polynomial
degree the more accurate the method. This test shows that
higher-order methods perform better than lower-order methods
even on non-smooth solutions. This statement is reinforced by
looking at Fig. 5.1. We show in this figure the L1-norm of the error
at T ¼ 1 as a function of the total number of degrees of freedom
(dofs) for the P1; . . . ;P5 approximations. For any given number of
degrees of freedom the error is a decreasing function of the
polynomial degree k. Note that the P3, P4 and P5 errors almost
coincide because the accuracy is limited to fourth-order by our
using RK4.

5.2. Two-dimensional tests

We consider the domain X ¼ fx 2 R2; jxj < 1g, the vector field
VðxÞ ¼ 2pð�y; xÞ, where x ¼ ðx; yÞ, and the two-dimensional trans-
port problem
@tuþr � ðVuÞ ¼ 0; ð5:3Þ

uðx;0Þ ¼ 1
2

1� tanh
ðx� r0Þ2

a2 � 1

 ! !
; ð5:4Þ

with a ¼ 0:3 and r0 ¼ ð0:4;0Þ. Note thatr � V ¼ 0 and the boundary
of X is a characteristics boundary (i.e., V � nj@X ¼ 0). The graph of the
solution at T ¼ 1 using Q3 approximation is shown in Fig. 5.2.

Two convergence tests are done using Q2 discontinuous finite
elements on various grids composed of Q6 quadrangles (meaning
that the mappings TK : bK ! K are Q6). In the first series of tests
we use the upwind flux in (3.4), i.e., x ¼ 1, and in the second test
we use the centered flux, i.e., x ¼ 0. In both cases we take d ¼ 1 in
(3.5). The other parameters are set as follows: cE ¼ 0:5; cmax ¼
0:1=k; d ¼ 1:0; CFL ¼ 0:25. The time stepping is done using RK4.
The goal of these tests is to evaluate the importance of the
definition of the inviscid flux (3.4).

The errors measured at T ¼ 1 in the L1- and L2-norm together
with the respective convergence orders are shown in Table 5.3(a)
and Table 5.3(b). It is remarkable that the convergence order is 3
irrespective of the definition of the flux. This test confirms that
the present DG implementation of the entropy viscosity method
works properly by using centered fluxes.

5.2.1. Convergence tests for two-dimensional inviscid Burgers equation
We consider the inviscid Burgers equation in two space dimen-

sions. Let V ¼ ð1;1Þ be a constant vector field and consider the
conservation equation

@tuþr �
1
2

u2V
	 


¼ 0; ð5:5Þ



Table 5.4
Convergence test for two-dimensional inviscid Burgers equation, T ¼ 0:5, Q1;Q2, and
Q3 discontinuous FEs.

h dofs L1-error Rate L2-error Rate

(a) Q1

0.5000 16 5.845e�01 – 6.527e�01 –
0.2500 64 2.788e�01 1.07 3.782e�01 0.79
0.1250 256 1.127e�01 1.31 2.328e�01 0.70
0.0625 1024 6.415e�02 0.81 1.762e�01 0.40
0.0312 4096 3.174e�02 1.02 1.248e�01 0.50
0.0156 16,384 1.697e�02 0.90 9.238e�02 0.43
0.0078 65,536 8.506e�03 1.00 6.678e�02 0.47

(b) Q2

0.5000 36 4.843e�01 – 5.596e�01 –
0.2500 144 1.500e�01 1.69 2.601e�01 1.11
0.1250 576 7.441e�02 1.01 1.911e�01 0.44
0.0625 2304 3.702e�02 1.01 1.370e�01 0.48
0.0312 9216 1.948e�02 0.93 1.010e�01 0.44
0.0156 36,864 9.718e�03 1.00 7.157e�02 0.50
0.0078 147,456 5.118e�03 0.93 5.308e�02 0.43

(c) Q3

0.5000 64 4.510e�01 – 5.126e�01 –
0.2500 256 1.237e�01 1.87 2.332e�01 1.14
0.1250 1024 5.628e�02 1.14 1.638e�01 0.51
0.0625 4096 2.945e�02 0.93 1.223e�01 0.42
0.0312 16,384 1.445e�02 1.03 8.728e�02 0.49
0.0156 65,536 7.618e�03 0.92 6.395e�02 0.45
0.0078 262,144 3.731e�03 1.03 4.527e�02 0.50
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subject to the following initial condition

uðx; y;0Þ ¼ u0ðx; yÞ ¼

�0:2 if x < 0:5 and y > 0:5;

�1 if x > 0:5 and y > 0:5;

0:5 if x < 0:5 and y < 0:5;

0:8 if x > 0:5 and y < 0:5:

8>>><>>>: ð5:6Þ

The entropy pair that we choose for this problem is (EðuÞ ¼
1
2 u2; FðuÞ ¼ 1

3 u3v). The solution is computed at T ¼ 0:5 to facilitate
comparisons with [9,26]. The parameters for this computation are
cE ¼ 1:0; cmax ¼ 0:25=k; x ¼ 1; d ¼ 1:0, CFL ¼ 0:25.

