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In this paper we introduce an invariant domain preserving arbitrary Lagrangian Eulerian 
method for solving hyperbolic systems. The time stepping is explicit and the approximation 
in space is done with continuous finite elements. The method is second-order in space and 
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© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The arbitrary Lagrangian Eulerian technique (ALE) was proposed in the early 1960’s to solve the compressible Euler equa-
tions using finite differences; see for instance Noh [38]. This methodology has been adopted in the finite element literature 
and popularized by Donea and co-authors to solve problems with moving boundaries. This technique is particularly useful 
to simulate fluid-structure interactions. It has been shown to be very effective in the low-Mach and incompressible regimes. 
The reader is referred to Donea et al. [12] for a brief history of the method and a thorough review. However, the interest 
in this method to solve compressible fluid flow problems with finite elements has faded over the years. It is only recently 
that the interest for finite elements has been renewed in the scientific computing community by the landmark paper of 
Dobrev et al. [11]. In this groundbreaking work, the authors have shown that high-order finite elements have very good 
approximation properties to represent the mesh motion. In particular, high-order finite elements can sustain very large de-
formations without entangling. In parallel to [11], various other paths have been explored in the finite element literature 
to do Lagrangian hydrodynamics. Since it is out of the scope of this paper to cite all the work that has been done on this 
topic, we point the reader to a few directions that have come to our attention: for instance we refer to Barlow [3], where 
the finite element formalism has been combined with staggered grid hydrodynamics methods, to Vilar et al. [46], where a 
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Discontinuous Galerkin scheme has been developed, and to Abgrall and Tokareva [1], where the residual distribution tech-
nique has been adapted to Lagrangian hydrodynamics. We also refer to Scovazzi [39] where linear stabilization techniques 
are invoked, but in view of Ern and Guermond [15], we conjecture (and it is our experience) that this type of stabilization 
may not be robust with respect to the various tuneable parameters involved unless it is turned off in regions where entropy 
is produced.

The objective of the present paper is to propose a second-order continuous finite element technique for solving hyper-
bolic systems in the ALE framework and to give precise mathematical statements regarding the properties of this method. 
This is done by revisiting the first-order method from Guermond et al. [24] and by adapting to the ALE setting the recently 
proposed convex limiting technique from Guermond et al. [25,27]. One novelty with respect to [24] is that the mesh motion 
is described with high-order polynomials, whereas to guarantee that the method is invariant domain preserving, the ap-
proximation of the conserved variables is done with piecewise linear finite elements. We confirm the claim made in Dobrev 
et al. [11] that using high-order elements to represent the mesh motion allows for very large deformations of the mesh 
without entangling. But, contrary to [11] and most of the above references (including our own work Guermond et al. [23]), 
where stabilization is heuristically done by adding some ad hoc artificial viscosity, the invariant domain properties of our 
low-order method are mathematically established (see Theorem 3.6). Another novelty is that the convex limiting technique 
from [25,27] is adapted to the ALE setting to produce an algorithm that is invariant domain preserving and formally second-
order accurate in space. One key result of the paper is Theorem 4.6 where it is proved that once convex limiting is done, 
the method is guaranteed to be invariant domain preserving. To the best of our knowledge, this paper is the first one in the 
ALE literature where limiting is done on the specific entropy, and the (relaxed) minimum principle is guaranteed. Additional 
properties of the proposed approximation technique are as follows: it is formally second-order accurate in space (provided 
the user-defined ALE velocity is reasonable), it is conservative (Lemma 3.3), it satisfies the so-called discrete geometric con-
servation law (Lemma 3.4), and it is Galilean invariant (Lemma 3.8). The method is applicable to any hyperbolic system in 
any space dimension. The second-order accuracy is numerically shown to hold in the maximum norm for smooth solutions 
of nonlinear scalar conservation equations and with smooth solutions of the compressible Euler equations. The method is 
illustrated by testing it on benchmark problems that are standard in the ALE literature.

The paper is organized as follows. In §2, we introduce the problem and recall elementary (but important) properties of 
the 1D Riemann problem. We also introduce the finite element setting for the mesh motion and the finite element setting 
for the approximation of the hyperbolic system. The ALE algorithm is fully described in §3; more precisely, we describe in 
this section the mesh motion, the low-order invariant domain preserving method, and the high-order (possibly invariant 
domain violating) method. The convex limiting, whose purpose is to make the high-order method invariant domain pre-
serving, is introduced in §4. Since the ALE velocity field is user-defined, it is not the purpose of the present paper to discuss 
its construction at length, but to give some perspective to the reader, we give in §5 a brief description of the technique we 
are using in our numerical examples. The proposed method is illustrated numerically in §6 on various benchmark problems.

2. Preliminaries

In this section we introduce the problem and define the notation for the finite element approximation of the mesh 
motion and of the hyperbolic system at hand. One originality of the present paper is that the approximation settings for the 
solution to the hyperbolic system and for the ALE motion are distinct.

2.1. The model problem

The objective of the present paper is to approximate the following hyperbolic system written in conservative form:{
∂t u + ∇·f(u) = 0, for (x, t) ∈Rd×R+
u(x,0) = u0(x), for x ∈ Rd.

(2.1)

Here, the dependent variable u takes values in Rm and is considered to be a column vector u = (u1, . . . , um)T . The space 
dimension d is arbitrary. The flux f(u) is a matrix with entries fik(u), 1 ≤ i ≤ m, 1 ≤ k ≤ d. We denote fi(u) the vector in Rd

with entries fik(u), 1 ≤ k ≤ d. The flux is assumed to be Lipschitz. For any vector n = (n1 . . . , nd)
T in Rd , we denote f(u)n

the column vector with entries 
∑

1≤k≤d fik(u)nk , where i ∈ {1 :m}. Here we recall that {1 :m} := {1, 2, . . . , m}. We denote 
∇·f(u) the column vector with entries (∇·f(u(x))i := ∑

1≤k≤d ∂xkfik(u(x)). Finally, we also recall that for any entropy η, 
the associated entropy flux F is defined by ∇ F (u) = (∇η)T∇f; that is to say ∂u j F k(u) = ∑

1≤i≤m ∂ui η(u)∂u j fik(u) for all 
j ∈ {1 :m} and all k ∈ {1 :d}.

2.2. The Riemann problem

Instead of trying to give a meaning to solutions to the above system, we assume that there exists an admissible set 
A ⊂Rm such that the following one-dimensional Riemann problem is (uniquely) solvable

∂t v + ∂x(f(v)n) = 0, (x, t) ∈R×R+, v(x,0) =
{

v L if x < 0
v if x > 0,

(2.2)

R
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for any unit vector n ∈Rd and any Riemann pair (v L, v R) in A2. We assume also that there exist convex subsets of A that 
are invariant for (2.1). We say that a convex subset B ⊂ A is invariant for (2.1) if for any Riemann pair in B, the Riemann 
solution v(x, t) is in B for all (x, t) ∈R×R+ . The existence of such sets has been established by Chueh et al. [10] on a very 
large class of hyperbolic systems.

Given any Riemann pair (v L, v R) in A2 and any unit vector n in Rd , we denote by λL(fn, v L, v R) the fastest left 
wave speed and λR(fn, v L, v R) the fastest right wave speed in the Riemann problem (2.2). These two wave speeds, 
henceforth called extreme left and right wave speeds, are such that v(x, t) = v L if x

t ≤ λL(fn, v L, v R) and v(x, t) = v R if 
λR(fn, v L, v R) ≤ x

t . Computing λL(fn, v L, v R) and λR(fn, v L, v R) is often difficult and time consuming since it requires 
solving nonlinear problems. But, since in what follows it is sufficient to have bounds on these quantities, we denote 
λmin

L (fn, v L, v R) and λmax
L (fn, v L, v R) any quantities with the properties that

λmin
L (fn, v L, v R) ≤ λL(fn, v L, v R), λR(fn, v L, v R) ≤ λmax

R (fn, v L, v R). (2.3)

It is shown in Guermond and Popov [18], for the compressible Euler equation with co-volume equation of state, and in 
Guermond and Popov [21], for the shallow water equations, that one can find accurate bounds on the left and right wave 
speed that do not require solving iteratively nonlinear problems. We assume from now on that we have at hand a lower 
estimate of the left wave speed, λmin

L (fn, v L, v R), and an upper estimate on the right wave speed, λmax
R (fn, v L, v R).

Since we are going to solve (2.2) with an ALE technique, we will have to estimate the extreme left and right wave 
speeds in the Riemann problem with the flux f replaced by f(v) − v⊗W with W ∈Rd and a⊗b := abT for any a ∈Rm and 
b ∈ Rd , where a and b are seen as column vectors. This is the purpose of following statement whose proof is reported in 
the Appendix A.

Lemma 2.1 (Translation). Let W ∈Rd, and let g(u) := f(u) − u ⊗ W. Then

1. (η(u), F (u)) is an entropy pair for the flux f if and only if (η(u), F (u) − η(u)W) is an entropy pair for the flux g.
2. w(x, t) is the entropy solution to the Riemann problem (2.2) iff w(x + (W ·n)t, t) is the entropy solution to the Riemann problem

∂t v + ∂x(g(v)n) = 0, (x, t) ∈R×R+, v(x,0) =
{

v L if x < 0
v R if x > 0.

(2.4)

3. The two problems (2.2) and (2.4) have the same admissible sets and the same invariant sets.
4. Let λL(fn, v L, v R) and λR(fn, v L, v R) be the extreme left and right wave speeds in the Riemann problem (2.2), then 

λL(fn, v L, v R) − W·n and λR(fn, v L, v R) − W·n are the extreme left and right wave speeds in Riemann problem (2.4).

2.3. Geometric finite elements and mesh

We present in this section the setting for the approximation of the ALE motion. The finite element setting for the 
approximation of the hyperbolic system (2.1) is presented in §2.4. We are going to use the same notation as in Guermond 
et al. [24]. The reader who is familiar with finite elements and ALE motion is invited to move to §3.

Let (T 0
h )h>0 be a shape-regular sequence of matching meshes at the initial time. The symbol 0 in T 0

h refers to the initial 
configuration of the meshes. The meshes will deform over time by means of a user-defined velocity field. To keep track 
of the mesh motion we use the symbol n to mean that T n

h is the mesh at time tn . The mesh cells in T n
h are assumed 

to be generated from a finite number of reference elements denoted K̂1, . . . , ̂K� . For example, the initial mesh could be 
composed of a combination of triangles and parallelograms in two space dimensions (� = 2 in this case); or it could be 
composed of a combination of tetrahedra, parallelepipeds, and triangular prisms in three space dimensions (� = 3 in this 
case). We now introduce a set of reference Lagrange finite elements {(K̂r , ̂P

geo
r , ̂�geo

r )}1≤r≤� . Here we use the notation (now 
standard) introduced by Ciarlet: K̂r is a reference element, P̂ geo

r is a reference polynomial space, and �̂geo
r is the set of the 

linear forms that define the degrees of freedom. The index r ∈ {1 :� } will be omitted in the rest of the paper to simplify 
the notation. We denote by {̂ai}i∈N geo and {θ̂geo

i }i∈N geo the reference Lagrange nodes of K̂ and the associated reference 
Lagrange shape functions, with card(N geo) := dim P̂ geo. The purpose of the geometric reference element (K̂ , ̂P geo, ̂�geo) is 
to construct the geometric mapping T n

K : K̂ −→ K . Let {an
i }i∈Vgeo be the collection of all the Lagrange nodes in the mesh T n

h , 
which we assume are organized in cells by means of the geometric connectivity array jgeo :N geo×T n

h −→ Vgeo (assumed to 
be independent of the time index n). More precisely, the connectivity array is defined such that, for any mesh cell K ∈ T n

h , 
{an

jgeo(i,K )
}i∈N geo is the set of the Lagrange nodes describing K . The geometric mapping T n

K is then defined by

T n
K (̂x) :=

∑
i∈N geo

an
jgeo(i,K )θ̂

geo
i (̂x); (2.5)

that is, the geometric mapping is fully described once the location of the geometric Lagrange nodes is known at time tn . 
The motion of the geometric Lagrange nodes is described in §3.2. In the two-dimensional numerical simulations reported 
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at the end of the paper we are going to use triangles, and P̂ geo will be one of the following polynomial spaces P1,2, P2,2, 
P3,2, P4,2, where Pk,d is the vector space composed of the d-variate polynomials of degree at most k.

