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Abstract This paper focuses on the notion of suitable weak solutions for the three-
dimensional incompressible Navier-Stokes equations and discusses the relevance of this
notion to Computational Fluid Dynamics. The purpose of the paper is twofold (i) to re-
call basic mathematical properties of the three-dimensional incompressible Navier-Stokes
equations and to show how they might relate to LES (ii) to introduce an entropy viscosity
technique based on the notion of suitable weak solution and to illustrate numerically this
concept.

Keywords Quality · Reliability · Large-Eddy Simulation, · Suitable weak solutions ·
Entropy viscosity

1 Introduction

The question addressed in this paper is that of constructing approximate solutions to the
three-dimensional incompressible Navier-Stokes equations using under-resolved meshes.
The use of under-resolved meshes cannot be avoided when the Reynolds number is large,
which is very often the case in engineering situations. At the present time, simulating time-
dependent flows at Reynolds numbers greater than a few thousands is a challenging task due
to the heuristic Kolmogorov estimate O(R

9/4
e ) for the total number of degrees of freedom

which is required to simulate flows at a given value of Re .
In the wake of [9, 12, 13], the objective of this paper is to show that the notion of suitable

weak solutions introduced by Scheffer [23] is a sound, firm, mathematical ground which
could be useful to LES modelers to build energetically coherent theories.
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This paper is organized in four parts. In the first part (Sect. 2) we recall basic mathemat-
ical properties of suitable weak solutions and we mention some new results regarding the
approximation of these solutions. We want to draw the attention of the community on the
fact that, contrary to finite elements/volumes/differences and wavelets, at the time of this
writing it is still unknown whether Fourier-based DNS in the periodic cube produce weak
solutions that are suitable. In other words there is still no mathematical proof that Fourier-
based DNS is energetically consistent. Considering the importance of Fourier-based DNS in
CFD, this theoretical gap is worrisome.

In the second part of this paper (Sect. 3) we propose a model that aims at controlling
the energy balance at the grid scale in a way which is consistent with the notion of suitable
solutions, i.e., suitable solution are locally dissipative. The key idea consists of adding a
numerical viscosity proportional to the default to equilibrium in the local energy equation.
This model henceforth referred to as LES or entropy viscosity has been proposed in [9, 10].

In the third part (Sect. 4) we test the entropy viscosity technique on some scalar nonlinear
conservations laws using various discrete settings comprising Fourier expansions and finite
elements.

The entropy viscosity technique is adapted to the compressible Euler equations in the
fourth part of this paper (Sect. 5).

The test reported in Sect. 4 and Sect. 5 should convince the reader that computing a
numerical viscosity proportional to the entropy residual is a very efficient stabilization tech-
nique. We conjecture that this method should be a good candidate for LES and could provide
a reasonable mathematical background for LES.

2 Suitable Weak Solutions

2.1 The Navier-Stokes Problem

Let Ω be a connected, open, bounded domain in R
3 and consider the time-dependent in-

compressible Navier-Stokes equations in Ω

⎧
⎨

⎩

∂tu + u·∇u + ∇p − R−1
e Δu = f in QT ,

∇·u = 0 in QT ,
u|t=0 = u0, u periodic or u|Γ = 0,

(1)

where QT = Ω × (0, T ) is the space-time domain, Γ is the boundary of Ω , and Re is the
Reynolds number.

Spaces of R
3-valued functions on Ω and R

3-valued functions are denoted in bold fonts.
The Euclidean norm in R

3 is denoted | · |. In the following c is a generic constant which may
depend on the data f, u0, Re , Ω , T . The value of c may vary at each occurrence. Whenever
E is a normed space, ‖ · ‖E denotes a norm in E.

2.2 Suitable Weak Solutions

It is known since Leray [19] and Hopf [14] that weak solutions to (1) exist, but the question
of uniqueness of these solutions is still open. The major obstacle in the way is that the a
priori energy estimates obtained so far do not preclude the occurrence of so-called vorticity
bursts reaching scales smaller than the Kolmogorov scale.

Uniqueness is intimately related to smoothness. A very interesting approach to the
smoothness question has been developed by Scheffer [23]. The idea is to study the Hausdorff
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measure of the singular set of weak solutions (the singular set is composed of those points in
time and space where the solution is not essentially bounded in any neighborhood of these
points). Proving that the measure of the singular set is zero would amount to proving that
there is no singularity. To carry out this program Scheffer introduced the notion of suitable
weak solutions which boils down to the following

Definition 1 Let (u,p), u ∈ L2((0, T );H1(Ω)) ∩ L∞((0, T );L2(Ω)), p ∈ D′((0, T );
L2(Ω)), be a weak solution to the Navier-Stokes equation (1). The pair (u,p) is said to
be suitable if the local energy balance

∂t

(
1

2
u2

)

+ ∇·
((

1

2
u2 + p

)

u
)

− R−1
e Δ

(
1

2
u2

)

+ R−1
e (∇u)2 − f · u ≤ 0 (2)

is satisfied in the distributional sense, i.e., in D′(QT ;R
+).

