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This paper addresses the well-known dispersion effect that mass lumping induces when solving trans-
port-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed.
The method does not require any non-trivial matrix inversion and has the same anti-dispersive effects
as the consistent mass matrix. A novel quasi-lumping technique for P2 finite elements is introduced.
Higher-order extensions of the method are also discussed.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Lumping the mass matrix is a routine procedure in the finite
element community when solving the heat equation, the wave
equation and the time-dependent transport equation. This tech-
nique consists of replacing the consistent mass matrix by a diago-
nal surrogate usually referred to as the lumped mass matrix. This
process avoids having to invoke sophisticated linear algebra argu-
ments to invert the consistent mass matrix at each time step. The
mantra in the literature dedicated to mass lumping is that mass
lumping produces explicit algorithms for the transport and the
wave equations that are algebra-free.

The lumped mass matrix is generally obtained by using a quad-
rature formula instead of exact integration. It is usually believed
that lumping is a benign operation since it does not affect the over-
all accuracy of the method provided the quadrature is accurate en-

ough. For instance, it is known that using quadrature formulas that
are exact for P2k�2 polynomials is sufficient to preserve the overall
accuracy of the Galerkin method when solving the wave equation
or some eigenvalue problems on simplex meshes [1,7,12,11,20].
Although it is convenient numerically, it is well-known that lump-
ing the mass matrix induces dispersion errors that have adverse ef-
fects when solving transport-like equations, see e.g. [5,6,14,22].
The objectives of the present work are as follows:

(i) We propose a simple correction technique based on the
lumped mass matrix that does not involve sophisticated lin-
ear algebra and that has the same anti-dispersive effects as
the consistent mass matrix. Although this correction tech-
nique relies on a matrix series, we show theoretically and
numerically that only considering the first term in this series
is enough to correct the dominating dispersion error.

(ii) We introduce a novel quasi-lumping technique for P2 finite
elements, where the new P2 quasi-lumped mass matrix is
triangular. We show also that the proposed mass correction
technique is efficient when using this P2 quasi-lumped mass
matrix.

(iii) We investigate higher-order extensions of the correction
method and demonstrate satisfactory results for the P3

approximation.
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To the best of our knowledge, the correction techniqud the qua-
si-lumping technique for P2 finite elements are original.

This paper is organized as follows. The anti-dispersive effects of
the consistent P1 mass matrix on the transport equation are ana-
lyzed in Section 2. We focus in this section on the linear transport
equation in one space dimension. Most of the material therein is
standard. A mass correction technique based on the lumped mass
matrix is presented in Section 3. The method has the same alge-
braic complexity as when using the lumped mass matrix. It is also
proved for P1 elements in one space dimension that using one cor-
rection term only is enough to obtain the same anti-dispersive ef-
fect as when using the consistent mass matrix. The mass correction
method is further evaluated numerically in two space dimension
on P1 finite elements in Section 4. A new P2 quasi-lumping tech-
nique is introduced in Section 5. To the best of our knowledge,
the P2 quasi-lumping technique presented in Section 5.3 and Sec-
tion 5.4 and the mass correction technique introduced in Section 3
are original. Higher-order suboptimal variants of the method are
considered in Section 6. Conclusions are reported in Section 7.

2. One-dimensional heuristics

The objective of this section is to analyze in details the effects of
mass lumping in one space dimension for the linear transport
equation using piece-wise linear finite elements. The material
herein is certainly not new, see e.g. [6,14,17,22], but it is useful
to comprehend the rest of the paper. Let us consider the following
one-dimensional transport equation in the domain X ¼ ða; bÞ

@tuþ b@xu ¼ 0; uðx;0Þ ¼ u0ðxÞ; ðx; tÞ 2 ða; bÞ � Rþ; ð2:1Þ

equipped with periodic boundary conditions. The velocity field b is
assumed to be constant to simplify the presentation.

2.1. Galerkin linear approximation

Let us partition X ¼ ða; bÞ into N intervals ½xi; xiþ1�,
i ¼ 0; . . . ;N � 1. Let hiþ1

2
:¼ jxiþ1 � xij be the diameter of the cell

½xi; xiþ1�. We introduce the family fw0; . . . ;wNg composed of contin-
uous and piecewise linear Lagrange functions associated with the
nodes fx0; . . . ; xNg, and we define the P1 finite element space

Xh ¼ v 2 C0
#ðX; RÞ; v j½xi ;xiþ1 � 2 P1; i ¼ 0; . . . ;N � 1

n o
¼ spanðw0; . . . ;wNÞ; ð2:2Þ

where C0
#ðX; RÞ denotes the space of the real-valued functions

that are periodic and continuous over X. Let u0 be a reasonable
approximation of u0, say the Lagrange interpolate or L2-projection
thereof. An approximate solution to (2.1) is constructed by means
of the Galerkin technique. We seek u 2 C1ðð0; TÞ; XhÞ so that
uð0Þ ¼ u0 andZ

X
ð@tuþ b@xuÞvdx ¼ 0; 8v 2 Xh: ð2:3Þ

The approximate solution uðx; tÞ is expanded with respect to the ba-
sis fw0; . . . ;wNg as follows: uðx; tÞ ¼

PN
j¼0ujðtÞwjðxÞ. A system of or-

dinary differential equations is obtained by testing (2.3) with the
members of the basis fw0; . . . ;wNg.

Upon testing (2.3) with wi, i ¼ 0; . . . ;N, the term involving the
time derivative givesZ

X
@tuðx; tÞwiðxÞdx ¼

XN

j¼0

Mij@tujðtÞ; ð2:4Þ

where the coefficients of the so-called mass matrix are

Mij :¼
Z xiþ1

xi�1

wiðxÞwjðxÞdx ¼

1
6 hi�1

2
if j ¼ i� 1

1
3 hi�1

2
þ hiþ1

2

� �
if j ¼ i

0 otherwise

8>><>>: ð2:5Þ

with the convention that h�1
2
¼ hN�1

2
and hNþ1

2
¼ h1

2
. The transport

term in (2.3) is handled as follows:Z
X

wiðxÞb@xuðx; tÞdx ¼ �
Z xiþ1

xi�1
buðx; tÞ@xwiðxÞdx

¼ b
2
ðuiþ1ðtÞ þ uiðtÞÞ �

b
2
ðuiðtÞ þ ui�1ðtÞÞ; ð2:6Þ

givingZ
X

wiðxÞb@xuðx; tÞdx ¼ b
1
2
ðuiþ1ðtÞ � ui�1ðtÞÞ; ð2:7Þ

with the convention u�1ðtÞ ¼ uN�1ðtÞ and uNþ1ðtÞ ¼ u1ðtÞ.
Recalling that we are looking for a periodic solution, the above

computation shows that the vector ðu0ðtÞ; . . . ;uN�1ðtÞÞT 2 RN solves
the following system of ordinary differential equations:Xiþ1

j¼i�1

Mij@tujðtÞ ¼ �b
1
2
ðuiþ1ðtÞ � ui�1ðtÞÞ; 0 6 i; j < N; ð2:8Þ

where uNðtÞ ¼ u0ðtÞ and u�1ðtÞ ¼ uN�1ðtÞ. The above system can be
written in matrix form as follows:

M@tUðtÞ ¼ FðUðtÞÞ; ð2:9Þ

with UðtÞ :¼ ðu0ðtÞ; . . . ; uN�1ðtÞÞT , and the entries of F are defined by
FiðUÞ :¼ �b 1

2 ðuiþ1 � ui�1Þ;0 6 i < N, and where M is the consistent
mass matrix defined in (2.5) taking into account the periodicity in
the first and last lines.