Given a mesh T n
h , we denote by Dn the computational domain generated by T n

h , and we define a scalar-valued space 
based on the geometric Lagrange finite elements (K̂ , ̂P geo, ̂�geo): P geo(T n

h ) := {v ∈ C0(Dn; R) | v |K ◦T n
K ∈ P̂ geo, ∀K ∈ T n

h }. 
We denote by {ϕgeo,n

i }i∈Vgeo the global shape functions in P geo(T n
h ). Recall that {ϕgeo,n

i }i∈Vgeo is a basis of P geo(T n
h ) and 

ϕ
geo,n
jgeo(i,K )

(x) = θ̂
geo
i ((T n

K )−1(x)), for all i ∈ N geo, all K ∈ T n
h and all x ∈ K . We finally introduce the following vector-valued 

space which we are going to use to represent the ALE mapping:

P geo
d (T n

h ) := [P geo(T n
h )]d. (2.6)

For further reference we also introduce a subset of the Lagrange nodes {an
i }i∈Vgeo , which we call vertices of the mesh 

T n
h and denote {zn

i }i∈Zgeo . The vertices are by definition the images by the geometric transformations of the vertices of the 
reference element K̂ (if K̂ is a triangle, K̂ has 3 vertices, if K̂ is a cube, K̂ has 8 vertices, etc.).

2.4. Approximating finite elements

The construction of the approximate solution to (2.1) is based on a set of reference finite elements {(K̂r , ̂Pr, ̂�r)}1≤r≤� . 
Again, the index r ∈ {1 :� } is omitted in the rest of the paper to simplify the notation. It is important to understand at 
this point that P̂ geo and P̂ are different objects; (K̂ , ̂P geo, ̂�geo) is a Lagrange element but (K̂ , ̂P , ̂�) may not be; it may 
for instance be a Bernstein-Bezier finite element, see e.g., Lai and Schumaker [35, Chap. 2] or some other modal finite 
element. In the two-dimensional numerical simulations reported at the end of the paper we always take P̂ = P1,2 but we 
use P̂ geo =Pk,2 with k ∈ {1, 2, 3, 4}. The shape functions on the reference element are denoted {θ̂i}i∈N . We assume that the 
basis {θ̂i}i∈N has the partition of unity property: 

∑
i∈N θ̂i (̂x) = 1, for all ̂x ∈ K̂ . We also assume that 

∫
K̂ θ̂i (̂x) d̂x > 0 for all 

i ∈N , which is known to hold true for the shape functions in P1,d , Q1,d and for the Bernstein spaces of any degree.
Given T n

h , we define P (T n
h ) := {v ∈ C0(Dn; R) | v |K ◦T n

K ∈ P̂ , ∀K ∈ T n
h }, and we introduce the vector-valued spaces

P m(T n
h ) := [P (T n

h )]m, and P d(T n
h ) := [P (T n

h )]d. (2.7)

The solution of (2.1) will be approximated in P m(T n
h ) and the ALE velocity field will be approximated in P geo

d (T n
h ) and in 

P d(T n
h ).

The global shape functions in P (T n
h ) are denoted by {ϕn

i }i∈V . Recall that these functions form a basis of P (T n
h ). We 

denote by j : N×T n
h −→ V the connectivity array associated with the global shape functions {ϕn

i }i∈V . This array, which 
we assume to be independent of n, is defined such that ϕn

j(i,K )
(x) = θ̂i((T n

K )−1(x)), for all i ∈ N and for all K ∈ T n
h . This 

definition implies the partition of unity property 
∑

i∈V ϕn
i (x) = 1, for all x ∈ Dn .

In the rest of the paper we are going to make frequent use of the following time-dependent vector-valued coefficients:

cn
i j :=

∫
Dn

ϕn
i (x)∇ϕn

j (x)dx, nn
i j := cn

i j

‖cn
i j‖	2

. (2.8)

Notice that the definition (2.8) together with the partition of unity property implies that 
∑

j∈I(i) cn
i j = 0. We are going to 

use repeatedly this identity.
For any i ∈ V we denote by I(i) the collection of the indices of the shape functions whose support has a nontrivial 

intersection with the shape function ϕi ; that is, we set I(i) := { j ∈ V | |supp(ϕn
i ϕ

n
j )| �= 0} where for any measurable set 

E ⊂ Dn , |E| denotes the measure of E . Henceforth we call connectivity graph of P (T n
h ), the graph (V, E) where the vertices 

are all the members of V , and the edges are pairs (i, j) in V2 such that (i, j) is in E iff j ∈ I(i) and i ∈ I( j). Notice that, 
actually, j ∈ I(i) iff i ∈ I( j). The connectivity graph does not depend on n, since we assumed that the connectivity array 
j :N×T n

h −→ V does not depend on n.

3. The Arbitrary Lagrangian Eulerian algorithm

We describe in this section two ALE approximations of (2.1); one is invariant domain preserving and entropy satisfying, 
the other one is at least second-order accurate in space but may violate the invariant domain property. We use continuous 
finite elements and explicit time stepping. We are going to use two different discrete settings: one for the mesh motion and 
one for the approximation of the hyperbolic system (2.1). The reader who is familiar with finite elements and ALE motion 
is invited to go to §3.2.

3.1. Preliminaries

Let T 0
h be the mesh at the initial time t = 0. Let T n

h be the mesh at time tn . Let τ be the time step and let tn+1 := tn +τ . 
The time step τ is not fixed and may vary at each time level tn , but to simplify the already heavy notation, we write τ
instead of τn . We now describe the tools that are used to construct the mesh T n+1.
h
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The key assumption we make in the rest of the paper is that the mesh motion at the time level tn , say w̃n , is given by 
the user as a discrete field represented in P geo

d (T n
h ); that is,

w̃n =
∑

i∈Vgeo

W̃
n
i ϕ

geo,n
i ∈ P geo

d (T n
h ). (3.1)

Let us introduce ai(t) = an
i + (t − tn)w̃n(an

i ) for t ∈ [tn, tn+1]. We then define the ALE mapping �t : Dn →Rd by setting 
�t(ξ ) = ∑

i∈Vgeo ai(t)ϕ
geo,n
i (ξ ), for all t ∈ [tn, tn+1] and all ξ ∈ Dn . Recalling that ϕgeo,n

jgeo(i,K )
(ξ ) := θ̂i((T n

K )−1(ξ )), this definition 
is equivalent to �t|K (ξ) = ∑

i∈N geo ajgeo(i,K )(t)ϕ
geo,n
jgeo(i,K )

(ξ), for all ξ ∈ K and all K ∈ T n
h . We denote D(t) := �t(Dn). We 

assume here that either w̃n is a reasonably smooth field, or τ is small enough so that the mapping �t is invertible for all 
t ∈ [tn, tn+1]. We use �t to define the new mesh T n+1

h by setting Dn+1 := �tn+1(Dn). We will be more precise in the next 
section.

Let vA : Dn×[tn, tn+1] −→ Rd be defined by setting vA(x, t) := (∂t�)(�−1
t (x), t), i.e., vA(�t(ξ ), t) := (∂t�)(ξ , t). Notice 

that for the choice we made above for the mesh motion, we have vA(�t(ξ), t) = w̃n(x) for all x ∈ Dn , as shown in [24, 
Lem. 4.3]. We are going to use the following classical result in the next section.

Lemma 3.1 (Liouville’s formula). Let J(ξ , t) = ∇�t(ξ) be the Jacobian matrix of �, then ∂t det(J(ξ , t)) = (∇·vA)(�(ξ , t), t)×
det(J(ξ , t)).

Let ϕn
i be one of the global shape functions in Pm(T n

h ). Let ϕi(x, t) be defined for all t ∈ [tn, tn+1] by setting ϕi(x, t) :=
ϕn

i (�−1
t (x)), then Liouville’s formula implies that ∂t

∫
D(t) ϕi(x, t) dx = ∫

D(t) ϕi(x, t)∇·w̃n(x) dx. This formula will be used in 
the next section to define the update of the mass transported by the shape functions. An important corollary of Liouville’s 
formula is the following result which defines the ALE formulation of (2.1).

Lemma 3.2. Let u be a weak solution to (2.1), then the following identity holds in the distribution sense (in time) over the interval 
[tn, tn+1] for every function ψ ∈ C0

0(Dn; R) (with the notation ϕ(x, t) := ψ(�−1
t (x))):

∂t

∫
Rd

u(x, t)ϕ(x, t)dx =
∫
Rd

∇·(u ⊗ vA − f(u))ϕ(x, t)dx. (3.2)

3.2. Generic algorithm

We introduce in this section a generic algorithm to approximate (2.1) using a graph viscosity and the ALE mesh motion 
introduced above. An invariant-domain preserving version of the algorithm is detailed in §3.3 and a high-order variant 
(possibly invariant-domain violating) of the algorithm is detailed in §3.4. We essentially follow the technique introduced 
in Guermond et al. [24, §4.3] with the important exception that now we allow the ALE velocity to be represented with a 
polynomial degree much higher than that used to approximate the solution to (2.1).

Let (m0
i )i∈V be the approximation of the mass of the shape functions at time t0 defined by m0

i := ∫
D0 ϕ0

i (x) dx. Note that 
m0

i > 0 since 
∫

K̂ θ̂n (̂x) d̂x > 0 for all i ∈N . Let uh0 := ∑
i∈V U0

i ϕ
0
i ∈ Pm(T 0

h ) be a reasonable approximation of the initial data 
u0. Let (mn

i )i∈V be the approximations of the mass of the shape functions at time tn , and un
h := ∑

i∈V Un
i ϕ

n
i ∈ P m(T n

h ) be 
the approximation of u at time tn . Let w̃n ∈ P geo

d (T n
h ) be the user-defined ALE velocity at time tn , see (3.1).

The new mesh T n+1
h is defined by setting Dn+1 := �tn+1(Dn). More precisely, since each cell in T n+1

h is entirely defined 
by the location of its Lagrange nodes, it suffices to compute �tn+1 (an

i ) for all i ∈ Vgeo to define T n+1
h completely. Denoting by 

an+1
i := �tn+1(an

i ) the new Lagrange nodes and using that �t(ξ) = ∑
i∈Vgeo ai(t)ϕ

geo,n
i (ξ), and ϕgeo,n

j (an
i ) = δi j , the Lagrange 

nodes of the new mesh are obtained by

an+1
i := an

i + τ w̃n(an
i ). (3.3)

We now estimate the mass of the shape function ϕn+1
i := ϕn

i ◦�−1
tn+1 . A natural definition could be to take 

∫
Dn+1 ϕn+1

i (x) dx

to be the mass at tn+1, but, as explained in Guermond et al. [24, §4.4.2], it is not possible with this definition to construct 
strong stability preserving (SSP) extensions of the algorithm that are both conservative and invariant domain preserving. To 
be able to use higher-order SSP time stepping techniques and be both conservative and invariant domain preserving, we 
define mn+1

i by approximating the identity ∂t
∫

D(t) ϕi(x, t) dx = ∫
D(t) ϕi(x, t)∇·w̃n(x) dx, (which is a consequence of Liouville’s 

theorem), with the forward Euler method. That is, we set mn+1
i := mn

i + τ
∫

Dn ϕn
i (x)∇·wn(x) dx, where wn := 
h(w̃n) ∈

P d(Th) is a reasonable approximation of w̃n in P d(Th). In all the numerical tests reported at the end of the paper 
h :
P geo

d (Th) → P d(Th) is the Lagrange interpolation operator (more details are given in §5.3 and (5.7)). We henceforth set 
wn = ∑

i∈V Wnϕn . Then using the definition of cn , we obtain
i i i j
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m
n+1
i := mn

i + τ
∑

j∈I(i)

Wn
j ·cn

i j . (3.4)

Recall that the initialization is done by setting m0
i := ∫

D0 ϕ0
i (x) dx. At this point we assume again that the user-defined ALE 

velocity field w̃n is reasonable or τ is small enough so that mn+1
i is positive. More specific implementation details regarding 

the construction of the ALE velocity are given in §5.
Finally we compute un+1

h by using the following explicit technique:

m
n+1
i Un+1

i −mn
i Un

i

τ
=

∑
j∈I(i)

(Un
j ⊗ Wn

j − f(Un
j ))cn

i j + dn
ij(U

n
j − Un

i ), (3.5)

where un+1
h := ∑

i∈V Un+1
i ϕn+1

i ∈ Pm(T n+1
h ).