It is remarkable that the above inequality is similar to entropy conditions for conservation
laws. Think of it as an entropy inequality where the kinetic energy would play the role of an
entropy.

Suitable weak solutions are known to exist always. They can be constructed by regu-
larizing the nonlinear term (i.e., Leray regularization) and passing to the limit. With this
notion Scheffer was able to derive a bound from above of some Hausdorff measure of the
singular set. The remarkable fact about this result is that it cannot (yet) be obtained with-
out invoking suitability, i.e., it is not known if every weak solution satisfies (2). The result
of Scheffer has been improved by Caffarelli-Kohn-Nirenberg and is now referred as the
Caffarelli-Kohn-Nirenberg Theorem [4, 21] in the literature. In a nutshell, this result asserts
that the one-dimensional Hausdorff measure of the set of singularities of a suitable weak so-
lution is zero. In other words, if singularities exist, they must lie, on a space-time set whose
dimension is smaller than that of a space-time line. To the present time, this is the best par-
tial regularity result available for the Navier-Stokes equations. For any practical purpose,
this theorem asserts that suitable weak solutions are almost classical. The word “almost” is
important here; although suitable weak solutions are the most regular solutions known to
exist, they may still have singular points, i.e., be not classical.

2.3 Direct Numerical Simulations (DNS)

Since DNS is the highest court in LES-land, one is certainly entitled to ask whether limits
of DNS solutions (as the mesh-size goes to zero) are suitable. This may seem to be a dumb
question to ask, but surprisingly the answer is not yet totally clear.

To formalize an answer to the above question let us assume that the velocity and pressure
are approximated in some discrete spaces Xh and Mh, respectively (h denoting the mesh-
size). We now introduce a notion of discrete commutator.

Definition 2 The space Xh (resp. Mh) is said to have the discrete commutator property if
there is an operator Ph ∈ L(H1

0(Ω);Xh) (resp. Qh ∈ L(H 1(Ω);Mh)) such that the following
holds for all φ in W

2,∞
0 (Ω) and all vh ∈ Xh (resp. all qh ∈ Mh)

‖φvh − Ph(φvh)‖Hl (Ω) ≤ c h1+m−l‖vh‖Hm(Ω)‖φ‖Wm+1,∞(Ω), 0 ≤ l ≤ m ≤ 1,

‖φqh − Qh(φqh)‖Hl(Ω) ≤ c h1+m−l‖qh‖Hm(Ω)‖φ‖Wm+1,∞(Ω) .
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When Ph (resp. Qh) is a projector, the above definition is an estimate of the operator norm
of the commutator [Φ,Ph] := Φ◦Ph −Ph◦Φ where Φ(v) := φv. This property is also called
‘super-approximation’ in the finite element literature [13, 15, 16]. The discrete commutator
property is known to hold in discrete spaces where there exist projectors that have local
approximation properties, see Bertoluzza [3]. It is known to hold for finite elements and
wavelets.

The best available results so far concerning the construction of suitable weak solution as
limits of DNS solution is summarized in the following

Theorem 1 (See [7, 8]) If Xh and Mh have the discrete commutator property (in addition
to having the usual reasonable approximation properties), the pair (uh,ph) convergences,
up to subsequences, to a suitable weak solution to (1).

In a nutshell this theorem says that DNS solutions based on finite elements and wavelets
(and very likely finite volumes and finite differences, splines, etc.) converge to suitable weak
solutions.

One may then wonder if DNS solutions based on Fourier approximation in the periodic
cube also converge to suitable solutions. Surprisingly enough, this is still unknown at the
time of this writing. The main obstacle in the way is that the discrete commutator property
does not hold for Fourier approximations. Actually, counter-examples to the discrete com-
mutator property can be constructed. We are then led to seriously consider the following

Open question 1 Do Fourier-based DNS solutions converge to suitable weak solution as
the degree of the approximation goes to infinity?

We think this question should equally attract the interest of mathematicians and DNS
specialists. For mathematicians, investigating this problem might be a way to set a wedge
that could separate the class of suitable weak solutions from that of those that are weak
only. For CFD specialists, it would certainly be re-assuring to know that Fourier-based DNS
solutions locally dissipate energy correctly.

One way to interpret the above results is that Finite Elements, Wavelets, Finite Differ-
ences, etc. have enough built-in numerical dissipation to help the energy cascade to go in
the right direction, i.e., the energy at extremely fine scales is always dissipated when using
approximation methods having local interpolation properties. Contrary to Finite Elements,
wavelets, etc. the Fourier technique is so accurate that it does not induce enough numeri-
cal diffusion to counteract the Gibbs-Wilbraham phenomenon. Whether energy is correctly
dissipated locally for Fourier approximations is still a mystery. The key here is the lack of
localization of the Fourier approximation.