2.2. Dispersion and mass lumping

It is common in the literature to approximate (2.9) in time by
means of explicit time stepping. To avoid having to solve linear
systems involving the mass matrix at each time step, it also com-
mon to simplify (2.8) by lumping the mass matrix. Mass lumping
can be shown in one space dimension to be equivalent to approx-
imate the consistent mass matrix by using the following trapezoi-
dal quadrature rule:Z s

r
f ðxÞdx � ðs� rÞ1

2
ðf ðrÞ þ f ðsÞÞ: ð2:10Þ

This quadrature is exact for linear polynomials. Using this quadra-
ture, the mass matrix coefficients can be approximated as follows:Z xiþ1

xi�1

wiðxÞwjðxÞdx � 1
2

hi�1
2
þ hiþ1

2

� �
dij ¼: Mij; ð2:11Þ

where dij is the Kronecker symbol. The so-called lumped mass ma-
trix M thus computed is diagonal. Upon denoting
hi :¼ 1

2 hi�1
2
þ hiþ1

2

� �
and replacing the consistent mass matrix by

the lumped mass matrix, we obtain a new approximate form of
transport equation as follows:

@t ~uiðtÞ þ b
~uiþ1 � ~ui�1

2hi

¼ 0: ð2:12Þ

The approximation thus constructed is second-order accurate. More
precisely, the consistency error of (2.12) is characterized by the
following.

Proposition 2.1. Provided the mesh is uniform, of mesh size h, the
dominating term in the consistency error of (2.12) at the grid points
fxig06i6N is dispersive and is equal to b h2

6 @xxxuðxi; tÞ.
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Proof. Using xi�1 ¼ xi � h and upon using the Taylor expansion
uðxi � h; tÞ ¼ uðxiÞ � h@xuðx; tÞ þ 1

2 h2
@xxuðxi; tÞ�-

1
6 h3

@xxxuðxi; tÞ þ 1
24 h4

@xxxxuðxi; tÞ þ Oðh5Þ, we infer that

@tuðxi; tÞ þ b
uðxiþ1; tÞ � uðxi�1; tÞ

2h
¼ ð@tuþ b@xuÞðxi; tÞ

þ b
h2

6
@xxxuðxi; tÞ þ Oðh4Þ:

This proves the statement of the proposition and proves also in
passing that the equivalent limit equation is

@t ~uþ b@x~uþ b
h2

6
@xxx~u ¼ 0; ð2:13Þ

which is clearly dispersive. h

Remark 2.1. The key observation here is that the consistency error
induced by mass lumping is second-order and dispersive.

Remark 2.2. The approximation (2.12) is exactly what a finite vol-
ume and a second-order finite difference approximation would
give on a uniform mesh.

2.3. Anti-dispersive effect of the mass matrix

Let us now consider (2.8) where the mass matrix is not approx-
imated, and let us redo the consistency analysis for this discrete
system.

Proposition 2.2. Provided the mesh is uniform, of mesh size h, the
dominating term in the consistency error of (2.8) at the grid points
fxig06i6N is equal to b h4

180 @xxxxxuðxi; tÞ.

Proof. Using the definition of the mass matrix (2.5), the discrete
system (2.8) can be re-written as follows:

1
h

Xiþ1

j¼i�1

Mij@tuj ¼ @tui þ
1
6
ð@tui�1 � 2@tui þ @tuiþ1Þ:

Using Taylor expansions at xi we obtain

1
h

Xiþ1

j¼i�1

Mij@tuðxj; tÞ ¼ @tuðxi; tÞ þ
h2

6
@txxuðxi; tÞ þ

h4

72
@txxxxuðxi; tÞ

þ Oðh6Þ

¼ @tuðxi; tÞ � b
h2

6
@xxxuðxi; tÞ � b

h4

72
@xxxxxuðxi; tÞ

þ Oðh6Þ:

By proceeding again as in the proof of Proposition 2.1 and using
uðxi � h; tÞ ¼ uðxiÞ � h@xuðx; tÞ þ 1

2 h2
@xxuðxi; tÞ � 1

6 h3
@xxxuðxi; tÞþ

1
24 h4

@xxxxuðxi; tÞ � 1
120 h5

@xxxxxuðxi; tÞ þ Oðh6Þ, we infer that

1
h

Xiþ1

j¼i�1

Mij@tuðxj; tÞ þ b
uðxiþ1; tÞ � uðxi�1; tÞ

2h

¼ @tuðxi; tÞ þ b@xuðxi; tÞ � b
1

180
h4
@xxxxxuðxi; tÞ þ Oðh6Þ; ð2:14Þ

thereby proving the statement. This also prove in passing that the
equivalent limit equation is

@t ~uþ b@x~u� b
h4

180
@xxxxx~u ¼ 0; ð2:15Þ

which is again dispersive. Note however that the dispersion error is
now forth-order whereas it is second-order in (2.13). h

When comparing Propositions 2.1 and 2.2 we now understand
that accounting properly for the mass matrix limits the dispersion
error of the centered approximation.

Remark 2.3. It is remarkable that the result of Proposition 2.2
holds in higher-space dimension. For instance, it is shown in
Appendix A that the result holds on quadrangular grids with Q1

elements, independently of the transport direction.

Remark 2.4. The consistent mass matrix does not have anti-dis-
persive effect on the wave equation @ttu� c2@xxu ¼ 0, however, a
simple computation as above shows that using 1

2 ðM þMÞ is the
right combination to do the job with P1 finite elements on uniform
grids. See [5] and references therein for other details.

2.4. Fourier analysis

Fourier analysis is useful to evaluate numerical dispersion, and
the purpose of this section is to revisit the statements of Proposi-
tions 2.1 and 2.2 from the Fourier analysis perspective. Let k be a
real number and assume that u0ðxÞ ¼ aeikx; i2 ¼ �1, then the exact
solution to (2.1) is uðx; tÞ ¼ aeikðx�btÞ. Let us now compare this solu-
tion to what (2.8) and (2.12) give, respectively.

Proposition 2.3. If the initial data to (2.8) and (2.12) is faeikxig06i6N,
the solution to (2.8) and (2.12) is faeikðxi�c1ðkÞtÞg06i6N and
faeikðxi�c2ðkÞtÞg06i6N, respectively, where

c1ðkÞ ¼ 3b
sinðkhÞ

khð2þ cosðkhÞÞ ; c2ðkÞ ¼ b
sinðkhÞ

kh
: ð2:16Þ

Proof. This result is not new (see e.g. [14, p. 136]), but we give the
proof for the sake of completeness. Let us assume that the solution
to (2.8) is given by aeikðxi�c1ðkÞtÞ

� �
06i6N , where c1ðkÞ is yet to be

determined. Then by inserting this expression into the following
equivalent form of (2.8)

@tui þ
1
6
@tui�1 � 2@tui þ @tuiþ1ð Þ þ b

uiþ1 � ui�1

2h
¼ 0;

we infer that the following must hold:

0 ¼ �ikc1ðkÞ 1þ 1
6

eikh � 2þ e�ikh
� �� 	

þ b
1

2h
eikh � e�ikh
� �

¼ �ikc1ðkÞ
1
3
ð2þ cosðkhÞÞ þ ib

1
h

sinðkhÞ;

which is equivalent to the expression of c1ðkÞ in (2.16). The same
argument gives c2ðkÞ. h

The graph of the phase velocities c1ðkÞ=b and c2ðkÞ=b for
k 2 ½0;p=h� are shown in Fig. 2.1. This figure shows that phase
velocity c2ðkÞ=b is closer to the perfect value 1 than c1ðkÞ=b, i.e.,
(2.8) transports the high frequencies better than (2.12), thereby
confirming again that the consistent mass matrix has anti-disper-
sive properties. The anti-dispersive effect of the consistent mass
matrix is illustrated numerically on the one-dimensional linear
transport equation in Appendix B.1.

3. Mass matrix corrections

Since solving the mass matrix at each time step may be per-
ceived as a drawback of the finite element method, we describe
in this section a technique that has the same anti-dispersive effect
as the consistent mass matrix but whose complexity is nearly the
same as when using the lumped mass matrix.