We now try to give the reader some intuitive understanding for (3.4) and (3.5). As said above, (3.4) is a consequence 
of Liouville’s theorem; it is the space and time discrete version of the equality ∂t

∫
D(t) ϕi(x, t) dx = ∫

D(t) ϕi(x, t)∇·w̃n(x) dx. 
It is essential to use wn

h instead of w̃n
h in (3.4) so that the important identity (3.7) proved in Lemma 3.4 holds. In (3.5)

m
n+1
i Un+1

i −mn
i Un

i
τ is the forward Euler approximation of the left-hand side in (3.2). Notice that we have replaced the consistent 

mass matrix by the approximate lumped mass matrix to approximate the time derivative. The expression 
∑

j∈I(i)(U
n
j ⊗

Wn
j − f(Un

j ))cn
i j is just the Galerkin approximation of the right-hand side in (3.2) where u ⊗ vA − f(u) is approximated by ∑

j∈V (Un
j ⊗ Wn

j − f(Un
j ))ϕ

n
j . For any i ∈ V , the coefficient dn

ij is an artificial viscosity for the pair of degrees of freedom 
(i, j) ∈ E that will be clearly defined in §3.3 and §3.4. We call dn

ij graph viscosity since this coefficient only involves the 
connectivity graph (V, E) of P (T n

h ). We henceforth assume that dn
ij = 0 if j /∈ I(i) and

dn
ij ≥ 0, if i �= j, dn

ij = dn
ji, and dn

ii :=
∑

j∈I(i)\{i}
−dn

ji . (3.6)

Notice that dn
ii does not really need to be defined for (3.6) to make sense; this quantity is nevertheless introduced to shorten 

the definition of the CFL number.
Let us now address the question of conservation. The following result is proved in Lemma 5.1 in [24].

Lemma 3.3 (Conservation). Assume that either periodic boundary conditions are enforced or f(Un
i ) − Un

i ⊗ Wn
i = 0 for every i such 

that the support of ϕn
i touches ∂ Dn. Then the quantity 

∑
i∈{1 : I} mn

i Un
i is conserved, i.e., it is independent of n.

The following lemma establishes the equivalence between the conservative form of the update (3.5) with the (seemingly) 
non-conservative form (3.7). This result is important to prove that the low-order method, which is introduced in §3.3, is 
invariant domain preserving. As a byproduct, this result implies the so-called discrete geometric conservation law (DGCL). 
The GCL acronym has been coined in Thomas and Lombard [44] and has been repeatedly used in the ALE literature since 
then, (see e.g., Eq. (26) in Farhat et al. [16] or Eq. (7) in Guillard and Farhat [28]).

Lemma 3.4 (Non-conservative form & DGCL). The following assertions hold:

(i) The scheme (3.3)–(3.4)–(3.5) is equivalent to

m
n+1
i

Un+1
i − Un

i

τ
=

∑
j∈I(i)

((Un
j − Un

i )⊗Wn
j − f(Un

j ))cn
i j + dn

ij(Un
j − Un

i ). (3.7)

(ii) The scheme (3.3)–(3.4)–(3.5) satisfies the discrete geometric conservation law; that is, if Un
j = Un

i for all j ∈ I(i), then Un+1
i = Un

i .

Proof. (i) Multiply (3.4) by Un
i and subtract the result from (3.5); see also [24, Lem. 4.4] for further details. (ii) If Un

j = Un
i

for all j ∈ I(i), then (3.7) implies that m
n+1
i
τ (Un+1

i − Un
i ) =

∑
j∈I(i) −f(Un

j )cn
i j = −f(Un

i ) 
∑

j∈I(i) cn
i j = 0, where the identity ∑

j∈I(i) cn
i j = 0 is a consequence of the definition (2.8) together with the partition of unity property. Hence Un+1

i = Un
i . �

Remark 3.5 (Local conservation). The conservation statement in Lemma 3.3 may look inappropriate to the reader who is 
more familiar with the finite volume or/and discontinuous Galerkin literature since the notion of conservation mentioned 
there is global. Actually, the definition (2.8) together with the partition of unity property implies that 

∑
j∈I(i) cn

i j = 0; hence, 
the update (3.5) can be re-written mn+1

i Un+1
i = mn

i Un
i + τ

∑
j∈I(i)F

n
i j where Fn

i j := (Un
j ⊗ Wn

j + Un
i ⊗ Wn

i − f(Un
j ) − f(Un

i ))cn
i j +

dn
ij(U

n
j − Un

i ). Moreover, integration by parts shows that cn
i j = −cn

ji for any j ∈ I(i) if periodic boundary conditions are 
enforced or if the support of ϕn does not touch ∂ Dn; notice also that we assumed that dn = dn . As a result, (away from 
j i j ji
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the boundary) we have Fn
i j = −Fn

ji ; that is to say, the mass flux from the degree of freedom j to the degree of freedom i
is opposite to the mass flux from the degree of freedom i to the degree of freedom j. This is the property that is usually 
understood as “local mass conservation” in the finite volume or/and discontinuous Galerkin literature. In conclusion, the 

update (3.5), i.e., mi
Un+1

i −Un
i

τ = ∑
j∈I(i)F

n
i j , is “locally conservative” in the sense that Fn

i j = −Fn
ji for any j ∈ I(i) and any 

i ∈ V (and for any i ∈ I( j) and any j ∈ V) if periodic boundary conditions are enforced or away from the boundary ∂ Dn

otherwise.

3.3. Low-order approximation (GMS-GV1)

We define in this section the artificial graph viscosity that makes the method (3.3)–(3.4)–(3.5) invariant domain preserv-
ing and entropy satisfying. The method is called GMS-GV1 because it is based on a Guaranteed Maximum Speed and a first 
order Graph Viscosity; see Guermond and Popov [19], Guermond et al. [24,25].

For the sake of completeness, we recall the construction done in [24, §4.3]. For any j ∈ V , we define the flux gn
j (v) :=

f(v) − v ⊗ Wn
j and denote by λmax(gn

j n
n
i j, U

n
i , U

n
j ) some upper bound on the fastest wave speed in the following Riemann 

problem:

∂t v + ∂x(g
n
j (v)nn

i j) = 0, (x, t) ∈R×R+, v(x,0) =
{

Un
i if x < 0

Un
j if x > 0.

(3.8)

An upper bound on the fastest wave speed in (3.8) can be obtained by estimating upper bounds on the extreme left 
and right wave speeds in the Riemann problem (2.2) with the flux f(v)nn

i j and initial data (Un
i , U

n
j ). More precisely, let 

λmax
L (fnn

i j, U
n
i , U

n
j ) and λmax

R (fnn
i j, U

n
i , U

n
j ) be some upper bounds for the extreme left and right wave speeds in (2.2). Then 

Lemma 2.1 implies that the following quantity is an upper bound on the extreme left and right wave speeds in (3.8):

λmax(gn
j n

n
i j,Un

i ,Un
j ) := max(|λmax

L (fnn
i j,Un

i ,Un
j ) − Wn

j ·nn
i j|, |λmax

R (fnn
i j,Un

i ,Un
j ) − Wn

j ·nn
i j|). (3.9)

A very fast algorithm to compute λL(fnn
i j, U

n
i , U

n
j ) and λR(fnn

i j, U
n
i , U

n
j ) for the compressible Euler equations is described in 

[18]; we also refer the reader to Toro [45] for more details on this question. We now set

dL,n
i j = max(λmax(gn

j n
n
i j,Un

i ,Un
j )‖cn

i j‖	2 , λ
max(gn

i nn
ji,Un

j ,Un
i )‖cn

ji‖	2). (3.10)

The following result is established in [24, Thm. 5.2]:

Theorem 3.6 (Local invariance). Let n > 0 and i ∈ V . Let B ⊂ A be any invariant convex set. Let UL,n+1
i be given by (3.3)–(3.4)–(3.5)

with the viscosity defined in (3.10). Assume that the time step τ is small enough so that mn+1
i > 0 and 2τ

|dL,n
ii |

m
n+1
i

≤ 1. If {Un
j | j ∈ I(i)} ⊂

B, then UL,n+1
i ∈ B.

In addition to local invariance, it is proved in Theorem 5.6 in [24] that the algorithm (3.3)–(3.4)–(3.5) yields a discrete 
entropy inequality for every admissible entropy pair of the system (2.1).

Definition 3.7 (Galilean invariance). We say that an ALE scheme is Galilean invariant if, for any WG ∈Rd , the approximation 
to ∂t u + ∇·(f(u)) = 0 with the ALE velocity w̃ is the same as the approximation to ∂t v + ∇·(f(v) − v⊗WG) = 0 with the 
ALE velocity w̃n − WG and the same initial data.

This definition is motivated by the observation that the solutions to the two Cauchy problems ∂t u + ∇·(f(u)) = 0 and 
∂t v + ∇·(f(v) − v⊗WG) = 0 are related by v(x0, t) = u(x(x0, t), t) with x(x0, t) = x0 + WGt . We refer to Scovazzi [40] where 
a similar notion is discussed in the context of linearly stabilized methods for approximating compressible flows.

Lemma 3.8 (Galilean invariance). The GMS-GV1 scheme (3.5) is Galilean invariant.

Proof. (1) Let T n+1
h (w̃n) be the new mesh obtained by (3.3) and let T n+1

h (w̃n − WG) be the new mesh obtained by using 
w̃n − WG as ALE velocity. Since these two meshes only differ by a uniform translation, the coefficients cn

i j defined in (2.8)
by the corresponding ALE mappings are identical.

(2) Since 
∑

j∈I(i) c i j = 0, we have 
∑

j∈I(i) c i jWn
j = ∑

j∈I(i) c i j(Wn
j − WG). Hence the mass update defined in (3.4) is the 

same whether the ALE velocity is w̃n or w̃n − WG .
(3) We observe that changing Wn

j by Wn
j − WG and f(Un

j ) by f(Un
j ) − Un

j⊗WG does not modify the flux term in (3.5).
(4) Moreover, changing Wn

j by Wn
j − WG and f(Un

j ) by f(Un
j ) − Un

j⊗WG does not change the upper bound on the fastest 
wave speed (3.9); hence the first-order viscosity dL,n

i j defined in (3.10) is unchanged.
(5) In conclusion the update in (3.5) is not changed by replacing Wn

j by Wn
j −WG and replacing f(Un

j ) by f(Un
j ) −Un

j⊗WG , 
thereby proving that the GMS-GV1 scheme is Galilean invariant. �
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3.4. Entropy viscosity commutator (GMS-EV)

We now describe a technique that is formally high-order accurate in space but may be invariant domain violating. The 
method is inspired from Guermond et al. [22] and is based on the estimation of a commutator; see [25,26].

Let (η(v), F (v)) be an entropy pair for (2.1), then recall that Lemma 2.1 implies that (η(v), F (v) −η(v)W) is an entropy 
pair for the flux f(v) − v ⊗ W for any W ∈ Rd . Recall that by definition f , η, and F satisfy the identity ∇ F = (∇η)T∇f
which means 

∑m
i=1 ∂vi η(v)∂v j fik(v) = ∂v j F k(v) for all j ∈ {1 :m} and all k ∈ {1 :d}. Let i ∈ V and n > 0. Since every entropy 

can be defined up to a translation by a linear functional of the conserved variables, see Serre and Vasseur [42], we are 
going to introduce a directional relative entropy ηn

i (v) and define an entropy residual based on this relative entropy. More 
precisely we assume that there exists a unit vector k in Rm such that k·v �= 0 for any v ∈A. Then, given some state Un

i , we 
define the directional relative entropy by ηn

i (v) := η(v) − k·v
k·Un

i
η(Un

i ). Note that the convexity properties of ηn
i (v) and η(v)

are identical. The associated entropy flux is F n
i (v) = F (v) − η(Un

i )

k·Un
i

kTf(v). For instance, for the compressible Euler equations 
with conserved variable (ρ, m, E), where ρ is the density, m the momentum, and E the total energy, it is natural to take 
k = (1, 0, 0)T; in this case the directional relative entropy is ηn

i (v) = η(v) − ρ
ρn

i
η(Un

i ).