2.4 More Open Questions for DNS

Let us finish this section by bringing the following open question to the attention of the DNS
community

Open question 2 Do weak solutions to the Navier-Stokes equation satisfy the global energy
balance?

Again, this question may seem ridiculous, but global energy balance has not yet been
proved for large data (initial or forcing term). The DNS community could contribute to
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solving this question by verifying the global energy balance of DNS solutions as the mesh
size is refined.

Of course, calling uh the DNS solution, it is clear that any DNS algorithm can be tweaked
so that global energy balance is exact

1

2
‖uh(T )‖2

L2(Ω)
+

∫ T

0
R−1

e ‖∇uh(t)‖L2(Ω) dt = 1

2
‖u0‖2

L2(Ω)
. (3)

This is not the point. Unless it can be proved someday that uh converges strongly to
some u in L2((0, T );H1(Ω)), there is no reason for the limit solution, say u, to satisfy
the equality in (3). The best that can be deduced from the uniform boundedness of uh in
L2((0, T );H1(Ω)) is the inequality

1

2
‖u(T )‖2

L2(Ω)
+

∫ T

0
R−1

e ‖∇u(t)‖L2(Ω) dt ≤ 1

2
‖u0‖2

L2(Ω)
. (4)

More precisely, although ∇uh converges weakly to ∇u in L2(QT ), it is possible that
limh→0 ‖∇uh‖L2(Ω) �→ ‖∇u‖L2(QT ). To understand the difficulty, assume that 1/h ∈ N and
consider of the function

vh(x) = sin(2πx/h), x ∈ (0,1). (5)

Clearly vh → 0 weakly in L2(0,1) as h → 0, but ‖vh‖L2(0,1) = 1
2 and ‖ limh→0 vh‖L2(0,1) = 0.

In other words limh→0 ‖vh‖L2(0,1) �= ‖ limh→0 vh‖L2(0,1). It is remarkable though that any
amount of smoothing is sufficient to transform weak convergence into strong conver-
gence. Hence, extending vh by zero over R it can be shown that limh→0 ‖ϕε ∗vh‖L2(0,1) =
‖ limh→0 ϕε ∗vh‖L2(0,1) for any reasonable smoothing kernel ϕ and any ε > 0.

Upon setting uh(t) := ϕε ∗uh(t), DNS simulations could help solve the above question
by verifying whether the following holds for all times T

1

2
‖uh(T )‖2

L2(Ω)
+

∫ T

0
R−1

e ‖∇uh(t)‖L2(Ω) dt ≈ 1

2
‖u0‖2

L2(Ω)
(6)

for small resolutions (i.e., h → 0) and any ε � h, say ε = hα with α ∈ (0,1).

3 Proposal for a LES Model Based on Suitability

The goal of this section is to explore some implications the notion of suitable solutions may
have when it comes to approximate the Navier-Stokes equations on a finite grid. In other
words, since limh→0 is a mathematical dream which is unachievable with the computing
power currently available, can we anyway draw something useful from the existence of
suitable solutions?

3.1 Practical Interpretation of the Notion of Suitable Solution

At high Reynolds numbers CFD is always under-resolved. In other words, even if one uses
a discrete setting admitting a discrete commutator property, the results of Theorem 1 is
useless for practical purposes since the approximate solution thus calculated may be far
from a (the?) suitable solution. The limit h → 0 is an ideal situation from which practical
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CFD simulations are usually far. Then, one may ask oneself what is the use of the notion of
suitable solutions? Is it a notion that we should care about in CFD?

To answer the above question, let us rephrase the definition of suitability. Let u, p be a
weak solution of the Navier-Stokes equations in the Leray class. Let us define the residual
of the momentum equation

R(x, t) := ∂tu − R−1
e Δu + u·∇u + ∇p − f. (7)

u, p being a weak solution means that the residual R(x, t) is zero in the distribution sense. Is
it then clear that the power of the residual, R(x, t)·u, is zero? Well, no, since it is not known
whether u is smooth enough for the product R(x, t)·u(x, t) to be an integrable function, i.e.,
it is not clear whether the integral

∫ T

0

∫

Ω
R(x, t)·u(x, t)dx dt makes sense.

Consider the one-dimensional inviscid Burgers equation ∂tu + 1
2∂x(u

2) = 0 for instance.
In the distribution sense 0 = R(x, t) := ∂tu + 1

2∂x(u
2), but the unique entropy solution is,

among all the weak solutions, the only one that satisfies R(x, t)u = 1
2∂tu

2 + 1
3 ∂x(u

3) ≤ 0.
It is indeed true that the product R(x, t)u = 0 at points (x, t) where u is smooth, but in
shocks R(x, t)u is a negative Dirac measure. More precisely consider the following solu-
tion u(x, t) = 1−H(x − 1

2 t) where H is the Heaviside function, x ∈ (−∞,+∞) and t ≥ 0.
One easily verifies that u solves the Burgers equations with initial data u0(x) = 1 − H(x),
i.e., R(x, t) = 0, but 1

2∂tu
2 + 1

3∂x(u
3) = − 1

12δ(x − 1
2 t) �= 0, where δ is the Dirac measure.