188 J.-L. Guermond, R. Pasquetti / Comput. Methods Appl. Mech. Engrg. 253 (2013) 186–198
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3.1. An abstract result

The generic form of the system (2.9) can be re-written as
follows:

@tU �M�1FðUÞ ¼ 0; ð3:1Þ

and our goal in this section is to approximate M�1 efficiently. To this
end we set M ¼ M þM �M, where we assume that M is easy to in-
vert, e.g., M can be the lumped mass matrix. At this point one may
factorize M on the left, right, or symmetrically as follows:

M ¼ MðI þM�1ðM �MÞÞ; ð3:2Þ
M ¼ ðI þ ðM �MÞM�1ÞM; ð3:3Þ
M ¼ M1=2ðI þM�1=2ðM �MÞM�1=2ÞM1=2: ð3:4Þ

Note that the symmetric factorization is legitimate provided M is
symmetric and non-negative, and it of interest only if M is diagonal,
since M1=2 is easy to compute in this case. Depending on factoriza-
tion which is chosen we introduce the following matrices:

Ar ¼ M�1ðM �MÞ; As ¼ M�1=2ðM �MÞM�1=2; or Al

¼ ðM �MÞM�1: ð3:5Þ

We then obtain the following three possible representations for
M�1:

M�1 ¼ ðI þ Ar þ A2
r þ � � �ÞM�1; ð3:6Þ

M�1 ¼ M�1=2ðI þ As þ A2
s þ � � �ÞM�1=2; ð3:7Þ

M�1 ¼ M�1ðI þ Al þ A2
l þ � � �Þ: ð3:8Þ

Of course these representations are valid only if the series are con-
vergent, which is the case if and only if the spectral radius of A is
less than 1.

Lemma 3.1. The spectra of Ar ;As (provided M is symmetric and non-
negative) and Al are identical.

Proof. That the spectra of Ar and Al are identical is the conse-
quence of the standard result that the spectra of CD and DC are
identical for all square matrices C;D. Let us now assume that M
is symmetric and non-negative, then As is symmetric, thus diago-
nalizable. Let Ks and Vs be the matrices of the eigenvalues and
eigenvectors of As, respectively. Then using the definition
AsVs ¼ VsKs we infer that

M�1=2AsM1=2M�1=2Vs ¼ M�1=2VsKs

which in turn implies ArM�1=2Vs ¼ M�1=2VsKs, thereby proving that
the spectra of Ar and As are identical. h

One of the key results of this paper is that the P1 lumped mass
matrix in one space dimension and in higher dimensions is such
that the above series are convergent, and that using only one term
in the series, i.e., 1þ A, is enough to compensate exactly the dom-
inating dispersive effects of mass lumping.

3.2. One-dimensional argumentation

We show in this section that using ð1þ AÞM�1 is enough to cor-
rect the dispersive effects of mass lumping in one space dimension
with P1 elements. Note that in one space dimension and with P1

finite elements Ar ¼ As ¼ Al when the mesh is uniform.

Proposition 3.1. Provided the mesh is uniform, of meshsize h, the
dominating term of the consistency error at the grid points fxig06i6N is
Oðh4Þ when using only one correction in (3.6).

Proof. Observe that M ¼ hI and Ar ¼ I � h�1M. This implies that
ðI þ ArÞM�1 ¼ h�1ð2I � h�1MÞ. The approximation equation is

@tui þ
b

2h

Xiþ1

j¼i�1

2dij � h�1Mij

h i
ðujþ1 � uj�1Þ ¼ 0;

giving

@tui þ
b

2h
1
6
ðui�2 � uiþ2Þ þ

4
3
ðuiþ1 � ui�1Þ

� 	
¼ 0:

Using Taylor expansions at xi, we obtain that

@tuðxi; tÞ

þ b
2h

1
6
ðuðxi�2; tÞ � uðxiþ2; tÞÞ þ

4
3
ðuðxiþ1; tÞ � uðxi�1; tÞÞ

� 	
¼ @tuðxi; tÞ þ b@xuðxi; tÞ þ Oðh4Þ; ð3:9Þ

which completes the proof. Note that this result is similar to what
has been obtained in (2.14) when using the consistent mass
matrix. h

The above result is illustrated in Appendix B.2 in one space
dimension.

4. Application to P1 finite elements

We show in this section that the observations made in one
space dimension generalize to two space dimensions. We restrict
ourselves to two space dimensions for the sake of simplicity, but
most of what is said hereafter generalizes to higher space
dimensions.

4.1. The lumped P1 mass matrix

Let X be a two-dimensional polygonal domain and consider an
affine finite element mesh T h of X composed of simplices. Consider
a cell in the mesh, K 2 T h, and let S1; S2; S3 be the three vertices of K
and /1;/2;/3 be the associated local nodal shape functions. The lo-
cal mass matrix MK associated to K is defined to be

MK
ij :¼

Z
K

/iðxÞ/jðxÞdx ¼ jKjUT
i WUj; ð4:1Þ

where fU1;U2;U3g is the canonical basis of R3 and the matrix W is
given by

W ¼

1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6

264
375: ð4:2Þ

Once MK is computed for all K 2 T h, the mass matrix M is obtained
by the so-called assembling procedure.

Fig. 2.1. Phase velocities.
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The standard mass lumping process advocated in the literature
consists of using the following approximate quadrature rule:Z

K
f ðxÞdx ¼ jKjð1

3
f ðS1Þ þ

1
3

f ðS2Þ þ
1
3

f ðS3ÞÞ; 8f 2 P1; ð4:3Þ

to approximate
R

K /iðxÞ/jðxÞdx. The local lumped matrix MK ob-
tained by this technique is

MK
ij :¼ jKjUT

i WUj; ð4:4Þ

where the matrix W , computed by means of the above quadrature
rule is

W ¼

1
3 0 0
0 1

3 0
0 0 1

3

264
375: ð4:5Þ

Of course, since W is diagonal, MK is diagonal and the assembled
matrix M is also diagonal.

The popularity of the lumped P1 mass matrix, M, comes from
the fact that it can be shown to be a satisfactory alternative of
the consistent mass matrix, M, in terms of approximation and con-
vergence rate, at least for the heat and the wave equation, [1,7,20].
That the matrix W is indeed a good approximation of W is also ex-
pressed in the following

Proposition 4.1. The three eigenvalues of W�1ðW �WÞ are 0; 3
4 ;

3
4

� �
.

4.2. Numerical illustrations

We illustrate the efficiency of the correction algorithm in this
section. We show in particular that using one term in the correc-
tion series is sufficient to remove the dominating dispersion error.
Let us consider the scalar transport equation

@tuþ b � ru ¼ 0; uðx;0Þ ¼ u0ðxÞ; ð4:6Þ

in the unit disk X ¼ ðx; yÞ 2 R2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< 1

n o
. The velocity field is

a solid rotation of angular velocity 2p, i.e., b ¼ 2pð�y; xÞ. The initial
field u0 is defined by

u0ðxÞ ¼
1
2

1� tanh
ðx� x0Þ2 þ y2

a2 � 1

 ! !
; x0 ¼ 0:4; a

¼ 0:3: ð4:7Þ

We solve (4.6) with the Galerkin method with P1 finite ele-
ments on a mesh composed of 6293 P1 nodes. The time stepping
is done with the standard RK4 method (RK3 and RK4 techniques
are known to be stable under a CFL condition for the linear
transport equation, see e.g. [16]); this ensures that the error in-
duced by the time approximation is small compared to the spa-
tial error. The solution is computed at T ¼ 2, i.e., after two
revolutions.

The results are shown in Fig. 4.1. The solution obtained with
mass lumping is shown in 4.1(a). The dispersive effect is clear
and needs not be commented. We show in Fig. 4.1(b) and (c) the
solutions obtained by replacing the inverse of the lumped mass
matrix by ð1þ AÞM�1 and ð1þ Aþ A2 þ A3 þ A4ÞM�1, respectively,
where A :¼ M�1ðM �MÞ. The effect of applying only one correction
to the lumped mass matrix is spectacular, the dispersive waves
have completely disappeared.

We have verified in tests not reported here that the solution
obtained with four corrections is visually indistinguishable from
that obtained by inverting exactly the consistent mass matrix.
To make this statement more precise, we solve the above linear
transport problem on various grids
(h ¼ 0:1;0:05; 0:025; 0:0125; 0:01) and we compute the L2-norm

of the error at T ¼ 1. The convergence results are reported in Ta-
ble 4.1. For all practical purposes, the errors obtained by using the
consistent mass matrix and by applying four corrections to the
lumped mass matrix are identical. This series of tests clearly
shows that correcting the lumped mass matrix four times is en-
ough to obtain results that cannot be distinguished from those
computed with the consistent mass matrix.

Let us finish this section by justifying the convergence of the
Neumann expansion in (3.6). This is done by evaluating the spec-
tral radius of the mass correction.

Proposition 4.2. The spectral radius of A :¼ M�1ðM �MÞÞ is less
than 3

4.