In the ALE setting it is natural to work with the flux g(v, W) := f(v) − v ⊗W in the time interval [tn, tn+1], with W ∈Rd . 
Then we define the corresponding entropy flux Gn

i (v, W) := F n
i (v) −ηn

i (v)W. Now we want to measure how well the relation 
∇·(G i(v, W)) = (∇ηi(v))T∇·g(v, W)) is satisfied by the approximate solution at the time tn; here W ∈Rd is just a parameter 
that does not depend on x. We then consider the expression 

∫
Dn (∇·Gn

i (un
h, Wn

i ) − (∇ηn
i (un

h))T∇·g(un
h, Wn

i ))ϕ
n
i (x) dx and 

approximate this quantity, which we call entropy commutator, by

Nn
i :=

∑
j∈I(i)

(
Gn

i (U
n
j ,Wn

i ) − (∇(ηn
i )(U

n
i ))

Tg(Un
j ,Wn

i )
)

·c i j. (3.11)

Actually, to make Nn
i Galilean invariant, it is natural to replace Wn

i in (3.11) by �Wn
i := Wn

i − Wn
i where Wn

i =
1

card(I(i))

∑
j∈I(i) Wn

j . The quantity Nn
i measures how well the finite element approximation satisfies the chain rule: 

∇·(Gn
i (v, �Wn

i )) = (∇ηi(v))T∇·g(v, �Wn
i ). If un

h is smooth then Nn
i is small since the chain rule implies that∑m

l=1 ∂vlη
n
i (v)∂v jglk(v, �Wn

i ) = ∂v j Gn
i,k(v, �Wn

i ) for all j ∈ {1 :m} and all k ∈ {1 :d}. In order to construct a non-dimensional 
quantity we also define

Dn
i :=

∣∣∣ ∑
j∈I(i)

Gn
i (U

n
j ,�Wn

i ))·c i j

∣∣∣ +
m∑

l=1

∣∣∣∂ulη
n
i (U

n
i )

∣∣∣×∣∣∣ ∑
j∈I(i)

gul(U
n
j ,�Wn

i ))·c i j

∣∣∣. (3.12)

where gu1 , . . . , gum are the Rd-valued components of the flux g.

We then construct a normalized entropy residual Rn
i := |Nn

i |
Dn

i
and define the high-order graph viscosity (or entropy vis-

cosity, EV) by setting

dH,n
i j := dL,n

i j max(Rn
i , Rn

j ), i �= j, dH,n
ii := −

∑
j∈I(i)\{i}

dH,n
i j . (3.13)

The provisional high-order approximation uH,n+1
h = ∑

i∈V UH,n+1
i ϕn+1

i is computed by using (3.3)–(3.4)–(3.5) with the 
graph entropy viscosity defined in (3.13). The method thus constructed is henceforth referred to as GMS-EV.

Remark 3.9 (Directional relative entropy). Notice that the definition of ηn
i (v) implies that Nn

i =∑
j∈I(i)(Gn

i (U
n
i , �Wn

i ) −
(∇η(Un

i ))
Tg(Un

j , �Wn
i ))·c i j ; that is, the value of the commutator is the same for every directional relative entropy and it 

is equal to the value of the commutator with the original entropy. Hence using a directional relative entropy is essentially 
meant to normalize properly the entropy commutator.

4. Quasiconcavity-based limiting

Given a convex invariant set B ⊂ A, and assuming that Un
i ∈ B for all i ∈ V and some n ≥ 0, there is no guarantee that 

the coordinate vector of the high-order update, (UH,n+1
i )i∈V , does not step out of B. We explain in this section how to push 

(UH,n+1
i )i∈V back in the invariant domain by using a convex limiting technique introduced in Guermond et al. [25,27]. Most 

of the material of this section is inspired from [25,27] and is very loosely based on the Flux Corrected Transport paradigm 
of Zalesak [48] (see also Boris and Book [5]).
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4.1. Overview of the objectives

Instead of enforcing the high-order update to be in some global invariant set B ⊂ A, we are now going to localize the 
notion of invariant sets. We now give a brief overview of the strategy before going into the details. We assume that there 
exists a finite set L ⊂N , independent of the mesh size, say L = {1 :L}, and a collection of subsets Al ⊂A, l ∈L, such that 
for any l ∈ L, any i ∈ V and n ≥ 0, one can construct some continuous functional �i,n

l : Al →R such that the zero level set 
{v ∈ Al | �i,n

l (v) > 0} is convex. Furthermore, for practical purposes, since UH,n+1
i may step outside the admissible set A, 

we assume that the domain of �i,n
1 is Rm and we set A1 :=Rm so that �i,n

1 ∈ C0(A1; R). Moreover, for any l ∈ L\{1}, we 
assume that {v ∈Al−1 | �i,n

l−1(v) > 0} ⊂Al . Then we define the set

Bi,n :=
⋂
l∈L

{v ∈ Al | �i,n
l (v) > 0}. (4.1)

We are going to abuse the language by calling Bi,n local invariant set. To be useful, we assume that the above construction 
is done such that Bi,n ⊂ B for any i ∈ V . It turns out that this construction is indeed possible for most hyperbolic systems 
we are aware of. Examples illustrating this construction are given in §4.2 and §6.4.1; we also refer the reader to [25, §4] and 
[27, §7] for other details. To sum up, given i ∈ V and n ≥ 0, we are going to construct a collection of functionals (�i,n

l )l∈L
and sets Bi,n so that:

(i) UL,n+1
j ⊂ Bi,n;

(ii) if UH,n+1
i is not in Bi,n , we are going to correct (limit) the high-order solution so that the after limiting Un+1

i is in Bi,n .

The limiting will be done sequentially: First we limit UH,n+1
i w.r.t. �i,n

1 and construct U1,n+1
i so that �i,n

1 (U1,n+1
i ) > 0, hence 

U1,n+1
i ∈A2. Then, for any l ∈L\{1}, we construct Ul,n+1

i by limiting Ul−1,n+1
i w.r.t. �i,n

l so that �i,n
l (Ul,n+1

i ) > 0. Notice that 
this process makes sense since Ul−1,n+1

i ∈Al for any l ∈L\{1}. Eventually we obtain Un+1
i := UL,n+1

i .

Notice that if one can realize the above program, i.e., if one can guarantee that Un+1
i ∈ Bi,n for all i ∈ V , then {Un+1

i }i∈V ⊂
B; that is, the limited high-order solution is invariant domain preserving.

4.2. Functionals and bounds

In this section we address the question of the construction of the functions �i,n
l , l ∈ L. We are going to proceed as in 

[25, §4] and [27, §7] and adapt the strategy to the present setting.
We start by recalling the definition of the notion of quasiconcavity which will help us clarify what we are trying to 

achieve.

Definition 4.1 (Quasiconcavity). Given a convex set A ⊂ Rm , we say that a function � : A → R is quasiconcave if every 
upper level set of � is convex; that is, the set Lλ(�) := {v ∈A | �(v) ≥ λ} is convex for any λ ∈R.

For instance, for the compressible Euler equations we recall that the conserved variable is u := (ρ, m, E)T , where ρ
is the density, m the momentum, and E the total energy. The functional �1 : Rd+2 � (ρ, m, E) �→ ρ ∈ R is linear, hence 
concave, hence quasiconcave; this functional is also well defined over Rd+2. Let use set A1 := {u ∈ Rd+2 | ρ > 0}, then 
another important example is the internal energy �2 : A1 � (ρ, m, E) �→ ε(u) := E − 1

2
m2

ρ ∈ R. This functional is concave 
for any equation of state; hence, it is also quasiconcave. It follows that the functional �3 : {u ∈Rd+2 | ρ > 0} � (ρ, m, E) �→
e(u) := 1

ρ ε(u) ∈R, which is the specific internal energy, is quasiconcave as well. Denoting by η : {u ∈Rd+2 | ρ > 0, e(u) >
0} �→ R any entropy of the compressible Euler equations (i.e., any generalized entropy of Harten et al. [29]) and using the 
convention that entropies are convex, the functional �4 : {u ∈ Rd+2 | ρ > 0, e(u) > 0} � u �→ −η(u) ∈ R is concave, hence 
quasi-concave. It follows that the negative of the specific entropy �5 : {u ∈ Rd+2 | ρ > 0, e(u) > 0} � u �→ − 1

ρ η(u) ∈ R is 
quasiconcave as well. We refer the reader to Frid [17] and Serre [41, Thm. 8.2.2] for more details on these questions. We 
are going to use the above functionals to enforce the positivity of the density, ρ > 0, the positivity of the internal specific 
energy, e(u), and the minimum principle on the specific entropy, �5(u) ≥ ess infx∈D�5(u0) (with η being the physical 
entropy). In the numerical examples reported at the end of the paper we are going to use �1 and �5.

Recalling that nn
i j := cn

i j/‖cn
i j‖	2 is a unit vector in Rd , for all i ∈ V , j ∈ I(i)\{i}, let us introduce the auxiliary state Un+1

i j
defined by

Un
i j :=

(
f(Un

i ) − f(Un
j ) − (Un

i − Un
j ) ⊗ Wn

j

)
·nn

i j

‖cn
i j‖	2

2dL,n
i j

+ 1

2
(Un

i + Un
j ). (4.2)

We adopt the convention that Un
ii := Un

i . The states Un+1
i j will play an essential role in our limiting strategy. Provided the 

appropriate CFL condition is satisfied, these states have the right physical properties as explained in the following statement.
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Lemma 4.2. Let n > 0 and i ∈ V . Let B ⊂A be any convex invariant set of (2.1). Let j ∈ I(i). Assume that {Un
i , U

n
j } ⊂ B, then Un

i j ∈ B.

Proof. This is a direct consequence of the definition (3.10), Lemma 2.1 and [24, Lem. 2.1]. �
Remark 4.3 (Key property of {Un

i j} j∈I(i)). It is established in [24, Thm. 5.2] that the GMS-GV1 solution (i.e., UL,n+1
i given by 

(3.3)–(3.4)–(3.5) with the viscosity defined in (3.10)) is a convex combination of the sates {Un
i j} j∈I(i) . Lemma 3.4 is crucial 

to prove this property.

We are now in position to explain how the functionals �i,n
l and the sets Bi,n introduced in (4.1) are constructed. Let 

us assume that we have at hand a collection of quasi-concave functionals {�l ∈ C0(Al; R)}l∈L , with L = {1 :L}, such that 
A1 =Rm and that {v ∈ Al−1 | �l−1(v) > 0} ⊂ Al for all l ∈ L\{1}. Notice that using the zero level set of �l to define Al is 
purely conventional since translating any quasiconcave functional by any constant still gives a quasiconcave functional. We 
now define

BL :=
⋂
l∈L

{v ∈ Al | �l(v) > 0}, (4.3)

and we assume that BL is an invariant set of (2.1). For any l ∈ L, any i ∈ V , and n ≥ 0, we define �i,n
l ∈ C0(Al; R) as 

follows:

�
i,n
l (U) := �l(U) − �

i,n,min
l , with �

i,n,min
l := min

V∈{Un
j } j∈I(i)

�l(V). (4.4)

Let Bi,n be defined as in (4.1).

Lemma 4.4. Let i ∈ V , and n ≥ 0. Assume that Un
j ∈ BL for all j ∈ I(i). Then the following holds true:

(i) Bi,n ⊂ BL;

(ii) If τ is small enough so that mn+1
i > 0 and 2τ

|dL,n
ii |

m
n+1
i

≤ 1, then UL,n+1
i ∈ Bi,n.

Proof. (i) Since BL is convex and we assumed that Un
j ∈ BL for all j ∈ I(i), Lemma 4.2 implies that Un

i j ∈ BL for all 
j ∈ I(i). This in turn implies that the convex hull of the set {Un

i j} j∈I(i) is a subset of BL . Let v ∈ Bi,n . Then v ∈ Al

and �i,n
l (v) = �l(v) − �

i,n,min
l ≥ 0 for any l ∈ L. Hence, �l(v) ≥ �

i,n,min
l . But �i,n,min

l = minV∈{Un
j } j∈I(i)

�l(V) and we have 

established that {Un
i j} j∈I(i) ⊂ BL ⊂ Al; hence, �i,n,min

l ≥ minw∈Al �l(w) ≥ 0. In conclusion, �l(v) ≥ �
i,n,min
l ≥ 0, which 

proves that v ∈ ⋂
l∈L{w ∈Al | �l(w) ≥ 0} =: BL .

(ii) Notice first that UL,n+1
i = Un

i (1 −2τ
|dL,n

ii |
m

n+1
i

) +∑
i∈I(i)\{i} 2τ

dL,n
i j

m
n+1
i

Un
i j . Hence, the CFL condition 2τ

|dL,n
ii |

m
n+1
i

≤ 1 and mn+1
i > 0, 

implies that UL,n+1
i is in the convex hull of the set {Un

i j} j∈I(i) . But we proved in step (i) that the convex hull of the set 
{Un

i j} j∈I(i) is a subset of BL; hence UL,n+1
i ∈ BL . �

4.3. Limiting

We explain in this section the convex limiting strategy. As in the FCT methodology, we start by estimating the difference 
UH,n+1

i − UL,n+1
i . This is done by subtracting (3.5), written with the high-order viscosity dH,n

i j , from (3.5), written with the 
low-order viscosity dL,n

i j . We obtain

m
n+1
i

τ
(UH,n+1

i − UL,n+1
i ) =

∑
j∈I(i)

(dH,n
i j − dL,n

i j )(Un
j − Un

i ).