The exact solution to this problem for t > 0 is given in [22,
Section 4.1]. We compute the L1- and L2-norm of the error and
the corresponding convergence rate at T ¼ 0:5 on various uniform
meshes composed of squares. The results for Q1, Q2 and Q3,
approximations are shown in Table 5.4. We observe that the
convergence rates are 1 and 1

2 in the L1- and L2-norm, respectively
Fig. 5.3. Two-dimensional Burgers eq
and are independent of the polynomial degree of the
approximation.

The graph of the solution at T ¼ 0:5 is shown in the left panel in
Fig. 5.3 and the entropy viscosity filed is shown in the right panel.
The entropy viscosity focuses in the shock as anticipated.

6. Extension to compressible gas dynamics

We extend the above technique to the equations of compress-
ible gas dynamics in this section.

6.1. Details on implementation

We consider the Euler equations for a perfect gas written in
conservative form

@tc þr � ðf ðcÞÞ ¼ 0; c ¼
q
m
E

0B@
1CA; f ðcÞ ¼

m
m	 m

q þ pI

m
q ðEþ pÞ

0B@
1CA;

ð6:1Þ

where the independent variables are the density q, the momentum
vector field m and the total energy E. The velocity vector field u is
defined by u :¼ m=q. The symbol I denotes the identity matrix in
Rd. The pressure is expressed via the equation of state of ideal
gases:

p ¼ qT; with T ¼ ðc� 1Þe; e ¼ E
q
� 1

2
u2

	 

; ð6:2Þ

where c is the adiabatic constant and T is the temperature. The Eu-
ler system is known to have a physical entropy functional

Sðp;qÞ ¼ q
c� 1

logðp=qcÞ; ð6:3Þ

that satisfies the following inequality

@tSþr � ðuSÞP 0: ð6:4Þ

The above inequality becomes an equality if all the fields are
smooth.

The solution technique is almost identical to what we have
described in Section 4 for scalar conservation equations, the only
significant difference being in the adopted regularization of (6.1).
Following [21,22], we replace the Euler system by the
Navier–Stokes system where the viscosity and the thermal
diffusivity are proportional to the entropy residual. Setting
uation, T ¼ 0:5; Q3 polynomials.



Table 5.5
Data for one-dimensional Riemann problems from [47].

Test T x0 ql ul pl qr ur pr

1 0.200 0.300 1.000 0.750 1.000 0.125 0.000 0.100
2 0.012 0.500 1.000 0.000 1000. 1.000 0.000 0.010
3 0.035 0.400 5.99924 19.5975 460.894 5.99242 �6.19633 46.095

Table 5.6
Entropy viscosity parameters for the one-dimensional Riemann problems.

Test CFL cmax CE Pq PT x d

1 0.33 0.5/k 1.0 0.15 0.15 1 1
2 0.33 0.5/k 1.0 0.15 0.15 1 1
3 0.33 0.5/k 1.0 0.15 0.15 1 1
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rsu :¼ 1
2 ðruþ ðruÞTÞ, the inviscid flux f in (6.1) is augmented

with the following viscous flux:

gðcÞ ¼ �
mr log q
lrsu

lrsu � uþ jre

0B@
1CA: ð6:5Þ

Note that the Navier–Stokes viscous fluxes are compatible with the
entropy inequality (6.4). Note also that the presence of an artificial
mass diffusion may be objectionable since this term is not present
in the Navier–Stokes system. This term must be understood only
as a numerical device whose objective is to stabilize the mass con-
servation equation. Virtually all numerical schemes induce some
kind of dissipation on the mass conservation in one way or another.
For instance the viscous flux associated with the Lax–Friedrichs
schemes with P0 approximation in one space dimension is

gLRðcÞ ¼ �ðjuj þ
ffiffiffiffiffiffi
cT

p
Þh
rq
rm
rE

0B@
1CA: ð6:6Þ

See the appendix of [39] for more details on this issue.
The viscosity l is assumed to be piecewise constant over the

mesh; it is defined as follows over each cell K 2 T h:

ljK ¼minðcmaxhK max
x2K
ðqhðjuhðx; tÞj þ

ffiffiffiffiffiffiffiffi
cTh

p
ÞÞ; cEh2

K DÞ; ð6:7Þ

where DðuhÞ :¼maxðmaxx2K jRðuhÞj;maxx2@K jJðuhÞjÞ is defined as
follows:

RðuhÞ :¼ @tSðph;qhÞ þ r � uhSðph;qhÞÞ; ð6:8Þ
JðuhÞ :¼ h�1

K jn � suhSðph;qhÞtj: ð6:9Þ

R is the entropy residual and J is the entropy residual induced by
the jump of the entropy across the boundary @K. Note that no nor-
malization is necessary, since D has the right dimension. The arti-
ficial thermal diffusivity and the mass conservation viscosity are
defined as follows2

jjK ¼ PTljK ; mjK ¼ PqljK : ð6:10Þ

The DG implementation of the viscous flux (6.5) is analogous to
what we have done in (3.5) for scalar conservation equations. We
omit the details for brevity. We have observed that one important
aspect of the implementation is that the pair ðx; dÞ must be so that
x > 0. For all the numerical tests reported hereafter we used x ¼ 1
and d ¼ 1.

6.2. One-dimensional Riemann problem

We now consider three classical one-dimensional Riemann
problems taken from [47]. These tests are defined by the set of data
reported in Table 5.5. The indices l and r designate the left (x 6 x0)
and right (x P x0) states, respectively. The computational domain
is X ¼ ð0;1Þ and the final time of the computation is denoted T.
2 During the review of the manuscript, the authors [19] have determined that using
mK ¼ c�1

c jjK , i.e., Pq ¼ c�1
c PT , implies that the regularized system satisfies a minimum

principle on the specific entropy (see Tadmor [45] for an argumentation on the
importance of the minimum principle on the specific entropy). The computations
reported in the present paper have not been re-done with this scaling.
We take c ¼ 1:4 for heat capacity ratio in all these tests. The com-
putations are done using P3 discontinuous finite elements on a
uniform mesh composed of 200 cells and the time stepping is done
with RK4. The computational parameters are reported in Table 5.6.

The results for each test case are shown in Figs. 6.1, 6.2, 6.3. We
observe that the results are non-oscillatory even though we used
cubic elements. We have verified that the computed solutions
are the entropy solutions.

6.3. Contact vs. shocks

We have mentioned in the introduction that we expect the en-
tropy residual to ‘‘make an automatic distinction between shocks
and contact discontinuities’’. We illustrate this conjecture by solv-
ing again the one-dimensional Riemann problem called Test 1 in
the above section. We show in Fig. 6.4 the (piece-wise linear recon-
struction of) coefficient jðxÞ at the end of the simulation on various
uniform meshes of mesh size hi ¼ 21�i � 10�2; i ¼ 1; . . . 8 using
piecewise linear polynomials. The distribution is normalized by
its maximum value in the shock. We observe that the ratio of the
artificial diffusion in the contact discontinuity to that in the shock
goes to zero as the mesh size goes to zero. The observed conver-
gence rate in the contact discontinuity is Oðh

5
4Þ, thereby supporting

the above conjecture.

6.4. Two-dimensional tests

The method is now tested in two space dimensions on two clas-
sical benchmark problems.

6.4.1. Riemann 12
We consider Problem 12 from [36]. It is a two-dimensional Rie-

mann problem developing complex structures involving shocks
and contacts. The computational domain is X ¼ ð0;1Þ2. The heat
capacity ratio is c ¼ 1:4 and the initial data is

p ¼ 1; q ¼ 4=5; u ¼ ð0;0Þ; 0 < x < 1=2; 0 < y < 1=2;

p ¼ 1; q ¼ 1; u ¼ ð3=
ffiffiffiffiffiffi
17
p

;0Þ; 0 < x < 1=2; 1=2 < y < 1;

p ¼ 1; q ¼ 1; u ¼ ð0:;3=
ffiffiffiffiffiffi
17
p
Þ; 1=2 < x < 1; 0 < y < 1=2;

p ¼ 2=5; q ¼ 17=32; u ¼ ð0;0Þ; 1=2 < x < 1; 0:5 < y < 1:

ð6:11Þ

Due to the finite speed of propagation of perturbations, the solution
of the problem in ð0;1Þ2 is identical to the restriction to ð0;1Þ2 of the
solution to the Riemann problem in R2 up to time t
 :¼ s

2ðs2þ0:6Þ
> 0:32, where s ¼ 3ffiffiffiffi

17
p .