Proof. Let ðY; kÞ be an eigenpair of M�1ðM �MÞÞ, i.e.,
YTðM �MÞY ¼ kYT MY . Then, using the fact that the mesh is affine,
we infer

YTðM �MÞY
��� ��� ¼ X

K2T h

YT
KðMK �MKÞYK

�����
�����

6

X
K2T h

jKjkYKkkW �WkkYKk;

where YK is the vector of the three components of Y that are asso-
ciated to the vertices of the triangle K and where k � k denotes the
Euclidian norm. Owing to Proposition 4.1 we infer that
kW �Wk 6 1

4, which in turns implies

jYTðM �MÞYj 6 3
4

X
K2T h

1
3
jKjkYKk2 ¼ 3

4

X
K2T h

jKjYT
K MK YK ¼

3
4

YT MY:

In conclusion jYTðM �MÞY j ¼ jkjYT MY 6 3
4 YT MY , which concludes

the proof. h

Table 4.2 shows the largest eigenvalue of A :¼ M�1ðM �MÞÞ on
the five Delaunay grids used in the convergence tests above. This
table confirm that the spectral radius of A is indeed uniformly
bounded by 0:75.

5. P2 finite elements

We now extend the above considerations to higher-order finite-
elements. We particularly focus our attention in this section on the
P2 mass matrix.

5.1. Terminology

The terminology ‘‘mass lumping’’ comes from the operation that
consists of replacing the consistent mass matrix by a diagonal ma-
trix whose entry in row i is the sum of all the entries of the consis-
tent mass matrix in row i. When using Lagrange finite elements,
this operation is equivalent to choosing an approximate quadra-
ture based on the interpolation points to compute the diagonal
surrogate. This statement is made more precise in the following.

Proposition 5.1. Mass lumping and using the interpolation points as
quadrature points to approximate the mass matrix give the same
diagonal matrix.

Proof. This result is standard, but we give the proof for complete-
ness. Clearly, the proposition holds for the assembled matrices M
and M if it holds for the local matrices MK and MK . Let us then focus
on the local matrices.

Let bK be the reference finite element and let bA1; . . . bAL be the
Lagrange nodes on bK and b/1; . . . b/L be the corresponding nodal
shape functions. The following quadrature rule holds
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Z
bK bf ðbxÞdbx ¼ jbK jX

L

i¼1

xi
bf ðbAiÞ :¼ IbK ðbf Þ; 8bf

2 spanðb/1; . . . ; b/LÞ; ð5:1Þ

provided the weights are defined as follows:

xi ¼
1

jbK j
Z
bK b/iðbxÞdbx; 8i 2 f1; . . . ; Lg:

Let MK be the local mass matrix associated to element K; then,
the sum of the entries of MK in row i is computed as follows:XL

l¼1

MK
il ¼

XL

l¼1

Z
K

/iðxÞ/lðxÞdx ¼
Z

K
/iðxÞ

XL

l¼1

/lðxÞdx ¼ jKj
jbK j

Z
bK b/iðbxÞdbx

¼ jKjxi:

where we used
PL

l¼1/lðxÞ ¼ 1. Now let us use the quadrature (5.1)
defined above to approximate the entries of MK ; in other words,
with obvious notations let us evaluate IKð/i/jÞ:

IKð/i/jÞ ¼
jKj
jbK j IbK ðb/i

b/jÞ ¼ dijjKjxi: ð5:2Þ

In conclusion we have dij
PL

j¼1MK
ij ¼ IKð/i/jÞ for all element K 2 T h,

which in turns implies that the result holds also for assembled
matrices M and M. This concludes the proof. h

In the remainder of this paper we are going to use approximate
quadratures to construct approximations of the consistent mass
matrix. Some of these quadratures do not satisfy (5.1) and conse-
quently the techniques that we are going to introduce are not mass
lumping in the sense of Proposition 5.1. We are nevertheless going
to make an abuse of language by referring to these alternative ap-
proaches as quasi-lumping.

5.2. The ~Pk construction

The above mass lumping technique is known to work properly
only for the P1 finite element in the class of the simplicial finite
elements with the Lagrange nodes equally distributed on a uniform
lattice on the reference elements, see Section 4. For instance mass
lumping fails for P2 finite elements in two space dimensions.
Although the argumentation is standard, let us recall why mass
lumping fails for the P2 finite elements. H1-conformity and ele-
mentary symmetry considerations impose that there is a unique
choice for the Lagrange nodes of the P2 finite element; this unique
set of nodes is shown in Fig. 5.1. The interpolation points are the
vertices fS1; S2; S3g and the mid-edges fM1;M2;M3g.

The quadrature based on this set of nodes is the following:Z
K

f ðxÞdx ¼ jKj
3
ðf ðM1Þ þ f ðM2Þ þ f ðM3ÞÞ; 8f 2 P2: ð5:3Þ

By virtue of Proposition 5.1 it immediately follows that the lumped
mass matrix is singular since the weights at the vertices are zero. A
similar result holds in three space dimensions.

Following the work of [8], it is now well understood that the
mass lumping method can be salvaged by selecting the Lagrange
nodes on a non-uniform lattice on the reference element and by
augmenting the polynomial space Pk with extra degrees of free-
doms so that the resulting augmented space ~Pk produces a quadra-
ture with positive weights. For instance, it is shown in [4,9,10] that
the following space ~P2 :¼ P2 � spanðbÞ is suitable for this purpose,
where bðxÞ :¼ k1ðxÞk2ðxÞk3ðxÞ is the bubble function and
k1ðxÞ; k2ðxÞ, k3ðxÞ are the barycentric coordinates over K. The quad-
rature associated with this polynomial space is as follows:Z

K
f ðxÞdx ¼ jKjð 1

20
ðf ðS1Þ þ f ðS2Þ þ f ðS3ÞÞ þ

2
15
ðf ðM1Þ

þ f ðM2Þ þ f ðM3ÞÞ þ
9

20
f ðGÞÞ; 8f 2 P4; ð5:4Þ

where G is the barycenter of K. Higher-order versions of these ideas
are proposed in [4,9,13,19].

We propose in the next two sections two quasi-lumping tech-
niques for P2 finite elements that do not require the extra barycen-
tric degree of freedom invoked by ~P2.

Fig. 4.1. Mass matrix corrections on a 2D Delaunay triangulation, P1 finite elements, h � 0:025 (6293 P1 nodes), T ¼ 2.

Table 4.1
L2-norm of error, P1 finite elements, T ¼ 1. Computations done with the consistent
mass matrix, the lumped mass matrix corrected four times, and with the lumped
mass matrix with no correction.

h Consist. mass 4 Corrections 1 Correction 0 Correction

0.1000 9.653E�2 1.003E�1 1.488E�1 4.444E�1
0.0500 1.990E�2 1.999E�2 3.191E�2 1.827E�1
0.0250 5.790E�3 5.706E�3 6.460E�3 6.369E�2
0.0125 2.120E�3 2.046E�3 1.186E�3 1.747E�2
0.0100 1.644E�3 1.576E�3 7.644E�4 1.124E�2

Table 4.2
Spectral radius of A :¼ M�1ðM �MÞÞ vs. h.

h 0.1 0.2 0.025 0.0125 0.01

qðAÞ 0.7428 0.7472 0.7488 0.7496 0.7497

Fig. 5.1. P2 Lagrange finite element in two space dimensions.
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5.3. Construction of a diagonal P2 quasi-lumped mass matrix

We present in this section a first attempt at quasi-lumping the
mass matrix based on the standard Lagrange P2 nodes, see Fig. 5.1,
and using a diagonal matrix.