This example may help the reader to understand why the Open question 2 is still open
and might not have an obvious answer. When approximating the solutions of the Burg-
ers equation, one can certainly come up with algorithms that are energy preserving (i.e.,∫ ∞

−∞
1
2 u2

h(x, t)dx = ∫ ∞
−∞

1
2u2

0(x)dx). Using such a technique would be a disastrous idea,
since the energy preserving solution to the Burgers equation is not the correct one.

The definition of a suitable solution can be rephrased as follows: a suitable solution is
one for which the power of the residual is negative in the distribution sense in QT , i.e.,

∂t (
1
2 u2) + ∇·(( 1

2 u2 + p)u) − R−1
e Δ( 1

2 u2) + R−1
e (∇u)2 − f · u ≤ 0. (8)

The reader may verify by himself that indeed, (8) is formally equivalent to R(x, t)·u ≤ 0,
(the term “formally” meaning: in the optimistic hypothesis that u and p are smooth func-
tions). In other words, if singularities occur, suitable solutions are such that these singulari-
ties dissipate energy.

3.2 What Happens in Under-Resolved Simulations?

Let us now focus our attention on under-resolved numerical simulations. Being under-
resolved in a space-time region means that the numerical solution experiences large gra-
dients that cannot be correctly represented by the mesh in the region in question. In other
words, for all practical purpose, the numerical solution is singular at the considered mesh
scale (i.e., behaves like a singular one on the available mesh). As time progresses the large
unresolved gradients are likely to produce even larger gradients through nonlinear interac-
tions, i.e., we have to deal with energy accumulation at the grid scale. The question is no
longer to determine whether the solution(s) to the Navier-Stokes equation is (are) classical
or not (a debate that a pragmatic reader may think to be of remote academic interest), it just
now amounts to deciding what to do with a quasi-singular numerical solution.

Let us rephrase the situation in mathematical terms. Let (uh,ph) be the approximate
velocity and the approximate pressure, the subscript h representing the typical mesh-size.
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Let Dh(x, t) be the numerical residual of the energy (entropy) equation

Dh(x, t) := ∂t

(
1

2
u2

h

)

+∇·
((

1

2
u2

h +ph

)

uh

)

−R−1
e Δ

(
1

2
u2

h

)

+R−1
e (∇uh)

2 − f ·uh. (9)

Being under-resolved in a neighborhood of (x0, t0) means that Dh(x0, t0) is significantly
larger than the consistency error of the method. If locally the power of the numerical sin-
gularity is negative, i.e., Dh(x0, t0) ≤ 0, we do not have anything to fear since energy is
cascading down and is eventually lost in the subgrid scales, a scenario in agreement with the
Kolmogorov cascade. On the other hand if the numerical singularity produces energy, i.e.,
Dh(x0, t0) > 0, all the bets are off since the situation is out of control and, by analogy with
a shock that would produce energy, is unphysical.

In conclusion ensuring that Dh(x0, t0) ≤ 0 is a highly desirable feature. If it could be
enforced everywhere in the domain, that would mean that the energy gently cascades down
in the subgrid scales and is eventually dissipated. Rephrased in eddy terms, this condition
would guaranty that every eddy of size similar to the mesh-size would eventually be dissi-
pated. Hence in under-resolved situations, one should wish the approximate solution to be
suitable in the discrete sense, i.e.,

Dh(x, t) ≤ ε(h), ∀(x, t) ∈ QT , (10)

with ε(h) ≥ 0 and limh→0 ε(h) = 0.

3.3 A LES Model Based on Suitability

Of course (10) cannot be enforced in addition to the discrete momentum conservation and
the discrete mass conservation. But, similarly to the entropy condition for nonlinear conser-
vation laws, (10) can be incorporated in the algorithm that calculates the pair (uh,ph).

Possibilities are numerous, but the technique that we propose is to use (10) to construct
an artificial viscosity by setting

νh(x, t) := min

(

cmax|uh(x, t)|h(x), c h2(x)
|Dh(x, t)|
‖u2

h‖L∞(Ω)

)

, (11)

where h(x) is the local mesh size in the neighborhood of x, ‖u2
h‖L∞(Ω) is the maximum

norm of u2
h (this is just a normalizing term), cmax ≈ 0.5 and c are adjustable constants. When

normalization is done properly we have found c ≈ 0.25 to be appropriate. The momentum
equation is then modified by adding the term −∇·(νh(x, t)∇uh). Since 1

2 |uh(x, t)|h(x) is
the viscosity that is induced by first-order up-winding on a uniform Cartesian grid, using
cmax = 1