The control parameters of the entropy viscosity are
cE ¼ 1; cmax ¼ 0:5=k; x ¼ 1; d ¼ 1; Pq ¼ 0:25, PT ¼ 0:25. The
time stepping is done with RK4 with CFL ¼ 0:25. The computations



Fig. 6.2. Test 2. Density (left), velocity (center), pressure (right).

Fig. 6.3. Test 3. Density (left), velocity (center), pressure (right).

Fig. 6.1. Test 1. Density (left), velocity (center), pressure (right).
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are done with Q1;Q2 and Q3 discontinuous finite elements on a
grid composed of 16384 ¼ 1282 quadrangular cells. The total num-
ber of scalar degrees of freedom for the Q1;Q2 and Q3 approxima-
tions are 65536;146456;262144, respectively, i.e., 47 � ðkþ 1Þ.

We show in Fig. 6.5 the density field at T ¼ 0:2 < T
 for the
Q1;Q2 and Q3 approximations. The results compare well with
those from [36]. The shocks and the fine structures that develop
behind them are very well described. The method behaves well
as the polynomial degree of the approximation increases.

6.4.2. Mach 3 step
We finish the series of numerical examples by considering the

flow past a forward facing step in a wind tunnel at Mach 3. This
benchmark test has been proposed in [16] and has been popular-



Fig. 6.5. Riemann Problem 12 at T ¼ 0:2. Q1 (left), Q2 (center), Q3 (right), 128� 128 cells.

Fig. 6.6. Mach 3 flow past a forward facing step at T ¼ 4; Q1 approximation, 25,500 cells. Mesh (left), density (right).

Fig. 6.4. Artificial thermal diffusivity for Test 1 at T ¼ 0:25, normalized by its maximum value in the shock.
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ized by Woodward and Colella’s extensive study [50]. The geome-
try of the domain is shown in Fig. 6.6. The initial data and inflow
boundary conditions are specified in terms of the primitive
variables

ðq;u; pÞTðx; y;0Þ
ðq;u; pÞTð0; y; tÞ

)
¼ ð1:4; ð3:0;0:0Þ;1:0ÞT : ð6:12Þ

The outflow boundary at fx ¼ 3g is free. The slip condition u � n ¼ 0
is specified on the solid wall of the tunnel, n being the unit outward
normal on @X.

We solve this problem by using Q1 discontinuous finite ele-
ments and an adaptive mesh refinement strategy built in deal.II.
The local error indicator is hK

R
@K j @nqf gj2 d@K and we limit the num-

ber of refinement levels to 7. The refining and coarsening is done so
that 30% of the cells with the largest error indicators are refined
whereas 10% of the cells with the smallest error indicators are coar-
sen. Mesh adaption is done at every time step. The time stepping in
done with RK4 at CFL ¼ 0:2. The parameters of the entropy viscosity
are cE ¼ 1:0; cmax ¼ 0:5=k; x ¼ 1; d ¼ 1, Pq ¼ 0:05; PT ¼ 0:1. This
example is included in the present paper as an illustration that
adaptive refinement can be used in conjunction with the proposed
technique. Our purpose is not to present a refined solution.

The mesh obtained at T ¼ 4 is shown in Fig. 6.6 and the density
field is shown in 6.6(b). This solutions agrees, at least in the eye-
ball norm, with other reference solutions that can be found in
the literature. The contact discontinuity emerging from the
three-shock interaction point is present in both simulations and
is captured satisfactorily, considering the small number of ele-
ments used in this computation (25500 cells). We observe a spuri-
ous Mach stem at the bottom wall. This artifact is due to the
entropy layer produced at the bottom wall by the corner singular-
ity. The phenomenon is well explained in [15, p. 217]. It can be re-
moved by modifying the scheme in some ad hoc fashion close to
the corner, aggressively refining the mesh at the corner, or simply
regularizing the corner.
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7. Conclusions

We have extended the notion of entropy viscosity to the discon-
tinuous Galerkin framework for scalar conservation laws and the
compressible Euler equations. The method is easy to implement
on unstructured grids with arbitrary polynomial approximations.
Limiters and high-order polynomial reconstructions are avoided
by using a viscous stabilization that is compatible with the entropy
inequality. The method has been shown to behave well on many
benchmark tests. We have observed that the DG method is at least
as efficient as CG and spectral element versions of the entropy vis-
cosity method on the same class of problems. The use of DG ele-
ments provides a natural setting for coupling the hydrodynamics
and radiation transport equations because DG FEM methods are
vastly superior to CG methods for radiative transfer calculations
[31].
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