Again, the local mass matrix MK is given by the expression

MK
ij :¼

Z
K

/iðxÞ/jðxÞdx ¼ jKjUT
i WUj; ð5:5Þ

where ðU1; . . . ;U6Þ is the canonical basis of R6 and the matrix W is
given by

W ¼

1
30 � 1

180 � 1
180 � 1

45 0 0
� 1

180
1

30 � 1
180 0 � 1

45 0
� 1

180 � 1
180

1
30 0 0 � 1

45

� 1
45 0 0 8

45
4

45
4

45

0 � 1
45 0 4

45
8

45
4

45

0 0 � 1
45

4
45

4
45

8
45

26666666664

37777777775
: ð5:6Þ

The coefficients of W are equal to jKj�1 R
K /iðxÞ/jðxÞdx;1 6 i; j 6 6,

where /1; . . . ;/6 are the local nodal shape functions. Since we have
seen above that (5.3) is the only possible quadrature that is exact for
P2 polynomials, we propose to lower our expectations by construct-
ing a convex combination between (4.3) and (5.3) as follows:Z

K
f ðxÞdx ¼ c

jKj
3
ðf ðS1Þ þ f ðS2Þ þ f ðS3ÞÞ þ ð1� cÞ jKj

3
ðf ðM1Þ

þ f ðM2Þ þ f ðM3ÞÞ: ð5:7Þ

This gives a family of integration rules parameterized by c that are
exact only in P1 for all c 2 ð0;1Þ. Since there are polynomials in P2

that are not integrated exactly with these rules, this choice certainly
forbids any hope that the resulting method can be optimal in terms
of approximation, but we nevertheless persist in this direction. The
quasi-lumped local mass matrix that results from this strategy is
the following:

MK
ij :¼ jKjUT

i WUj; ð5:8Þ

where

W :¼
1
3 cI3 0

0 1
3 ð1� cÞI3

" #
; ð5:9Þ

where I3 is the 3� 3 identity matrix.
Our goal is to use W to approximate the matrix W defined in

(5.6). The matrix W is a good approximation of W if the spectral ra-
dius of W�1ðW �WÞ is smaller than 1. The spectral radius of
W�1ðW �WÞ can be computed exactly with the help of Maple.
We show in Fig. 5.2 the spectral radius of W�1ðW �WÞ as a func-
tion of c in the range 0:01 6 c 6 0:79. The minimum is reached for
c � 1

5 and the largest eigenvalue has a modulus less than 0:875 in
the range c 2 ½0:08;0:25�. In conclusion, any value of c in the range
½0:08;0:25� gives a quasi-lumped mass matrix for which all the
Neumann series (3.6)–(3.8) converge. We have observed numeri-
cally that c ¼ 1

12 gives the best performance.
Since the quadrature rule (5.7) is not exact in P2, we cannot ex-

pect the mass correction method introduced in §3 to converge
optimally with a fixed number of corrections. We illustrate this
statement by performing the converge tests on the linear transport
equation described in §4.2. We solve the linear transport problem
on various grids (h ¼ 0:2;0:1;0:05;0:025;0:0125) using c ¼ 1

12, and
we compute the L2-norm of the error at T ¼ 1. The results are re-
ported in Table 5.1.

In conclusion, although the proposed quasi-lumped mass ma-
trix does not give an optimally convergent method when corrected
a fixed number of times, we claim that the matrix M is nevertheless

a good preconditioner of M and can certainly be used as such with-
in any Krylov-based iterative technique. This claim in confirmed by
Table 5.2 where we report the condition number of M�1M as a
function of the mesh size h for the five grids used in the above con-
vergence tests and for two values of c.

5.4. Construction of a triangular P2 quasi-lumped mass matrix

Since it does not seem to be possible to construct a diagonal
quasi-lumped P2 mass matrix with optimal convergence proper-
ties, see §5.3, we propose to consider the next best alternative
which is to construct a triangular approximate mass matrix. Recall
that triangular matrices are as easy to invert as diagonal matrices.
This possibility has never been explored yet, to the best of our
knowledge.We propose to consider the following non-symmetric
bilinear quadrature ruleZ

K
uðxÞvðxÞdx � jKjUT WV : ð5:10Þ

where the matrix W is defined by

W :¼

a 0 0 c d d

0 a 0 d c d

0 0 a d d c
0 0 0 b 0 0
0 0 0 0 b 0
0 0 0 0 0 b

2666666664

3777777775
; ð5:11Þ

and with

UT :¼ ðuðS1Þ;uðS2Þ;uðS3Þ;uðM1Þ;uðM2Þ;uðM3Þ; ð5:12Þ
VT :¼ ðvðS1Þ;vðS2Þ; vðS3Þ;vðM1Þ; vðM2Þ;vðM3Þ: ð5:13Þ

We now try to make this formula as accurate as possible. Let
/1;/2;/3 be the P2 nodal shape functions associated with the ver-
tices S1; S2; S3, and /4;/5;/6 be the nodal shape functions associ-
ated with the mid-edges M1;M2;M3.

Fig. 5.2. Spectral radius of W�1ðW �WÞ.

Table 5.1
L2-norm of error at T ¼ 1;P2 finite elements. Computations done with the consistent
mass matrix and with the quasi-lumped mass matrix with four, one, and no
orrections.

h Consist. mass Var. corrections 4 Corrections

0.2 5.053E�2 5.536E�2 2 3.846E�2
0.1 1.522E�2 1.226E�2 4 1.226E�2
0.05 2.676E�3 2.773E�3 6 4.966E�3
0.025 5.589E�4 5.865E�4 8 3.577E�3
0.0125 1.446E�4 1.486E�4 10 3.448E�3
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Lemma 5.1. The formula (5.10) is exact for all
ðu;vÞ 2 P2 � P0 [ P0 � P1 provided the following holds:

aþ cþ 2d ¼ 0; b ¼ 1
3
; 8c; d 2 R: ð5:14Þ

(i) (5.10) is also exact for all ðu;vÞ 2 spanð/1;/2;/3Þ � P1 if
(5.14) holds and

dþ c ¼ � 1
30

; 8c 2 R: ð5:15Þ

(ii) (5.10) is exact for all ðu;vÞ 2 P1 � P1 if (5.14) holds and

dþ c ¼ 0; 8c 2 R: ð5:16Þ

Proof.

(1) The condition
R

K /iðxÞ1dx ¼ 0; i ¼ 1;2;3 implies
aþ cþ 2d ¼ 0. The condition

R
K /iðxÞ1dx ¼ 1

3 jKj; i ¼ 4;5;6
implies b ¼ 1

3. In conclusion (5.10) holds for all
ðu;vÞ 2 P2 � P0 provided aþ cþ 2d ¼ 0 and b ¼ 1

3. Moreover
one easily verifies that

R
K 1kiðxÞdx ¼ 1

3 jKj is computed
exactly if aþ bþ cþ 2d ¼ 1

3, which with b ¼ 1
3 gives again

aþ cþ 2d ¼ 0. This implies that (5.10) holds also for all
ðu;vÞ 2 P0 � P1. Note that these identities hold for the (sin-
gular) lumped mass matrix for which a ¼ c ¼ d ¼ 0 and
b ¼ 1

3.
(2) The condition

R
K /iðxÞkiðxÞdx ¼ 1

30 jKj; i ¼ 1;2;3 implies
aþ 1

2 dþ 1
2 d ¼ 1

30. In conclusion we have

aþ cþ 2d ¼ 0; aþ d ¼ 1
30

; b ¼ 1
3
;

which is clearly equivalent to (5.14) and (5.15). Let i 2 f1;2;3g and
let fj1; j2g ¼ f1;2;3g n fig, then let us show that (5.10) evaluates ex-
actly

R
K /iðxÞkj1 ðxÞdx and

R
K /iðxÞkj2 ðxÞdx, which will conclude the

proof of (i). Since the symmetries of the triangle K imply thatR
K /iðxÞkj1 ðxÞdx equals

R
K /iðxÞkj2 ðxÞdx, we have

Z
K

/iðxÞkj1 ðxÞdx ¼ 1
2

Z
K

/iðxÞðkj1 ðxÞ þ kj2 ðxÞÞdx

¼ 1
2

Z
K

/iðxÞðkiðxÞ þ kj1 ðxÞ þ kj2 ðxÞÞdx� 1
2Z

K
/iðxÞkiðxÞdx ¼ �1

2

Z
K

/iðxÞkiðxÞdx:

The conclusion follows readily owing to the fact that (5.10) satisfies
all the symmetries used above and (5.10) evaluates exactlyR

K /iðxÞ1dx and
R

K /iðxÞkjðxÞdx; i; j ¼ 1;2;3.
(3) The proof of (ii) is similar. We observe first that (5.10) eval-

uates exactly
R

K kiðxÞkiðxÞdx; i 2 f1;2;3g provided

aþ dþ 1
2

b ¼ 1
6
;

which together with the results of step (1) imply (5.14)–(5.16).
Proving then that (5.10) evaluates exactly