This identity can be re-written into the following abstract form:{
mi(U

H,n+1
i − UL,n+1

i ) = ∑
j∈I(i) An

i j

An
i j := τ (dH,n

i j − dL,n
i j )(Un

j − Un
i ).

(4.5)

As usual, we notice that the matrix An is skew-symmetric, which immediately implies that the low-order solution and the 
high-order solution carry the same mass: 

∑
i∈V miU

H,n+1 = ∑
i∈V miU

L,n+1.
i i
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From now on our objective is to construct an update Un+1
i that satisfies all the constraints �

i,n
l (Un+1

i ) ≥ 0, l ∈ L. 
At this point we adopt a strategy that is different from that of the FCT algorithm [48]. We introduce a set of pos-
itive coefficients {θi j} j∈I(i)\{i} adding up to 1; for instance, one can take θi j := 1

card(I(i))−1
, or θi j = ∫

Dn ϕn
j (x)ϕn

i (x) dx/

(
∑

j∈I(i)\{i}
∫

Dn ϕn
j (x)ϕn

i (x) dx), for all j ∈ I(i)\{i}. In all the computation reported at the end of the paper we have adopted 
the first choice. Using that UL,n+1

i = ∑
j∈I(i)\{i} θi jU

L,n+1
i , we define the high-order update by setting

Un+1
i =

∑
j∈I(i)\{i}

θi j(U
L,n+1
i + 	i jP

n
i j), with Pn

i j := 1

miθi j
An

i j . (4.6)

Note that Un+1
i = UL,n+1

i if 	i j = 0 and Un+1
i = UH,n+1

i if 	i j = 1. The parameter 	i j is called limiter. The following lemma 
proved in [25, Lem. 4.4] is the workhorse of the limiting technique that we propose.

Lemma 4.5. Let B ⊂Rm and � ∈ C0(B; R) be such that {v ∈ B | �(v) ≥ 0} is convex. Let i ∈ I and j ∈ I(i). Assume that UL,n+1
i ∈ B

and �(UL,n+1
i ) > 0. Then

(i) There is a unique 	i
j ∈ [0, 1] such that defined by

	i
j =

{
1 if �(UL,n+1

i + Pn
i j) ≥ 0

max{	 ∈ [0,1] | �(UL,n+1
i + 	Pn

i j) ≥ 0} otherwise,
(4.7)

(ii) �(UL,n+1
i + 	Pn

i j) ≥ 0 for every 	 ∈ [0, 	i
j];

(iii) Setting 	i j = min(	i
j, 	

j
i ), we have �(UL,n+1

i + 	i jPn
i j) ≥ 0 and 	i j = 	 ji .

(iv) Let Un+1
i be defined by (4.6) with 	i j defined above, then �(Un+1

i ) ≥ 0.

Algorithm 1 Convex limiting.
Require: UL,n+1, An , and Pn

Ensure: limiter matrix L = (	i j)

1: for i ∈ I do
2: for j ∈ I(i)\{i} do
3: 	i j = 1
4: for l ∈L do
5: 	i j ← max{	 ∈ [0, 	i j ] | �i,n

l (UL,n+1
i + 	Pn

i j) ≥ 0}
6: end for
7: end for
8: end for
9: L ← min(L, LT)

Lemma 4.5 can be applied to any l ∈ L with � := �
i,n
l and B := Al . Notice that the assumptions UL,n+1

i ∈ B and 
�(UL,n+1

i ) > 0 have been shown to hold true in Lemma 4.4. The full convex limiting technique is summarized in Algo-
rithm 1. Notice that the symmetrization of the limiter is done only at the very end of the algorithm. Putting together all 
the above results, we finally conclude.

Theorem 4.6 (Local invariance). Let i ∈ V and n ≥ 0. Assume that Un
j ∈ BL for all j ∈ I(i). Assume that the time step τ is small 

enough so that mn+1
i > 0 and 2τ

dL,n
ii

m
n+1
i

≤ 1. Let Un+1
i be defined by (4.6) with 	i j defined in Algorithm 1, then Un+1

i ∈ Bi,n ⊂ BL .

We stress here that the local invariance statement in Theorem 4.6 holds for any user-given (reasonably smooth) ALE 
velocity field w̃n . Note also that this result is completely independent on the way the high-order viscosity dH,n

i j is defined. 
The statement Un+1

i ∈ Bi,n ⊂ BL not only implies that the scheme is invariant-domain preserving, but it also gives the local 
bounds Un+1

i ∈ Bi,n , which is far stronger that only stating Un+1
i ∈ BL . To the best of knowledge, it seems that Theorem 4.6

is original and has not been established in the ALE literature before.

4.4. Relaxing the bounds

The technique presented above is excellent to obtain second-order accuracy in the L1-norm, but the bound �i,min
l defined 

in (4.4) is too tight to make the method higher-order or even second-order in the L∞-norm in the presence of smooth 
extrema. As observed in Khobalatte and Perthame [32, §3.3] and explained in Guermond et al. [25, §4.7], one should relax 
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the bound �i,min
l to recover full accuracy in the L∞-norm for smooth solutions. To avoid repeating ourselves, we refer the 

reader to [25, §4.7] where techniques to relax �min
i are introduced. In a nutshell, one proceeds as follows: For each l ∈ L

and all i ∈ V , we set

�2�
i,n
l = 1∑

j∈I(i)\{i} βn
i j

∑
j∈I(i)\{i}

βn
i j(�l(U

n
j ) − �l(U

n
i )), (4.8)

where the coefficients βn
i j are meant to make the computation linearity-preserving (see Remark 6.2 in [27]); for instance 

βn
i j = ∫

Dn ∇ϕn
i ·∇ϕn

j dx. Then we compute the average

�2�
i,n
l := 1

2(card(I(i)) − 1)

∑
j∈I(i)\{i}

(
1

2
�2�

i,n
l + 1

2
�2�

j,n
l ), (4.9)

and finally relax the quantity �i,n,min
l , which is used in the definition (4.4), by redefining �i,n,min

l as follows:

�
i,n,min
l ← max((1 − sign(�

i,n,min
l )ri)�

i,n,min
l ,�

i,n,min
l − |�2�

i,n
l |), (4.10)

where ri = (
mi|D| )

1.5
d . The term (1 − sign(�

i,n,min
l )ri)�

i,n,min
l is meant to be a safeguard on coarse meshes: since ri ∈ (0, 1), 

�
i,n,min
l cannot change sign. This somewhat ad hoc threshold (1 − sign(�

i,n,min
i )rh) is never active when the mesh size is 

fine enough. For instance, for the compressible Euler equations, when �(U) is either the density (or the internal energy), 
this threshold guarantees positivity of the density (or the internal energy) because in this case (1 − sign(�min

i )ri ≥ 0. The 
exponent 1.5 is also somewhat ad hoc; in principle one could take ri = (

mi|D| )
δ
d with any δ < 2.

When the functional �l is an entropy, the relaxation method must be more aggressive since this function is constant in 
smooth regions. The details are explained in [25, §4.7.2].

5. Construction of the ALE velocity

Although the ALE velocity field w̃n (or, equivalently, the mesh motion) is user-defined and should not be the topic of 
this paper, we give in this section some details regarding the construction of the ALE velocity and the mesh motion which 
could be useful to the reader. All the computations reported in §6 have been done with the techniques described here.

5.1. Reconstruction of the Lagrangian motion

The algorithm (3.3)–(3.4)–(3.5) uses two velocities

w̃n =
∑

i∈Vgeo

W̃
n
i ϕ

geo,n
i ∈ P geo

d (T n
h ), wn =

∑
i∈V

Wn
i ϕ

n
i ∈ P d(T n

h ).

In practice the polynomial degrees of the two spaces P geo
d (T n

h ) and P d(T n
h ) can be different. Actually, all the computations 

reported in this paper are done with continuous linear Lagrange elements for P d(T n
h ), whereas we use polynomials of 

degrees in the range 1 to 4 for P geo
d (T n

h ). It has been reported in the literature, and it is also our experience, that using 
higher-order polynomials to represent the mesh motion limits the risks of mesh entangling and, in the case of vortical 
motions, postpones the time when the mesh eventually entangles. For further arguments supporting this claim we refer the 
reader to Dobrev et al. [11], Bazilevs et al. [4], Anderson et al. [2]

One of the motivation for using ALE methods in compressible hydrodynamics is that making the mesh motion as close 
as possible to the actual fluid velocity, one significantly reduces the effects of artificial viscosity. Hence, at each time level 
one wants to use the approximate solution un

h to construct the velocity wn and, in some way, reconstruct w̃n from wn . 

For instance for the Euler equations we have un
h = ∑

i∈V (�n
i , Mn

i , E
n
i )ϕ

n
i and it is natural to set Wn

i = Mn
i

�n
i

. Then, using 
wn = ∑

i∈V Wn
i ϕi would make the scheme Lagrangian, but as explained above using w̃n = wn to move the mesh is not 

good enough since wn is represented with piecewise linear polynomials, whereas we want w̃n to be higher-order. Hence, 
one has to reconstruct somehow the higher-order velocity w̃n from the low-order representation wn . This reconstruction 
problem is the question that we address in the next section.

5.2. The butterfly algorithm

Reconstructing a high-order field from a low order representation is a problem that has been thoroughly investigated in 
the computer graphics literature. We propose to reconstruct w̃n from wn using an algorithm called the butterfly subdivision 
algorithm; we refer to Dyn et al. [14] for more details.

For simplicity we assume the space dimension is d = 2 and the approximation space Pn(T n
h ) is piecewise linear, P̂ =P1,2. 

For the time being we also assume that the geometric finite element space is quadratic, P̂ geo = P2,2. That is to say Pn(T n)
h
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Fig. 1. Butterfly subdivision. Left: P2 subdivision. Center: P4 subdivision done after the P2 subdivision. Right: Details on the P4 subdivision.

is composed of continuous functions whose pullback by the geometric transformation on each cell is linear on the reference 
element and the geometric transformation T n

K : K̂ → K is quadratic for all K ∈ T n
h on the reference element. Since the 

algorithm from [14] is valid only for triangles, if the approximation space is not based on triangles, one has to use the 
relevant generalization of the butterfly subdivision algorithm. There are many such algorithms available in the literature.

We now assume that we have at hand a scalar field w ∈ P (T n
h ) (here we argue with scalar-valued functions since we 

are going to apply the subdivision algorithm to each Cartesian component of wn). Let K3 be a triangular cell with vertices 
z3, z4, z5. Let K0, K1, K2 be the three triangular cells sharing a face with K3, say the vertices of K0, K1, K2 are (z0, z4, z5), 
(z1, z3, z5), (z2, z3, z4), respectively, as depicted in the left panel in Fig. 1. Recall that the geometric mappings T n

K0
, T n

K1
, T n

K2
are assumed to be quadratic, i.e., the faces of the cells in T n

h are pieces of parabolas. Let us consider one face of K3, 
say the face with the vertices (z3, z4) and the midpoint m (see Fig. 1). The question we address here is to estimate a 
third-order approximation of wn at m using the values wn(z0), . . . , wn(z5). The idea proposed in Dyn et al. [14] consists of 
viewing 

⋃3
i=0 Ki as a quadratic macro-element K0123 with vertices (z0, z1, z2) and midpoints z3, z4, z5. Then, denoting by 

T K0123 : K̂ → K0123 the corresponding quadratic geometric mapping, one constructs the function w0123 : K0123 → R whose 
pullback by T K0123 is quadratic on the reference element and whose values at the nodes z0, . . . , z5 are w(z0), . . . , w(z5). 
A direct computation shows that w0123(m) = − 1

8 w(z0) − 1
8 w(z1) + 1

2 w(z3) + 1
2 w(z4) + 1

4 w(z5). But after realizing that m
also belongs to a face of the cell K2, we can apply again the same strategy with the macro element constructed on K2

using the cells K2, K3 and the cell K4, K5 with vertices (z2, z3, z6) and (z2, z4, z7), respectively. Then third-order accuracy 
is maintained by averaging the two estimations by setting:

w̃(m) = − 1

16
(w(z0) + w(z1) + w(z6) + w(z7)) + 1

8
(w(z2) + w(z5)) + 1

2
(w(z3) + w(z4)).