2 in the above formula roughly amount to limit the viscosity with the first-order
upwind viscosity on uniform Cartesian grids. Definition (11) implies that the LES viscosity
never exceeds the first-order up-wind viscosity. When the mesh is fine enough to resolve
all the scales, the quantity |Dh(x, t)| is of the same order as the consistency error of the
numerical method which is used and h(x)2|Dh(x, t)| is far smaller than the first-order up-
wind viscosity. This observation implies that νh(x, t) is a consistent viscosity, i.e., it vanishes
when all the scales are resolved. The LES viscosity is active only in under-resolved region
if spurious energy is generated at the mesh scale, i.e., when energy seems to be coming up
from subgrid scales. Note that the LES viscosity as defined in (11) may be oscillatory, so
that smoothing of νh (local averaging) may be required.
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Let us finish by mentioning that the choice that we made of enforcing (10) by using a
dissipative model is not unique. We conjecture that it might also be possible to mimic (10) by
using other techniques like filtering and approximate deconvolution which are more popular
in the LES community [1].

4 Numerical Illustrations for Scalar Conservation Laws

Our goal in this section is to describe how the LES viscosity model proposed above can be
used to solve nonlinear scalar conservations laws. We change the terminology by renaming
the LES viscosity an entropy viscosity.

4.1 Scalar Conservation Equations

We consider the equation

∂tu + ∇·f(u) = 0 (12)

subject to the initial condition u|t=0 = u0 and the appropriate boundary conditions. In some
cases we will solve the Cauchy problem (restricted to a bounded domain) and in other cases
we will specify the corresponding boundary conditions. It is well known that the Cauchy or
the initial boundary value problem has a unique entropy solution (see [2, 17]) which satisfies
an additional set of differential inequalities

∂tE(u) + ∇·F(u) ≤ 0 (13)

for any pair of functions E(u) and F(u) such that E is convex and F(u) = ∫
E′(u)f′(u)du.

The function E is called entropy and F is the associated entropy flux. The most well known
pairs are the Kružkov’s pairs generated by Ec(u) = |u−c|, where c is any arbitrary constant.
It is known that E(u) = 1

2 u2 is enough to select the unique entropy solution when f is convex.

4.2 The Algorithm

Assume that we have at hand a finite element mesh Th and that the local approximation is
done using polynomials of degree at most k. We first assume that the time is continuous.
The entropy viscosity method proceeds as follows:

• Compute the entropy residual, Dh(u) := ∂tE(u) + ∇·F(u).
• For each cell K ∈ Th compute the local mesh size: hK = diam(K)/k.
• Let E(uh) be the average entropy over the domain. On each cell, construct a viscosity

associated with the entropy residual:

νE := cE h2
K‖Dh‖L∞(K)/‖E(uh) − E(uh)‖L∞(Ω).

• On each cell, compute an upper bound of the viscosity based on the maximum local wave
speed: βK = ‖|f′(u)|‖∞,K , where | · | is the Euclidean norm:

νmax := cmaxhKβK.
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• Define the entropy viscosity on each mesh cell K :

νh := min(νmax, νE). (14)

If required, one may smooth the thus obtained entropy viscosity. This is especially useful
when high order approximations are concerned, i.e. if k > 2 (see the companion paper
[11]).

• Solution method: Galerkin + entropy viscosity:
∫

Ω

(∂tuh + ∇·f(uh)vh dx +
∑

K

∫

K

νh∇uh · ∇vh dx = 0, ∀vh.

The time marching can be done with an explicit Runge-Kutta method (RK3 or RK4). De-
noting un

h, un−1
h and un−2

h , the approximations of u at time tn, tn−1 and tn−2, one simple
possibility to evaluate the entropy residual consists of setting

Dh = 1

2Δt
(3E(un

h) − 4E(un−1
h ) + E(un−2

h )) + ∇·F(un
h), (15)

which is formally second-order accurate in time.

4.3 Inviscid Burgers Equation

To numerically illustrate the above algorithm we first consider the inviscid Burgers equation
in two space dimensions with f(u) = 1

2 (u2, u2) and E(u) = 1
2u2. The initial data is piecewise

constant in the four quadrants of R
2 + ( 1

2 , 1
2 ); u0 = −1, −0.2, 0.5, 0.8 in the top right, top

left, bottom left, and bottom right quadrant, respectively. The field u0 is shown in the left
panel of Fig. 1. The solution computed with P1 elements (3 104

P1 nodes) is shown in the
right panel of Fig. 1.