R
K kiðxÞkjðxÞdx for

j ¼ f1;2;3g n fig can be done by using the symmetry properties of
the quadrature as above. h

We now have two families of bilinear integration rules param-
eterized by c. Our goal is to use W to approximate the matrix W
defined in (5.6). We expect W to be a good approximation of W
if the spectral radius of W�1ðW �WÞ is smaller than 1. We show
in Fig. 5.3 the spectral radius of W�1ðW �WÞ as a function of c
in the range �0:06 6 c 6 0:01 for the integration rule defined by
(5.14)–(5.15). The minimum is reached for c � � 1

21 and the range
c 2 ½�0:042;�0:03� is acceptable. The particular value c ¼ � 1

30

has the advantage of simplifying the expression of W since d ¼ 0
for this value. We have found numerically that indeed the choice
c ¼ � 1

30 works very well. We show in Fig. 5.3 the spectral radius

of W�1ðW �WÞ as a function of c in the range 0:015 6 c 6 0:15
for the integration rule defined in (5.14)–(5.16). The minimum is
reached for c � 1

41 and the range c 2 ½0:03;0:07� is acceptable. We
have found numerically that the pair c ¼ 1

30 works well for the inte-
gration rule (5.14)–(5.16).

Another important property to consider is to make sure that the
quasi-lumped mass matrix is definite positive. This property holds
as soon as the elementary matrix W is definite positive. We verify
that W is definite positive by inspecting the smallest eigenvalue of
1
2 ðW þWTÞ.

Fig. 5.3. Spectral radius of W�1ðW �WÞ as a function of c.

Table 5.2
Condition number of M�1M vs. h.

h 0.2 0.1 0.05 0.025 0.0125

CondðM�1MÞ c ¼ 1
12

5.910 5.952 5.995 6.015 6.022

c ¼ 1
5

5.342 5.384 5.420 5.435 5.440
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Proposition 5.2.

(i) With the choice of parameters (5.14)–(5.15), the smallest
eigenvalues of 1

2 ðW þWTÞ is

min
1
5
þ1

2
c� 1

30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17�90cþ450c2

q
;
1
5
þ1

2
c� 1

60

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
65�360cþ4500c2

q� 	
:

ð5:17Þ

(ii) With the choice of parameters (5.14)–(5.16), the smallest
eigenvalues of 1

2 ðW þWTÞ is

1
6
þ 1

2
c� 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 6cþ 45c2

q
: ð5:18Þ

One can verify that matrix W is definite positive for the two
choices (5.14) and (5.15) and (5.14)–(5.16) in the ranges consid-
ered above, c 2 ½�0:042;�0:03� and c 2 ½0:03;0:07�, respectively.

Remark 5.1. The mass matrix M preserves the block structure
of the local mass matrices MK . For instance M is upper triangu-
lar if the vertices of the mesh are enumerated before the mid-
edges.

Remark 5.2. The idea of using non-diagonal matrices to represent
a quadrature rule can be traced back to [24, p. 5] and [18, (A.2)].
The novelty of the technique presented here is that we are using
a triangular matrix to represent a quadrature rule involving the
product of two functions. The resulting bilinear form is obviously
not a scalar product.

Remark 5.3. Instead of considering the bilinear quadrature rule
defined by (5.11), one may think of using the transpose of the
matrix W thus giving a lower triangular quadrature rule. The coun-
terpart of Lemma 5.1 follows immediately by permuting the poly-
nomial spaces. One can then define another quasi-lumped mass
matrix. This leads to two quasi-lumped matrices, say Ml and Mu,
where subscripts l and u are for lower or upper triangular. Let us
then define the matrix M ¼ ð12 M�1

l þ 1
2 M�1

u Þ
�1. This new matrix M

is clearly symmetric and can be used as a quasi-lumped mass
matrix: the matrix vector product M�1y is realized by solving
Muzu ¼ y and Mlzl ¼ y and by setting M�1y ¼ 1

2 ðzu þ zlÞ. The result-
ing algorithm is of course a little more time consuming, but the
quasi-lumped mass matrix is now symmetric. This route has been
investigated, but the results are somewhat disappointing. It seems
that Ml is not nearly as effective as Mu when applying the disper-
sion correction formula with one term only. The two matrices give
similar results after four corrections though. This phenomenon is
not yet well understood. We conjecture that it is important to asso-
ciate the largest polynomial space with the test functions in the
quadrature rule (5.11); the quadrature associated with Ml is exact
in P0 � P2, where P0 is the test space and P2 the trial space,
whereas the quadrature associated with Mu is exact in P2 � P0.
Note finally that there is no local counterpart to the
matrix M ¼ ð12 M�1

l þ 1
2 M�1

u Þ
�1 that defines a bilinear

quadrature with properties similar to those mentioned in Lemma
5.1.

5.5. Numerical illustrations/Galerkin

We illustrate the efficiency of the construction proposed above
by testing it on the linear transport equations Eq. (4.6) and (4.7)
with the quadrature rule (5.14) and (5.15) using c ¼ � 1

30, (i.e.,
a ¼ 1

30 ; b ¼ 1
3, d ¼ 0). Note in passing that the value c ¼ � 1

30 is such
that the three smallest eigenvalues of 1

2 ðW þWTÞ are equal (see
(5.17)). In this case we have

W ¼
1

30 I3 � 1
30 I3

0 1
3 I3

" #
: ð5:19Þ

The space approximation is done by using the Galerkin method on a
mesh composed of 6293 P2 nodes. The time stepping is done with
the standard RK4 method to ascertain that the error in time is neg-
ligible with respect to the spatial error. The solution is computed at
T ¼ 2, i.e., after two revolutions. The results are shown in Fig. 5.4.
The solution obtained with quasi-lumping is shown in Fig. 5.4(a).
The dispersive effect associated with quasi-lumping is clear. We
show in Fig. 5.4(b) and (c) the solutions obtained by replacing the
inverse of the quasi-lumped mass matrix by ð1þ AÞM�1 and
ð1þ Aþ A2 þ A3 þ A4ÞM�1, respectively, where A :¼ M�1ðM �MÞ.
The conclusion is the same as for P1 finite elements: Applying
one correction to the quasi-lumped mass matrix is enough to cor-
rect the dispersion effect.

We finish this section by performing convergence tests on the
linear transport problem (4.6) and (4.7). The space approximation
is done by using the Galerkin method on various grids
(h ¼ 0:2;0:1;0:05;0:025;0:0125). The time stepping is done with
RK4 with CFL ¼ 0:7. The L2-norm of the error is computed at
T ¼ 1. The results are reported in Table 5.3. It is remarkable that
the technique using the uncorrected quasi-lumped mass matrix
is second-order convergent. To the best of our knowledge, the tech-
nique presented here is the first convergent quasi-lumping tech-
nique for P2 finite elements using only the standard Lagrangian
nodes. It is also remarkable that for all practical purposes, the re-
sults obtained by using the consistent mass matrix and by applying
four mass corrections to the quasi-lumped mass matrix are identi-
cal. This test confirms the observations already made with P1 finite
elements.

5.6. Numerical illustrations/Galerkin + stabilization

Since it is known that the Galerkin method is suboptimal for lin-
ear first-order PDE’s, we now investigate the performance of the
mass correction when used jointly with stabilization techniques.

We consider first the so-called edge stabilization technique [3].
Edge stabilization consists of augmenting the Galerkin formulation
with a penalty term acting on the jump of the normal derivative of
the unknown across all the internal faces of the mesh. Upon denot-
ing Xh the finite element space, the edge stabilization technique
consists of seeking u 2 C1ðð0; TÞ; XhÞ so thatZ

X
ð@tuþ b � ruÞvdxþ v

X
F2F i

h

h2
FkbkL1ðDF Þ

Z
F

s@nuts@nvtdx ¼ 0;

8v 2 Xh; ð5:20Þ

where F i
h is the collection of the internal faces, hF is the diameter

of F, and DF is the union of the two elements sharing the inter-
face F. The coefficient v is user-dependent; we have chosen
v ¼ 0:01 in the computations reported below. The time stepping
is again explicit and done using RK4. The edge stabilization bilin-
ear form is made explicit. The resulting scheme is known to be
stable under the usual CFL condition in [2]. We used CFL ¼ 0:7
in the computations reported in Table 5.4. By comparing Tables
5.3 and 5.4, we observe that, as expected, the edge-stabilized
technique is more accurate than the Galerkin technique. The re-
sults from Table 5.4 show that the technique with the quasi-
lumped mass matrix corrected four times has roughly the same
convergence rate as the technique using the consistent mass
matrix.