The above operation is done for every midpoints in the mesh. If the union of the two macro-elements (i.e., the butterfly) 
cannot be constructed because it would require cells outside the domain, then we set w̃(m) = w0123(m). If m is at the 
boundary of Dn , we assume that w̃(m) is given as a boundary condition.

If the geometric reference element is defined with P̂ geo = P4,2, we first apply the butterfly algorithm to get w̃ at the 
midpoints of T n

h . Then we consider the mesh T n
h/2 formed by subdividing every cell into four new cells by connecting 

the three midpoints, and estimate w̃ at the new midpoints in T n
h/2 by apply again the butterfly algorithm. The process is 

summarized in the center and right panels in Fig. 1.
For further reference, we denote by Fbtt : P d(Th) → P geo

d (Th) the mapping described above, i.e., w̃ = Fbtt(w) for all 
w ∈ P d(Th).

5.3. Definition of the ALE velocity

Nonlinear conservation equations are notorious to have solutions that may develop shocks in finite time even if the 
initial data is smooth. For instance, in the case of scalar conservation equations, the method of characteristics with velocity 
f ′(u) gives a multi-valued solution when shocks develop, and for a generic initial data this happens in finite time. Since, for 
scalar conservation equations, using f ′(u) for the ALE velocity is somewhat similar to solving (2.1) by using the method of 
characteristics, the algorithm (3.3)–(3.4)–(3.5) may breakdown in finite time. (This claim is substantiated by numerical tests 
and arguments reported in [24, §6.1].) The breakdown manifests itself by a time step that goes to zero as the time level 
approaches the time of formation of the first shock. One way to avoid this breakdown is to use an ALE velocity that is a 
smoothed version of the Lagrangian velocity.

Many techniques to construct smooth ALE velocities have been proposed in the literature and we refer the reader to the 
abundant literature on this topic. Since it is not the purpose of the present paper to design an optimal ALE velocity, we 
content ourselves by adapting a technique proposed by Loubère et al. [36]. The method consists of blending the Lagrangian 
velocity with an averaging technique. The blending is done through a parameter that controls the local deformation of the 
cells.
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Let us be more precise. We start by computing the Lagrangian velocity. For scalar conservation equations we set wn
Lg :=∑

i∈V f ′(Un
i )ϕ

n
i , and for the compressible Euler equations we set wn

Lg := ∑
i∈V 1

�n
i

Mn
i ϕ

n
i . Recall that in both cases wn

Lg ∈
P d(T n

h ). Then we reconstruct w̃n
Lg ∈ P geo

d (T n
h ) as explained in §5.1 and §5.2, i.e., w̃n

Lg := Fbtt(wn
Lg). With the Lagrangian 

velocity w̃n in hand, we compute the Lagrangian motion and an averaged version of the Lagrangian motion for all i in Vgeo

by setting

an+1
i,Lg := an

i + τ w̃n
Lg(a

n
i ), (5.1)

an+1
i,Sm := 1

card(I(i)) − 1

∑
j∈I(i)\{i}

an+1
j,Lg . (5.2)

Finally, the actual ALE motion is defined for all i in Vgeo by

an+1
i := ωn

i an+1
i,Lg + (1 − ωn

i )a
n+1
i,Sm, (5.3)

where ωn
i is a blending parameter that depends on the mesh deformation. In [24] we were using ωn

i = 0.1, but now we 
are going to use a slightly more sophisticated definition in order to be able to sustain highly deformed meshes. We now 
describe two possible ways to calculate ωn

i that we have used in the numerical simulations reported at the end of the paper.

(i) Method 1: In every cell K n ∈ T n
h , we measure the ratio between the area of the elements K n and that of the transformed 

element K n+1 using (5.1) for all nodes in K n and set

ωn
K = min

( |K n+1|
|K n| ,1

)
. (5.4)

Then denoting Ti := {K ∈ T n
h | an

i ∈ K } for all i ∈ Vgeo, we define ωn
i by averaging: ωn

i = card(Ti)
−1 ∑

K∈Ti
ωn

K . Notice 
that the cardinality of Ti does not depend on n since we assumed in §2.3 that the geometric connectivity is time-
independent.

(ii) Method 2: The second method initially proposed in Loubère et al. [36] proceeds as follows. First we construct the 
Jacobian matrix of the mapping x �→ x + τ w̃n

Lg(x). Since w̃n
Lg is only piecewise continuous, the Jacobian matrix is 

discontinuous and its restriction to each cell K ∈ T n
h is given by F|K (x) := I + τ∇ w̃n

Lg(x). Then we compute the right 
Cauchy-Green strain tensor F |TKF|K and compute the two eigenvalues λ1,K (an

i ), λ2,K (an
i ) at all the geometric Lagrange 

nodes an
i ∈ K , with the convention λ1,K (an

i ) ≤ λ2,K (an
i ). Notice that if w̃n

Lg generates a solid motion, then λ1,K (an
i ) =

λ2,K (an
i ). Then we define αn

i := card(Ti)
−1 ∑

K∈Ti
λ1,K (an

i )/λ2,K (an
i ) and set

ωn
i := φ(αn

i ), (5.5)

where φ ∈ C0([0, 1]; [0, 1]) is a monotone function with φ(0) = 0 and φ(1) = 1. This function will be specified in each 
application.

In conclusion the ALE velocity w̃n is given by

w̃n(an
i ) := τ−1(an+1

i − an
i ), (5.6)

where an+1
i is defined in (5.3). One deduces wn from w̃n by using some interpolation operator. For instance, let us assume 

that P (T n
h ) is composed of continuous piecewise linear Lagrange elements (which is the case in all the numerical tests 

reported in the paper). Let {zi}i∈Zgeo be the set of the vertices of the geometric approximation (not to be confused with the 
Lagrange nodes {ai}i∈Vgeo ). Let {zi}i∈Z be the Lagrange nodes of P (T n

h ). Up to an isomorphism the two sets Zgeo and Z are 
identical, and we use the same enumeration on both sets. The field wn is then obtained from w̃n by setting the following 
for all i ∈Z:

wn(zi) = w̃n(zi), (5.7)

That is to say, wn = 
h(w̃n), where 
h : C0(Dn; Rm) → P (Th) is the Lagrange interpolation operator.

6. Numerical tests

The objectives of this section is to illustrate the ALE method described in the present paper. This is done by estimating 
the accuracy of the method on scalar equations (linear and nonlinear) and on the compressible Euler equations.
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Table 1
Swirling flow problem (6.1) at t = 1, CFL = 1.0, P2,2 motion. Convergence 
rate in L∞-norm.

h GMS-GV1 PG PG-CL

1/8 6.84E-01 – 1.42E-01 – 3.42E-01 –
1/16 3.92E-01 0.80 3.84E-02 1.89 3.84E-02 3.15
1/32 1.43E-01 1.45 9.70E-03 1.98 9.70E-03 1.98
1/64 4.19E-02 1.78 2.36E-03 2.04 2.36E-03 2.04
1/128 1.11E-02 1.92 5.93E-04 1.99 5.93E-04 1.99
1/256 2.83E-03 1.97 1.49E-04 1.99 1.49E-04 1.99

6.1. Numerical details

In all the numerical tests we use continuous Lagrange finite elements on triangles in two space dimensions. The one-
dimensional shocktube problems reported in §6.5 and §6.6 are run in two space dimensions. The exact specification of the 
initial computational domain D0 is given in each case. The reference polynomial space P̂ for the approximation space P (Th)

is P1,2. Depending on the situation, the reference geometric space P̂ geo for the geometric space P geo(Th) is composed of 
polynomials of degree between 1 and 4, i.e., P̂ geo = Pk,2 with k ∈ {1, 2, 3, 4}. In all the cases, the limiting is done exactly 
as explained in §4. The limiting is done on the density and the specific entropy. The limiting is done twice as explained in 
Algorithm 1 on page A3227 in [25]. The time stepping is done by using the third-order strong stability preserving Runge-
Kutta, see Shu and Osher [43, Eq. (2.18)] and Kraaijevanger [33, Thm. 9.4]. The time step is recomputed at every time level 
by using the formula τ = 1

2 CFL× mini∈I mi

|dL,n
ii | with dL,n

ii = − 
∑

i j dL,n
i j given in (3.10).

6.2. Analytical scalar-valued solution

We solve the linear transport equation ∂t u + ∇·(βu) = 0 in the domain D0 = (0, 1)2 with the initial data u0(x) =
sin(2πx1) sin(2πx2) and the following incompressible velocity field:

β(x, t) = cos(πt)
( − sin(2πx2) sin2(πx1), sin(2πx1) sin2(πx2)

)T
. (6.1)

This is an incompressible periodic swirling flow with period 2. Notice also that u(·, 1) = u0(·). The largest deformations 
occur at t = 1

2 and t = 3
2 . The ALE velocity is chosen by setting Wn

i = β(zn
i , t

n), for all i ∈ Z = V , i.e., wn
h is the Lagrange 

interpolant of β in P d(T n
h ), and W̃n

i = β(an
i , t

n), for all i ∈ Vgeo, i.e., w̃n
h is the Lagrange interpolant of β in P geo(T n

h ). Notice 
that there is no issue with boundary condition since β·n|∂ D0 = 0. Notice also that here the mesh is not smoothed; the mesh 
motion is purely Lagrangian.

6.2.1. Convergence tests
In this test the geometric reference polynomial space is P̂ geo = P2,2. Three different series of tests are done to measure 

the accuracy of the proposed method. In the first series we use the GMS-GV1 viscosity defined in (3.10). Notice that the 
particular choice of the ALE velocity implies that λmax(gn

j , n
n
i j, U

n
i , U

n
j ) = |(β(zn

i , t
n) − β(zn

j , t
n))·nn

i j |; hence the viscosity is 
second-order in space instead of being first-order. This phenomenon makes the GMS-GV1 method second-order accurate in 
space; this is one of the reasons that makes Lagrangian methods attractive. In the second method, which we refer to as 
PG (for pure Galerkin method), we set dn

ij = 0, i.e., the viscosity is removed. The third method, which we refer to PG-CL 
(for pure Galerkin with convex limiting), is the PG method with limiting. Here we apply the convex limiting technique 
discussed in §4 with �1(U) = U and �2(U) = −U. Using �1 in the limiting enforces the local minimum principle, and using 
�2 enforces the local maximum principle.

The computation are done with CFL = 1.0 up to time t = 1 on various meshes with mesh size h = 2−k for k ∈ {3, . . . , 8}. 
We report in Table 1 the relative error measured in the L∞-norm for the three methods: GMS-GV1; PG; PG-CL. As expected 
all the methods are second-order accurate. We also observe that, owing to the relaxation introduced in §4.4, the limiting 
does not affect the convergence rate in the L∞-norm. We have verified that using cubic polynomials for the geometric 
approximation, P̂ geo =P3,2, does not change these results. When the computations are done using P̂ geo =P1,2, we observe 
that the mesh entangles before the final time. This problem can be solved by smoothing the mesh (results not shown here).

6.2.2. Mesh motion
In order to demonstrate the benefit of using high-order elements for the mesh motion, we now solve the above problem 

with a velocity field that creates larger deformations than in the previous test case. We take

β(x, t) = cos(πt
2 )

( − sin(2πx2) sin2(πx1), sin(2πx1) sin2(πx2)
)T

. (6.2)

The period of this flow is 4 and u(·, 2) = u0(·). The largest deformations occur at t = 1 and t = 3. In this type of flows, 
the longer the period the larger the deformations at the quarter period. Our goal is to show that high-order elements can 
sustain such large mesh distortions without collapsing with a pure Lagrangian motion.
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Fig. 2. Swirling flow problem with velocity (6.2). Lagrangian mesh motion with: P1,2 at collapse time t = 0.42 (left); P2,2 at collapse time t = 0.74 (middle); 
P3,2 at final time t = 1 (right).

The computations are done with a mesh of mesh size h = 1/16 until t = 1. We test three different geometric approx-
imations: P̂ geo = Pk,2, with k ∈ {1, 2, 3}. We show in Fig. 2 the meshes for the three different approximations considered. 
The simulations for the P1,2 and the P2,2 approximations cannot reach the final time t = 1 without collapsing. The collapse 
time for the P1,2 approximation is t = 0.42; the collapse time for the P2,2 approximation is t = 0.74. The P3,2 approxima-
tion runs until the t = 1 without any problems. (We recall that no smoothing is done on the meshes and the largest mesh 
deformations occur at t = 1.)