We perform convergence tests in the square (0,1)2. The tests are done with P1 and P2

Lagrange finite elements on unstructured Delaunay meshes. The solution is computed at
t = 0.5 and the error is measured in the L1- and L2-norm. We report in Table 1 the re-
sults obtained with P1 and P2 Lagrange finite elements on various meshes. The quantity h

Fig. 1 Burgers. Initial data (left); P1 approximation at t = 0.5, 3 104 nodes (right)
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Table 1 Convergence tests for the inviscid Burgers equation. P1 approximation (left), P2 approximation
(right)

h P1 P2

L2 Rate L1 Rate L2 Rate L1 Rate

5.00E–2 2.3651E–1 – 9.3661E–2 – 1.8068E–1 – 5.2531E–2 –

2.50E–2 1.7653E–1 0.422 4.9934E–2 0.907 1.2956E–1 0.480 2.7212E–2 0.949

1.25E–2 1.2788E–1 0.465 2.5990E–2 0.942 9.5508E–2 0.440 1.4588E–2 0.899

6.25E–3 9.3631E–2 0.449 1.3583E–2 0.936 6.8806E–2 0.473 7.6435E–3 0.932

3.12E–3 6.7498E–2 0.472 6.9797E–3 0.961 – – – –

Table 2 Convergence tests for
Burgers. Fourier approximation N h = 1/N L1 Rate L2 Rate

36 2.78E–2 1.92E–2 – 1.02E–1 –

72 1.39E–2 9.99E–3 0.94 7.28E–2 0.49

144 6.94E–3 5.34E–3 0.89 5.41E–2 0.43

288 3.47E–3 2.79E–3 0.95 3.80E–2 0.51

refers to the typical mesh-size for each mesh. The time stepping is done using the SSP RK3
method, see [6]. The entropy residual is computed with the explicit BDF2 formula (15)
based on the three previous time levels. The coefficients cmax and c in (14) are cmax = 0.4/k

and cE = 1. As expected, the convergence rates in the L1- and L2-norms are close to the
theoretical O(h) and O(h

1
2 ) orders, respectively. The O(h) order is optimal since the total

variation with respect to space of the solution is bounded for all time but the gradient is
not integrable, i.e., u(·, t) ∈ BV but u(·, t) �∈ W 1,1. A similar remark holds for the O(h

1
2 )

convergence order in the L2-norm.
We now redo the above convergence tests with Fourier expansions, see [11] for details

on the algorithm. The results are reported in Table 2. The computation is done by extending
the computational domain by symmetry about the axes {x = 1} and {y = 1} and the initial
data is extended so as to make the extension periodic. The time marching is done by using
the standard Runge-Kutta scheme (RK4). The nonlinearity is de-aliased using the 3

2 -padding
rule. The entropy viscosity is made explicit and computed by using the BDF2 formula (15)
based on the three previous time levels. The entropy viscosity is computed in the physical
space at the Fourier nodes. The coefficients cmax and c in (14) are cmax = 0.5 and cE = 8.
Here again we observe quasi-optimal convergence rates both in L1- and L2-norms.

4.4 KPP Rotating Wave

We now illustrate the capability of the entropy viscosity method to deal with non-convex
fluxes by solving the two-dimensional scalar conservation law

∂tu + ∇ · f(u) = 0, f(u) = (sinu, cosu) (16)

subject to the following initial condition

u(x, y,0) = u0(x, y) =
{

3.5π, x2 + y2 < 1;
0.25π, otherwise.

(17)
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Fig. 2 KPP rotating wave. Left: Adaptive WENO5/Minmod 1 from [18] on Cartesian grid �x = �y = 1
100 ;

Center: entropy-viscosity P2 approximation, h = 0.0125; Right: Ratio of the entropy viscosity to its maxi-
mum value

This test proposed in [18] is a challenging exercise to many high-order numerical schemes
because the exact solution has a two-dimensional composite wave structure. For example
the central-upwind schemes based on WENO5, Minmod 2 and SuperBee reconstructions
fail this test case, see [18] for details.

The solution is computed at t = 1.0 and is shown in Fig. 2. The left panel shows the
reference solution from [18] on a Cartesian grid 400 × 400, i.e., h = 0.01. This solution is
computed using an adaptive WENO5/Minmod 1 reconstruction; the Minmod 1 reconstruc-
tion is used only in the transition zones where the flux convexity changes and WENO5 is
used everywhere else. The center panel shows the P2 approximation using the entropy vis-
cosity on a quasi-uniform mesh of mesh size h = 0.0125. The composite wave is captured
well and the accuracy of the P2 approximation is similar to that of the reference solution.
The right panel shows the ratio of the entropy viscosity to the first-order upwind viscosity,
which is very small outside the shock and saturates to 1 in the shock, as expected. This panel
illustrates quite well the auto-adaption property of the entropy viscosity.

5 Numerical Illustration for the Euler Equations

We extend in this section the entropy viscosity method to the compressible gas dynamics for
perfect gases.