We now consider the so-called entropy viscosity tech-
nique introduced in [15]. The method consists of adding a nonlin-
ear dissipation to the Galerkin formulation to stabilize the
method:
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Z
X
ð@tuþ b � ruÞvdxþ

X
K2T h

Z
K
mhðuÞru � rvdx ¼ 0; 8v 2 Xh;

ð5:21Þ

The nonlinear viscosity is proportional to an entropy residual and is
at most equal to c1kbkL1ðKÞhK=k, where hK is the diameter of K; k is
the polynomial degree of approximation, and c1 ¼ 1=4k. We solve
the linear transport Eq. (4.6) and (4.7) with the initial data
u0ðxÞ ¼ 1 if kx� x0k 6 a and u0ðxÞ ¼ 0 otherwise. We use the quad-
rature rule (5.14) and (5.15) with c ¼ � 1

30 to evaluate the quasi-
lumped mass matrix. Again, the mesh is composed of 6293 P2

nodes, the time stepping is done with the standard RK4, and the
solution is computed at T ¼ 2. The results are shown in Fig. 5.5.
We observe that using one mass matrix correction only is enough
to remove most of the dispersion effect induced by the quasi-mass
lumping.

We have also performed tests with the quadrature (5.14)–(5.16)
using c ¼ 1

30, (i.e., a ¼ 1
30, b ¼ 1

3 ; d ¼ � 1
30). The performance of the

method is similar to what has been described above. We do not re-
port these tests here for the sake of brevity.

The tests shown in this section confirm that the mass correction
method is robust with respect to both the edge stabilization and
the entropy viscosity technique.

6. PN extensions

We finish this paper by exploring mass lumping for higher-or-
der simplicial Lagrange finite elements in two space dimensions.
We are going to restrict ourselves to PN finite elements, N P 3,
and investigate whether it is possible to find lattices on the refer-
ence simplex that give lumped mass matrices with positive
weights and determine whether the mass matrix correction from
Section 3 can be applied. Of course the quadrature associated with
mass lumping in PN is exact in PN only, which is suboptimal since
quadratures must be exact in P2N�2 to yield optimal error estimates
in the energy norm [1,7,20,11].

6.1. P3 approximation

We begin with the P3 approximation. As generally advocated in
the spectral element literature, the interpolation points for P3 La-
grange finite elements must be the images, by appropriate map-
pings, of the four one-dimensional Gauss–Lobatto Legendre
points �1;�1=

ffiffiffi
5
p

;1=
ffiffiffi
5
p

;1
n o

on the edges of the triangle and the
center of gravity of the triangle. The quadrature associated with
these points is exact in P3 only, but since all the weights are posi-
tive (suboptimal) mass lumping is possible for this finite element.
Furthermore we have verified numerically that the spectral radius
of the local matrix W�1ðW �WÞ approximately equals 0:702 < 1,
thereby confirming that the mass matrix correction algorithm pro-
posed in Section 3 is convergent.

Let us now illustrate the mass correction algorithm on the two-
dimensional transport problem defined in Section 4.2. We have
performed computations on four grids
(h ¼ 0:157;0:0753;0:0575;0:039) with the consistent mass matrix,

Fig. 5.5. Mass matrix corrections on 2D Delaunay triangulation, P2 finite elements with entropy viscosity stabilization, h � 0:05 (6293 P2 nodes), T ¼ 2.

Fig. 5.4. Mass matrix corrections on 2D Delaunay triangulation, P2 finite elements, h � 0:05 (6293 P2 nodes), T ¼ 2.

Table 5.3
L2-norm of error at T ¼ 1;P2 finite elements. Computations done with the consistent
mass matrix and with the quasi-lumped mass matrix with four, one, and no
corrections.

h Consist. mass 4 Corrections 1 Correction 0 Correction

0.2 5.053E�2 3.726E�2 9.744E�2 3.045E�1
0.1 1.522E�2 1.159E�2 2.171E�2 1.467E�1
0.05 2.676E�3 2.231E�3 4.076E�3 4.610E�2
0.025 5.589E�4 4.658E�4 1.465E�3 1.233E�2
0.0125 1.446E�4 1.091E�4 2.756E�4 3.094E�3

Table 5.4
L2-norm of error at T ¼ 1;P2 finite elements with edge stabilization.

h Consist. mass 4 Corrections 1 Correction 0 Correction

0.2 2.904E�2 2.809E�2 8.269E�2 2.927E�1
0.1 5.633E�3 5.078E�3 1.523E�2 1.429E�1
0.05 5.707E�4 5.694E�4 2.417E�3 4.473E�2
0.025 8.421E�5 9.582E�5 6.911E�4 1.178E�2
0.0125 1.338E�5 1.764E�5 2.161E�4 2.918E�3
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the lumped mass matrix, and the lumped mass matrix corrected up
to eight times. The computations have been done with the sym-
metric form of the mass correction matrix A, see (3.7), but this par-
ticular choice does not affect the spectral radius of A as shown in
Lemma 3.1. The results are reported in Table 6.1.

As can be observed in Table 6.1, the convergence rate obtained
with the standard mass lumping is less than second-order (as ex-
pected), whereas it is close to fourth-order with the consistent
mass matrix. One observes significant improvements with the
mass correction algorithm. This is remarkable since the quadrature
based on the interpolation points is exact in P3 and is not in
P2N�2¼4. Moreover, as already observed for the P2 approximation,
the mass correction algorithm gives slightly better accuracy than
when using the consistent mass matrix when the number of mass
corrections is larger enough. This seems to indicate that the con-
vergence of the Neumann series (3.7) always occurs from below.

6.2. Higher-order variants

Let us now consider higher-order polynomials, i.e., N 2 f4;5;6g.
For N 2 f4;5g we consider the interpolation points given by the
‘‘warp & blend’’ technique from [23] and, for N ¼ 6, we use the
so-called Fekete points. The list of the Fekete points in the refer-
ence triangle for N 2 f3;6; . . . ;18g can be found in [21]. For both
these families, the interpolation nodes coincide with the Gauss–
Lobatto–Legendre points on the edges of the reference triangle.
The Lebesgue constant for both these families is small; for instance,
it is less than 10 for polynomial of degrees at most 12.

The first difficulty we encounter when computing the weights
of the quadrature associated with the warp & blend points is that
the weights at the vertices are negative for N ¼ 4. The second prob-
lem is that the spectral radius of the local matrix A grows with N
and is larger than 1 for N P 4 as shown in Table 6.2 for
N 2 f3;4;5;6g.

The above negative results show that standard mass-lumping
fails for N > 3 in two space dimensions for standard Lagrange ele-
ments. This situation can be fixed by using the augmented spaces
~PN mentioned in Section 5.2. This idea has been shown to work
up to N ¼ 6 in two space dimensions and up to N ¼ 4 in three space
dimensions in [4]. We think however that the quasi-lumping tech-
nique that we developed for P2 finite elements in Section 5.4 can
be extended to higher-order polynomial degree. We think in par-
ticular that it should be possible in principle to construct triangular
quasi-lumped mass matrices as alternatives to the ~PN construction.

7. Conclusions

A new mass correction technique has been introduced to cor-
rect the dispersion error of mass lumping. The method has been
shown to have the same anti-dispersive effect as when working
with the consistent mass matrix. Two quasi-lumping techniques
for P2 finite elements have been introduced. The P2 quasi-lumping
technique based on the idea of using a triangular lumped mass ma-
trix, as presented in Section 5.4, is new to the best of our knowl-
edge. The mass correction technique introduced in Section 3 has
been shown to perform very well with P1 lumping and P2 quasi-

lumping. It seems that for these two elements using only one cor-
rection term only is enough to remove the dispersion error. We
have verified that, although suboptimal, satisfactory results can
also be obtained for the P3 approximation.

The idea of applying the mass matrix corrections and using tri-
angular quasi-lumped mass matrices could be extended to higher-
order finite elements. These venues will be explored in future
works.