6.3. Nonlinear scalar conservation equations

We now test the proposed method on nonlinear scalar conservation equations.

6.3.1. Burgers’ equation
We consider Burgers’ equation in two space dimensions

∂t u + ∇·( 1
2 u2β) = 0, u0(x) = 1S , (6.3)

where β = (1, 1)T , and 1S denotes the indicator function of the set S = (0, 1)2. The solution to this problem is given in 
Guermond et al. [24, §6.2.2]. For completeness we recall the solution here. Let us set x := (x1, x2). For any time t > 0 if 
x2 ≤ x1, then let α := x1 − x2 and α0 := 1 − t

2 . If α > 1, then u(x, t) = 0.

If α ≤ α0, then u(x, t) =
⎧⎨⎩

x2
t if 0 ≤ x2 < t

1 if t ≤ x2 < t
2 + 1 − α

0 otherwise.

(6.4)

If α0 < α ≤ 1, then u(x, t) =
{

x2
t if 0 ≤ x2 <

√
2t(1 − α)

0 otherwise.
(6.5)

If x2 > x1, then u(x1, x2, t) := u(x2, x1, t).
The computations are done up to time t = 1 with CFL = 0.1 and the initial computational domain is D0 = (−0.25, 1.75)2. 

The boundary of D0 does not move in the time interval [0, 1], i.e., ∂ D0 = ∂ Dn for any n ≥ 0 such that tn ∈ [0, 1]. The ini-
tial meshes are formed by N×N quadrilateral cells divided into two triangles, with N ∈ {8, 16, 32, 64, 128}. The Lagrangian 
velocity is obtained by setting wn

Lg := ∑
i∈V (Un

i , U
n
i )

Tϕn
i , and w̃n

Lg is obtained from wn
Lg by applying the butterfly algo-

rithm, i.e., w̃n
Lg = Fbtt(wn

Lg). Then the smoothing technique called method 1 in §5.3 is used to smooth the mesh when 
minK∈T n

h
|K | ≤ 1

5 minK∈T 0
h

|K |, which happens only near the end of the simulation.

For this test we use quadratic geometric elements, i.e., P̂ geo = P2,2. We test four methods. The first one is the invariant 
domain preserving method GMS-GV1. The second one (referred to as SB in Table 2) is based on the smoothness-based 
viscosity introduced in Guermond and Popov [20, §4.3] (see also Jameson et al. [31, Eq. (12)], the second formula in the right 
column of page 1490 in Jameson [30], or Burman [8, Thm. 4.1]). The viscosity is defined by dH,n

i j = dL,n
i j max(ψ(αn

i ), ψ(αn
j ))

where

αn
i :=

∣∣∣∑ j∈I(i) βi j(U
n
j − Un

i )

∣∣∣
max(

∑
j∈I(i) |βi j||Un

j − Un
i |, εi)

, βi j :=
∫

n

∇ϕn
i ·∇ϕn

j dx, i �= j, (6.6)
D
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Table 2
Burgers’ equation. L1-norm of the error at t = 1 with CFL = 0.1: GMS-GV1 method (left); high-
order SB method without limiting (center left); high-order SB method with convex limiting 
(center right); Right: Pure Galerkin with limiting.

# dof GMS-GV1 SB SB-CL PG-CL

81 6.37E01 – 5.25E-01 – 5.26E-01 – 4.54E-01 –
289 4.68E-01 0.44 3.03E-01 0.79 3.04E-01 0.79 2.78E-01 0.71
1089 2.82E-01 0.73 1.62E-01 0.90 1.62E-01 0.90 1.69E-01 0.72
4225 1.52E-01 0.89 9.39E-02 0.79 9.40E-02 0.79 1.15E-01 0.56
16641 7.42E-02 1.04 4.76E-02 0.98 4.76E-02 0.98 8.13E-02 0.50

Fig. 3. Burger’s equation solution and ALE mesh at t = 1 with 16 ×16 grid. Smoothness-based high-order graph viscosity solution combined with the convex 
limiting technique.

where εn
i = 10−8 max j∈I(i) |U j |. The tests are done with ψ(α) = α6. This second method is linearity preserving, but it may 

not be invariant domain preserving since the mesh distortions can make some of the coefficients βi j positive (see [20, §4.3]
for details). The third method, called SB-CL in Table 2, has the same viscosity as the SB method but in addition the invariant 
domain property is enforced by convex limiting. The last (fourth) method (called PG-CL in Table 2) is defined by setting 
dH,n

i j = 0 and using convex limiting (PG-CL stands for pure Galerkin with convex limiting). We show in Table 2 the L1-norm 
of the error at t = 1 for the four methods on five successively refined meshes. As expected, the method SB-CL performs the 
best. We also observe/confirm, (as already mentioned many times in the literature) that using dH,n

i j = 0 and using convex 
limiting is not a good idea for nonlinear conservation equations, i.e., PG-CL method does not perform as well as SB-CL 
method.

Finally, we show in Fig. 3 the graph of the solution obtained on the 16×16 mesh at t = 1 using the SB-CL method. We 
observe that the mesh is automatically refined in the shock region. Eventual entangling is avoided by smoothing the mesh 
as explained above.

6.3.2. KPP rotating wave
We solve in this section a nonlinear conservation equation with a nonconvex flux originally proposed in Kurganov 

et al. [34]:

∂t u + ∇· f (u) = 0, f(u) = (sin u, cos u)T, u0(x) =
{

3.5π if ‖x‖ < 1,

0.25π otherwise.
(6.7)

It is a challenging test for many high order numerical schemes because the solution has a two-dimensional composite wave 
structure. Many high-order methods produce solutions for this test that converge to weak solutions that are not the entropy 
solution. As shown in Ern and Guermond [15], this is specially the case of methods that use linear stabilization techniques.

The initial computational domain is D0 = (−2.5, 1.5)×(−2.0, 2.5). The initial mesh is composed of 128×128 quadri-
lateral cells divided into two triangles. The Lagrangian velocity is obtained by setting wn

Lg := ∑
i∈V f ′(Un

i )ϕ
n
i , with 

f ′(u) = (cos u, − sin u). The field w̃n
Lg is obtained from wn

Lg by applying the butterfly algorithm, i.e., w̃n
Lg =Fbtt(wn

Lg). Then 
the smoothing technique called method 1 in §5.3 is used to smooth the mesh when minK∈T n

h
|K | ≤ 1

5 minK∈T 0
h

|K |. We use 
quadratic geometric elements for this test, i.e., P̂ geo = P2,2. The computation is done up to time t = 1 with CFL = 0.1. We 
show in Fig. 4 the mesh and the solution obtained with the method SB-CL described in §6.3.1 (i.e., convex limiting and the 
smoothness-based viscosity with the little modification consisting of setting ψ(Un

i ) = ψ(Un
j ) = 1 if f (u)·ni j is not convex on 

the interval [min(Un
i , U

n
j ), max(Un

i , U
n
j )]; see [20, §6.5] or [34, §4] for the details). The final mesh is shown in the left panel 

of the figure; the solution is shown in the right panel. The method performs as expected.
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Fig. 4. KPP problem (6.7): Final mesh (left); Iso-contours at the solution (right).

6.4. Euler equations

In this section we present the results for the compressible Euler equations with the ideal gas equation of state p(u) =
(γ − 1)ρe(u). We use the notation e(u) := E − 1

2 ρ−1m2, where we recall that u = (ρ, m, E)T is the vector of the conserved 
variables. We illustrate the behavior of the proposed method on a series of traditional benchmark problems.

6.4.1. Numerical details
When the exact solution of a specific test case is known, we compute the following relative error indicators for q ∈

{1, 2, ∞}.

δq(t) := ‖ρh(t) − ρ(t)‖Lq(D)

‖ρ(t)‖Lq(D)

+ ‖mh(t) − m(t)‖Lq(D)

‖m(t)‖Lq(D)

+ ‖Eh(t) − E(t)‖Lq(D)

‖E(t)‖Lq(D)

, (6.8)

The above norm are estimated by using a Gaussian quadrature rule of order 8 with 16 points.
The convex limiting is done as explained in §4. First, limiting is done on the density with the functionals �i,n

1 (u) =
ρ − �n,min

i and �
i,n
2 (u) = −ρ − (−�n,max

i ) with the notation Un
i = (�n

i , Mn
i , E

n
i ), �n,min

i = min j∈I(i) �
n
i j , and −�n,max

i =
min j∈I(i) −�n

i j . The quantities �n,min
i and �n,min

i are relaxed by using (4.10) as explained in §4.4. Enforcing �i,n
1 (Un+1

i ) ≥ 0

gives the local minimum principle �n+1
i ≥ �n,min

i and enforcing �i,n
2 (Un+1

i ) ≥ 0 gives the local maximum principle �n+1
i ≤

�n,max
i . Then, limiting on the specific entropy is done with the concave functional �i,n

3 (u) = ρe(u) − sn,min
i ργ with the 

notation sn,min
i = min j∈I(i) �

n
i je(Ui j

n)/(�i j
n)γ . Enforcing �i,n

3 (Un+1
i ) ≥ 0 gives the local minimum principle on the specific 

entropy �n+1
i e(Un+1

i )/(�n+1
i )γ ≥ sn,min

i . The quantity sn,min
i is relaxed as explained in [25, §4.7.2].

The Lagrangian velocity is obtained by setting wn
Lg := ∑

i∈V
Mn

i
�n

j
ϕn

i and we compute w̃n
Lg by applying the butterfly algo-

rithm as explained in §5.2, i.e., w̃n
Lg =Fbtt(wn

Lg).

6.4.2. 2D isentropic vortex
The first test case is the isentropic vortex problem. The exact solution is isentropic and is given by

ρ(x, t) = (T∞ + δT )1/(γ −1), u(x, t) = u∞ + δu, p(x, t) = ργ . (6.9)

The free-steam conditions we use are ρ∞ = p∞ = T∞ = 1 and u∞ = (2, 0)T . The perturbations are

δu(x, t) = β

2π
e

1−r2
2 (−x2, x1), δT (x, t) = − (γ − 1)β2

8γπ2
e1−r2

, (6.10)

where r = ‖x − xc(t)‖ is the Euclidean distance from the vortex center xc(t) := (x0
1 + 2t, x0

2)
T , β = 5 is a constant defining 

the vortex strength, and γ = 7
5 .

We set the initial computational domain to be D0 = (−5, 5)2. The first mesh consists of 20×20 squares divided in 
two triangles, then the mesh is refined uniformly five times. We set the density, the momentum and the energy to the 
free-stream values on the boundary of the computational domain at all times. We use the GMS-EV method with the entropy 
commutator computed with the generalized entropy η(u) = p

1
γ to set dH,n

i j , see §3.4. Both the density and the specific 
entropy are limited.

To illustrate again the importance of using high-order approximation for the geometry, we perform two series of com-
putations. In the first series we use P̂ geo =P1,2 and set w̃n

Lg = wn . In the second series with use P̂ geo =P4,2 and compute 
Lg
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Fig. 5. Meshes obtained with pure Lagrangian motion. The meshes are shown at the instant before collapsing: ̂P geo = P1,2 at t = 1.81 (left) P̂ geo = P4,2 at 
t = 3.48 (right).

Table 3
Isentropic vortex, Convergence test at t = 2 for the GMS-EV method, with limiting. CFL = 0.25.

# dof δ1(t) Rate δ2(t) Rate δ∞(t) Rate

441 1.62E-02 – 4.07E-02 – 3.65E-01 –
1681 4.97E-03 1.71 1.17E-02 1.80 9.64E-02 1.92
6561 1.33E-03 1.90 3.18E-03 1.88 3.03E-02 1.67
25921 3.38E-04 1.98 8.08E-04 1.98 8.11E-03 1.90
103041 8.49E-05 2.00 2.02E-04 2.00 2.10E-03 1.95

w̃n
Lg by applying twice the butterfly algorithm as explained in §5.2, i.e., w̃n

Lg = Fbtt(wn
Lg). No smoothing is applied. Since 

the swirling always goes in the same direction and there is no smoothing, the meshes entangle at some point of time no 
matter what the level of refinement is or what the polynomial degree of the geometric approximation is. We show in Fig. 5
the deformation of the 20×20 mesh in the two cases right before the meshes entangle ( P̂ geo = P1,2 in the left panel and 
P̂ geo = P4,2 in the right panel). The collapse time for the linear mesh ( P̂ geo = P1,2) mesh is t = 1.81. The collapse time 
for the other mesh ( P̂ geo = P4,2) is t = 3.48. In both cases we use CFL = 0.25. This experiment confirms again that the 
P4,2-mesh can sustain a lot more deformations than the P1,2-mesh.