5.1 The Euler Equations

We consider the Euler equations for a perfect gas. These equations state the conservation
of mass, momentum and energy (see, e.g., [20] for an overview) and can be put into the
following conservative form:

∂tc + ∇·(f(c)) = 0, c =
(

ρ

m
E

)

, f(c) =
( m

m ⊗ m
ρ

+ pI
m
ρ
(E + p)

)

, (18)

where the independent variables are the density ρ, the momentum vector field m and the
total energy E. The velocity vector field u is defined by u := m/ρ. The symbol I denotes
the identity matrix in R

d . The pressure is expressed via the equation of state of ideal gases:

p = ρT , with T = (γ − 1)

(
E

ρ
− 1

2
u2

)

, (19)
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where γ is the adiabatic constant and T is the temperature. We also introduce the entropy
functional

S(p,ρ) = ρ

γ − 1
log(p/ργ ). (20)

This quantity satisfies the following inequality

∂tS + ∇·(uS) ≥ 0, (21)

with equality if all the fields are smooth.

5.2 Description of the Algorithm for Finite Elements

The main idea of the algorithm consists of introducing an artificial viscosity and an artificial
thermal diffusivity in the spirit of the compressible Navier-Stokes equations, i.e., we aug-
ment the Euler system with additional viscous fluxes. This idea has been investigated in [10]
in one space dimension using Fourier expansions for space approximation. The algorithm
that we presently use is slightly simplified.

This algorithm proceeds similarly to what is described in Sect. 4.2 for scalar conservation
laws. At each time step we do the following: (i) we evaluate the residual of the entropy
equation, (ii) we compute the associated artificial viscosities, (iii) then we update the mass,
momentum, and total energy, the fluxes being augmented with the following viscous flux

fvisc(ch) =
( 0

−μh∇uh

−μh∇( 1
2 u2

h) − κh∇Th

)

. (22)

Let us now be more specific. Let Δt be the time step and let cn
h, cn−1

h , etc. be the ap-
proximations of the solution at times tn, tn−1, etc. We define the physical entropy Sn

h =
ρn
h

γ−1 log(pn
h/(ρ

n
h)γ ). Then the task consists of evaluating the residual for the entropy conser-

vation equation. One possible option consists of setting,

Dh = 1
2Δt

(3Sn
h − 4Sn−1

h + Sn−2
h ) + ∇·(un

hS
n
h), (23)

which is formally second-order accurate. For each mesh cell K in Th we then compute the
entropy viscosity associated with the residual:

μS = cEh2
K‖ρh‖L∞(K)‖Dh‖L∞(K). (24)

Note that μS has the right dimension and that no normalization is needed, since the log
coming in the definition of the physical entropy is dimensionless.

Since ((un
h)

2 + γ T n
h )

1
2 is an upper bound on all the local wave speeds, we estimate the

first-order upwind viscosity as follows:

μmax = cmaxhK‖ρn
h((un

h)
2 + γ T n

h )
1
2 ‖L∞(K). (25)

Taking cmax = 1
2 would roughly amount to limit the viscosity with the first-order upwind

viscosity on uniform Cartesian grids.
Finally, we set:

μh = min(μmax,μS), (26)

κh = P
μh

γ − 1
. (27)
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In the previous expressions the tunable coefficients cmax and cE depend on the time-
marching technique and on the space approximation method, but are independent of the
time step Δt and the mesh-size h. The coefficient P is an artificial Prandtl number which
can be chosen to be of order 1.

This approach gives satisfactory results, but we sometimes observe small spurious oscil-
lations of the density field. One way to improve the situation is to add an artificial diffusion
term on the density. Improvements can indeed be obtained by augmenting the continuity
equation with a dissipation term, which viscosity, say νh, is again linked to μh as follows
νh = Pρμh/‖ρh‖L∞(K). In practice using Pρ ∈ [0.05,0.1] is sufficient.

5.3 Mach 3 Step

We illustrate the algorithm described above by considering the Mach 3 flow in a wind tun-
nel with a forward facing step. This benchmark test has been proposed by Emery [5]. The
geometry of the domain is shown in Fig. 3. The initial conditions are specified in terms of
the primitive variables

(ρ,u,p)T (x, y,0) = (1.4, (3.0,0.0),1.0)T . (28)

These initial conditions are also prescribed as inflow boundary conditions along the {x=0}
axis. The outflow boundary at {x=3} is free. The slip condition u·n = 0 is specified on
the solid wall of the tunnel where n is the unit outward normal on ∂Ω . This problem was
popularized by Woodward and Colella’s extensive study [24] of the performance of various
numerical methods in the presence of strong shocks.

We show in Fig. 3 the density field at t = 4 on two different meshes with P1 Lagrange
finite elements. The results shown in the left panels have been obtained on a mesh com-
posed of 4813 P1 nodes and the results shown in the right panels have been obtained on a
mesh composed of 893468 P1 nodes. These computations have been done with cmax = 0.25,
cE = 1, P = 0.1 and Pρ = 0.1. The tests have been run with CFL = 0.5. Our solutions agree,
at least in the eye-ball norm, with other reference solutions that can be found in the litera-
ture. The contact discontinuity emerging from the three-shock interaction point is present in
both simulations and is captured quite accurately. A Kelvin-Helmholtz instability develops
along the contact discontinuity on the refined mesh.