Appendix A. Anti-dispersive effect of the Q 1-mass matrix on 2D
Cartesian grids

Consider the two-dimensional transport equation:

@tuþ b � ru ¼ 0;

with constant velocity field b ¼ ðbx;byÞ. Consider a Cartesian grid
with mesh sizes hx and hy in x- and y-directions, respectively.

Proposition A.1. The dominating term in the consistency error of the
Q1 Galerkin approximation is Oðh4

x þ h4
yÞ at the grid points ðxi; yjÞ.

Proof. The test functions are the tensor products of one-dimen-
sional functions, say wx

i ðxÞw
y
j ðyÞ, and the Q1 Galerkin approximation

is represented as follows:

uðx; y; tÞ ¼
X

i

X
j

ui;jðtÞwx
i ðxÞw

y
j ðyÞ:

Applying twice the Simpson quadrature rule, the term involving the
time derivative becomesZ yjþ1

yj�1

wy
j

Z xiþ1

xi�1

@tuwx
i dxdy ¼ hxhy@t

4
9

ui;j þ
1
9
ðui�1;j þ ui;j�1Þ þ

1
36

ui�1;j�1

� 	
;

where the notation ui�1;j stands for ui�1;j þ uiþ1;j and ui�1;j�1 stands
for ui�1;j�1 þ uiþ1;j�1 þ ui�1;jþ1 þ uiþ1;jþ1, etc. Similarly, for the trans-
port term we obtain:Z yjþ1

yj�1

wy
j

Z xiþ1

xi�1

b � ruwx
i dxdy

¼ hybx
1
3
ðuiþ1;j � ui�1;jÞ þ

1
12
ðuiþ1;j�1 þ ui�1;j�1Þ

� 	
þ hxby

1
3
ðui;jþ1 � ui;j�1Þ þ

1
12
ðui�1;jþ1 þ ui�1;j�1Þ

� 	
:

After inserting the exact solution, u, in the Q1 Galerkin approxima-
tion of the transport equation, using Taylor expansions, and divid-
ing by hxhy, we obtain:

Table 6.1
L2-norm of error at T ¼ 1;P3 finite elements.

h Consist. mass 8 Correct. 4 Correct. 2 Correct. 1 Correct. No correct.

0.157 5.1078E�2 5.0866E�2 4.9149E�2 5.5802E�2 1.2791E�1 1.1185E�1
0.0753 5.7404E�3 5.7940E�3 7.4701E�3 1.7421E�2 4.8163E�2 4.2324E�2
0.0575 1.6734E�3 1.6168E�3 2.3904E�3 8.2706E�3 2.9825E�2 2.2364E�2
0.039 4.5458E�4 4.3058E�4 1.0650E�3 4.2248E�3 1.5986E�2 1.5216E�2

Table 6.2
Spectral radius of the local matrix A.

N 3 4 5 6

qðAÞ 0.702 1.36 6.33 12.33

196 J.-L. Guermond, R. Pasquetti / Comput. Methods Appl. Mech. Engrg. 253 (2013) 186–198



Author's personal copy

1
hxhy

Z
Sij

ð@tuij þ b � ruijÞwx
i ðxÞw

y
j ðyÞdxdy

¼ @t uij þ
h2

x

6
@xxuij þ

h2
y

6
@yyuij

 !
þ bx @xuij þ

h2
x

6
@xxxuij þ

h2
y

6
@xyyuij

 !
bx

@yuij þ
h2

y

6
@yyyuij þ

h2
x

6
@yxxuij

 !
þOðh4

x þ h4
yÞ;

where Sij ¼ ½xi�1; xiþ1� � ½yi�1; yiþ1� and uij :¼ uðxi; yjÞ. Taking into ac-
count that @tuðxi; yj; tÞ ¼ �bx@xuðxi; yj; tÞ � by@yuðxi; yj; tÞ, one ob-
serves that the consistency error is of order 4. h

The above proposition shows that using the consistent matrix
has an anti-dispersive effect for the 2D transport equation. One
may conjecture that such a result holds in any dimension.

Appendix B. One-dimensional numerical illustrations

B.1. Dispersive effects of mass lumping

We illustrate here the anti-dispersive effect of the consistent
mass matrix in one space dimension. We show in Fig. B.1(a) and
(b) the Galerkin solution to the transport equation @tuþ @xu ¼ 0
over the interval X ¼ ð0;1Þ with periodic boundary conditions
and initial data uðx;0Þ ¼ sinð2pxÞ. The solution is computed at
T ¼ 100, i.e., 100 periods, on a uniform mesh composed of 100
P1 cells. The time stepping is done using the standard explicit
forth-order Runge Kutta (RK4) method so that the error induced
by the time approximation is negligible with respect to the spatial
error. The CFL number is 0.7. We show in Fig. B.1(c) and (d) the
Galerkin solution with the initial data uðx;0Þ ¼ 1 if 0:4 < x < 0:7
and uðx;0Þ ¼ 0 otherwise. The solution is computed at T ¼ 1. The
solutions shown in Fig. B.1(a) and (c) are computed with the
lumped mass matrix, and those shown in Fig. B.1(b) and (d) are
computed with the consistent mass matrix. The anti-dispersive ef-
fects of the consistent mass matrix are clearly visible on these two
examples.

Since the dispersion analysis has been done assuming that the
mesh is uniform, it is not clear a priori that the anti-dispersive

effects of the mass matrix are robust with respect to mesh non-
uniformity. This issue can be explored numerically by repeating
the above numerical experiments on non-uniform meshes. The re-
sults are shown in Fig. B.2. The mesh is composed of 100 cells with
random size and the anisotropy factor is 3, that is to say the size
ratio between two neighboring cells is at most 3. These experi-
ments show that mesh non-uniformity does no have a notable
influence on the anti-dispersive effects of the consistent mass ma-
trix, and the conclusions of the dispersion analysis hold when the
mesh is moderately non-uniform.

B.2. Numerical illustrations of the correction technique

We illustrate numerically the correction technique introduced
in Section 3 in one space dimension with P1 finite elements.

We show in Fig. B.3 the effects of replacing the inverse of the
lumped mass matrix by (3.6). The setting is the same as in Sec-
tion B.1 and the initial data is the smooth sine function. We show
in Fig. B.3(a) the Galerkin solution using the lumped mass matrix
on a random mesh composed of 100 cells at T ¼ 100. The solutions
shown in Fig. B.3(c) and (d) have been obtained by replacing M�1

by ð1þ AÞM�1 and ð1þ Aþ A2 þ A3 þ A4ÞM�1, respectively.
Fig. B.3(a) clearly illustrates the dispersion effect of mass lumping;
the phase error is Oð1Þ after 100 turnover times. Fig. B.3(b) sup-
ports our claim that replacing M�1 by ð1þ AÞM�1 corrects the dis-
persion error of the lumped mass matrix.

We show in Fig. B.4 the Galerkin solution of the one-dimen-
sional transport problem with a step function as initial data. The
solution shown in Fig. B.4 has been computed at T ¼ 1 using the
lumped mass matrix on a uniform mesh composed of 100 cells.
The solution shown in Fig. B.3(b) and (c) have been obtained by
replacing M�1 by ð1þ AÞM�1 and ð1þ Aþ A2 þ A3 þ A4ÞM�1,
respectively. Fig. B.4 also confirms that replacing M�1 by
ð1þ AÞM�1 corrects the dispersion error of the lumped mass matrix
even for non-smooth solutions.

Of course, the Galerkin method must be stabilized to get rid of
the spurious oscillations. As shown in Section 5.6, stabilization has
a marginal effect on dispersion.

Fig. B.1. Consistent vs. lumped mass matrix, uniform mesh, 100 cells, T ¼ 100. Dashed line: exact solution; solid line: numerical approximation.

Fig. B.2. Consistent vs. lumped mass matrix, random mesh, 100 cells, T ¼ 1. Dashed line: exact solution; solid line: numerical approximation.
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Fig. B.3. Mass matrix corrections on a random mesh, 100 cells, T ¼ 100. Dashed line: exact solution; solid line: numerical approximation.

Fig. B.4. Mass matrix corrections on a uniform mesh, 100 cells, T ¼ 1. Dashed line: exact solution; solid line: (un-stabilized) Galerkin approximation.
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