As reported in [24] we have observed that the way the velocity boundary condition is
implemented in the vicinity of the corner of the step somewhat influences the quality of the
solution. We do not enforce any boundary condition at the node at the corner of the step in
the computations shown in Fig. 3; enforcing the slip condition at this point implies u = 0,
which is too strong a constraint.

Fig. 3 Mach 3 step, density, t = 4, density, P1 approximation. Left: h = 0.25, 4813 P1 nodes. Right:
h = 0.003, 893468 P1 nodes
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Fig. 4 Double Mach reflection at t = 0.2, M = 10, density field, 453969 P1 nodes. Left: Global view. Right:
Close up view in the region of three-shock interaction point. Top: cE = 0.25. Bottom: cE = 1

5.4 Double Mach Reflection

We now solve the so-called double Mach reflection problem at Mach 10. This problem,
popularized by Woodward and Colella (see [24] for complete description), involves a Mach
10 shock in air (γ = 1.4) that impinges a wall with a 60 degree angle. The undisturbed
air ahead of the shock has density 1.4 and pressure 1. The computational domain is Ω =
(0,4)×(0,1). The reflecting wall lies at the bottom of the domain and starts at x = 1

6 , i.e.,
free slip boundary condition is enforced on {x ≥ 1

6 , y = 0}. The shock makes a 60 degree
angle with the x-axis. Outflow boundary conditions are enforced at {0 ≤ x < 1

6 , y = 0} and
{x = 4}. The values along the top boundary {y = 1}) are set to describe the motion of the
initial Mach 10 shock. The flow is computed at time t = 0.2

The control parameters of the entropy viscosity are cmax = 0.25, cE = 0.25, P = 0.075
and Pρ = 0. The tests have been run with CFL = 0.5

We show in Fig. 4 the solution computed with P1 Lagrange polynomials on a mesh
composed of 453969 nodes. The left panel displays the density field in the region
0 ≤ x ≤ 3. The right panel shows a close up view of the density in the region of the three-
shock interaction point. To evaluate the influence of the control parameter cE we show in the
bottom panel the density field computed with cE = 1. The overall features are unchanged
but using cE = 1 slightly smeared the roll-up of the front jet and removed small oscillations.

5.5 A Riemann Problem with Fourier Approximation

We finish this series of tests by showing how the method performs with the Fourier ap-
proximation. The algorithm is the same as that described in Sect. 5.2, without using any
stabilization term for the density, Pρ = 0, see [11].

The technique is validated by solving the benchmark problem number 12 from [22]. It
is a two-dimensional Riemann problem set in R

2. In the restricted computational domain
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Fig. 5 Riemann problem # 12, t = 0.2, 400×400 grid-points. Left: Density, 0.528 ≤ ρh ≤ 1.707. Right:
Viscosity, 0 ≤ μh < 3.410−3

(0,1)2 the initial set of data is defined as follows:

p = 1, ρ = 4/5, u = (0,0) 0 < x < 1/2, 0 < y < 1/2,

p = 1, ρ = 1, u = (3/
√

17,0) 0 < x < 1/2, 1/2 < y < 1,

p = 1, ρ = 1, u = (0.,3/
√

17), 1/2 < x < 1, 0 < y < 1/2,

p = 2/5, ρ = 17/32, u = (0,0), 1/2 < x < 1, 0.5 < y < 1.

(29)

Proceeding as in Sect. 4.3, the problem is first made periodic by extending the compu-
tational domain to (0,2)2, and the initial data are extended by symmetry about the axes
{x = 1} and {y = 1}. The solution is computed at time t = 0.2.

The time marching algorithm is the same as in Sect. 4.3. The nonlinear terms are de-
aliased. The control parameters for the entropy viscosity are cmax = 1

2 , cE = 20, and P = 1.
We show in Fig. 5 results obtained with 400 Fourier modes in each direction, i.e., with

400 grid-points in (0,1)2. They compare well with those obtained with other more sophisti-
cated shock capturing methods, see [22].

6 Conclusions

We have recalled basic mathematical properties of the three-dimensional incompressible
Navier-Stokes equations and showed how they might relate to LES. Some fundamental
questions regarding Fourier-based DNS have been raised. The notion of suitable solution
lead us to introduce the new concept of entropy viscosity. The key idea consists of adding a
numerical viscosity proportional to the default to equilibrium in the local energy equation.
To evaluate this idea we have applied it to nonlinear conservation laws and showed that it is
very efficient and very simple to implement.

Although the entropy/LES viscosity model (11) is mathematically justified and has been
shown to behave well on nonlinear conservation laws including the compressible Euler equa-
tion, it cannot yet qualify as a validated LES model. To attain this status, it must be shown
to perform well on simple turbulent flow settings and must be compared with other LES
models. This program is currently being undertaken and the results will be reported in due
time.
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