In Table 3 we show the errors obtained with the GMS-EV approximation with limiting at t = 2. The CFL number is 0.25. 
We observe second-order accuracy in all the norms. There is no clipping effect on the L∞-norm.

6.5. Sod, Lax and Leblanc shocktubes

In this section we compute the solution of three standard one-dimensional Riemann problems usually referred to in 
the literature as Sod, Lax, and Leblanc shocktube problems. Since convergence tables for these tests are rarely given in the 
literature, we give in Appendix B all the details to compute the exact solutions to these problems so that readers without 
access to a Riemann solver can estimate the exact solution up to fifteen digits of accuracy.

The initial computational domain is D0 = (0, 1)×(0, 0.4). Since the solution is one-dimensional, the convergence test are 
done on five meshes with refinements done in the x-direction only. The initial mesh is composed of 160×4 squares divided 
into 2 triangles. Because no wave reaches the left and right boundaries in the time interval considered, Dirichlet boundary 
conditions are enforced on the left and right boundaries of the domain. No boundary conditions are enforced on the upper 
and lower sides of the computational domain. The mesh motion is done with quadratic polynomials: P̂ geo =P2,2. Smoothing 
of the mesh is done with Method 1 for the Sod and Lax shocktubes and with Method 2 with φ(α) = 1 − (1 − α)1/3 for the 
Leblanc shocktube.

The errors are computed at t = 0.15 with CFL = 0.5 for the Lax problem, t = 0.225 with CFL = 0.25 for the Sod problem, 
and t = 2/3 with CFL = 0.2 for the Leblanc problem. The convergence results on the δ1(t) error indicator are shown in 
Table 4. The convergence orders are close to 1, which is the optimal order, and the results are comparable with what is 
usually reported in the literature.

6.6. Woodward Colella blast wave problem

We now consider the so-called Woodward Colella blast wave problem [47]. Here again we use γ = 7
5 . This test involves 

multiple interactions of nonlinear waves, strong shocks and contact discontinuities. The initial condition consists of three 
constant states at rest in a one-dimensional box of length 1. The three states are UL = (1, 0, 2.5 × 103)T , UM = (1, 0, 2.5 ×
10−2)T , and UR = (1, 0, 2.5 × 102)T . The initial condition is



20 J.-L. Guermond et al. / Journal of Computational Physics 401 (2020) 108927
Table 4
Convergence tests for the shocktube problems. GMS-EV scheme with convex limiting, relaxing 
the bounds for the density and the entropy.

Lax Leblanc Sod

# dof δ1(t) rate δ1(t) rate δ1(t) rate
805 6.45E-02 – 7.91E-02 – 5.67E-02 –
1605 3.40E-02 0.93 4.58E-02 0.79 3.11E-02 0.87
3205 1.82E-02 0.90 2.74E-02 0.74 1.79E-02 0.79
6405 9.19E-03 0.99 1.55E-02 0.82 8.83E-03 1.02
12805 4.77E-03 0.95 8.23E-03 0.91 4.42E-03 1.00

Fig. 6. Blast wave. Density along the center line y = 0.1 at t = 0.038, C L F = 0.4. ALE vs. Eulerian approximation: I = 400 (left); I = 800 (center); I = 1600
(right).

U0(x) =

⎧⎪⎨⎪⎩
UL, if 0 < x < 0.1,

UM , if 0.1 < x < 0.9,

UR , if 0.9 < x < 1.

(6.11)

The initial computational domain is D0 = (0, 1)×(0, 0.2). The initial mesh is uniform and consists on 200×5 squares 
divided into 2 triangles. The mesh refinement is done is the x-direction only. The simulations are run from t = 0 to t = 0.038. 
We solve the problem with the GMS-EV scheme. Limiting is done on the density and the specific entropy with relaxation on 
the bounds. The mesh motion is done with quadratic polynomials: P̂ geo =P2,2. The mesh smoothing is done with Method 2 
with φ(α) = 1 − (1 − α)1/3.

We compare in Fig. 6 the density at the final time obtained with the proposed ALE method and with the Eulerian ap-
proximation (w̃n = 0 and wn = 0). We observe that, with the same number of degrees of freedom, the contact discontinuity 
is better approximated with the ALE method than with the Eulerian one.

6.7. Noh problem

The next test case we consider is the so-called Noh problem, see Noh [37] and Caramana et al. [9, §5]. Here we take 
γ = 5

3 . The initial data is

ρ0(x) = 1.0, u0(x) = − x

‖x‖ , p0(x) = 10−15. (6.12)

The solution to this problem is a shock wave propagating radially outwards with constant speed given by

u(x, t) =
{(

16,−16 x
‖x‖ ,8

)T
if ‖x‖ ≤ t

3 ,(
1 + t

‖x‖ ,0, 1
2 (1 + t

‖x‖ )
)T

if t
3 < ‖x‖. (6.13)

The computational domain at the initial time is D0 = (−1, 1)2. Dirichlet conditions are enforced at the boundary of the 
domain. The ALE velocity at the boundary of the computational domain is set to be equal to the fluid velocity, i.e., the 
boundary moves inwards in the radial direction with speed 1. The final time is chosen to be t = 0.6 in order to avoid that 
the shockwave collides with the moving boundary of the computational domain. The mesh and the shock collide at t = 3

4
since the shock moves radially outwards with speed 1

3 . We approximate the ALE velocity with Lagrange finite elements of 
degree 2, P̂ geo =P2,2, and we use Method 2 with φ(α) = 1 − (1 − α)1/3 to smooth the mesh.

We show in Table 5 the L1-error indicators δ1 obtained with the low-order method GMS-GV1, the unlimited GMS-EV 
scheme, and GMS-EV scheme with convex limiting on the density and the specific entropy. The initial meshes are composed 
of N×N square cells divided into two triangles. The computations are done with N ∈ {30, 60, 120, 240}. One observes that 
the errors obtained with the high-order methods are smaller than those with the low-order one. Furthermore, in addition 
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Table 5
Noh problem, convergence test, t = 0.6, CFL = 0.4.

GMS-GV1 GMS-EV GMS-EV limited

# dof δ1(t) rate δ1(t) rate δ1(t) rate
961 8.52E-01 – 2.35E-01 – 2.89E-01 –
3721 5.48E-01 0.64 1.26E-01 0.89 1.51E-01 0.94
14641 3.14E-01 0.80 7.19E-02 0.81 8.07E-02 0.90
58081 1.47E-01 1.09 4.16E-02 0.79 4.18E-02 0.95
231361 7.72E-02 0.93 2.40E-02 0.79 2.18E-02 0.94

Fig. 7. Contours of the density field on a uniform mesh, h = 1/120: GMS-GV1 method, maximum of density is 14.59 (left); GMS-EV method with convex 
limiting on the density and the entropy, maximum of density is 16.29 (center and right); Scatter plot of the density at the vertices of the mesh as a 
function of the radial distance (right).

Fig. 8. Noh problem, t = 0.6, nonuniform mesh. Final mesh (left); Density (center) obtained with the GMS-EV method with convex limiting on density and 
specific entropy. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

of preserving the bounds, the GMS-EV scheme with convex limiting has a better rate of convergence than the unlimited 
method. The rate of convergence is around 0.95, which is close to the optimal rate of 1.

We show in Fig. 7 the density field obtained with GMS-GV1 (left panel) and with the GMS-EV scheme with convex 
limiting (center and right panel) the t = 0.6 on the uniform corresponding to h = 1

120 . The right panel shows a scatter plot 
of the density at the vertices of the mesh as a function of the radial distance (GMS-EV scheme only).

We show in Fig. 8 a solution obtained with the GMS-EV scheme with convex limiting on a nonuniform mesh suggested 
in [11, §8.4]. This test is meant to illustrate the robustness of the method with respect to the mesh regularity. The initial 
mesh is divided in four quadrants: the bottom left quadrant is composed of 32×32 squares; the top left is composed of 
32×64 squares; the top right is composed of 64×64; and the bottom right is composed of 64×32 squares. Each square cell 
is divided into two triangles. We observe that the method behaves well and does not develop any hour-glass-like instability. 
A scatter plot of the density at the vertices of the mesh as a function of the radial distance is shown in the rightmost panel.

The results shown in Fig. 7 and Fig. 8 compare quite well with Dobrev et al. [11, Figs. 8.7], Guermond et al. [23, Fig. 15], 
and Boscheri et al. [6, Fig. 4].
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Fig. 9. Saltzman problem. Density field and mesh at t = 0.6. GMS-EV plus convex limiting with pure Lagrangian motion. Solution obtained on the uniform 
mesh (left) and on the modified mesh using the mapping T ptb(right). The length of the domain, initially equal to 1, is now equal to 0.4.

Fig. 10. Saltzman problem. The GMS-EV plus convex limiting solution is compared against the exact solution (solid line). The solutions are plotted as 
functions of the x1 coordinate. On the left the density and on the right the vertical component of the velocity obtained on the modified mesh with pure 
Lagrangian motion.

6.8. Saltzman problem

We now consider the so-called Saltzman problem (see Dukowicz and Meltz [13, §2.2]). It is a shocktube problem in a 
two-dimensional rectangular box, (0, 1)×(0, 0.1) with γ = 5

3 . A strong shock wave is created by a piston moving to the right 
along the horizontal axis. The solution to this problem is obtained by solving the Riemann problem with VL = (1, 2, (γ −
1)10−4)T , VR = (1, 0, (γ − 1)10−4)T , with the convention that here V = (ρ, v, e), where v is the velocity and e the specific 
internal energy. The 3-wave of this Riemann problem is a shock moving with speed λ3 = 1.3334166614589844. The 2-wave 
is a contact discontinuity moving with speed v∗ = 1. The 1-wave is a shock moving with speed λ−

1 = 0.66658333854101581, 
Here we have ρ∗

L = ρ∗
R = 3.9992502342988532, p∗ = 1.3334833281256511. The Saltzman problem consists of simulating 

only half of this problem by replacing the contact discontinuity with a wall moving at speed 1. The wall is initially located 
at {x = 0}. The initial data is u0 = (1, 0, 10−4)T , and the boundary condition is v = ex at the boundary {x = t} and v·n = 0
otherwise.

The mesh for the initial computational domain D0 = (0, 1)×(0, 0.1) is composed of 100×10 uniformly distributed square 
cells each divided into two triangles. The mesh is then transformed by using the mapping T ptb : (x1, x2)

T �→ (x1 + (0.1 −
x2) sin(πx1), x2)

T . The mapping T ptb is applied to all the Lagrange nodes {a0
i }i∈Vgeo . This transformation is meant to bias 

the mesh in order to trigger hourglass instabilities. We use quadratic elements for the mesh motion: P̂ geo = P2,2. The 
motion is done without any smoothing; that is, ωn

i = 0 in (5.3), i.e., the motion is Lagrangian. The high-order viscosity dH,n
i j

is computed by using the entropy viscosity commutator explained in §3.4 using the entropy η(u) = ρs. Limiting on the 
density and the specific entropy is applied as explained in §6.4.1.

We show in Fig. 9 the density and the mesh at t = 0.6 and in Fig. 10 the density and the vertical component of the 
velocity as functions of the coordinate x1. We observe that the GMS-EV scheme is robust with respect to the bias introduced 
in the mesh. Except for some small oscillations near the boundaries, the numerical and the exact solutions are in good 
agreement. These results compare well with Boscheri et al. [7, Fig. 10] and Scovazzi [39, Fig. 2].

6.9. Rayleigh-Taylor instability

The last problem is the Rayleigh-Taylor instability. This instability occurs at the interface between two fluids of different 
densities with the lighter fluid on top of the heavier one. The fluids are initially at rest. The initial equilibrium is unstable 
under the action of the gravity force: any perturbation at the interface breaks the balance.

The computational domain is a fixed rectangular box D0 = (0, d/2) × (0, 3d). In the simulations we set d = 1/3. The 
gravitational force is g = (0, −0.1x2)

T . The heavy fluid has density ρmax = 2 and the light fluid has density ρmin = 1. The 
interface between the two fluids at t = 0 is x2 = η(x) = 0.5 − 0.1d cos(2πx1/d). The growth of the perturbation at the 
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Fig. 11. Rayleigh Taylor instability. Density field at times t = 2, 3, 4, 5, 6, 7.5 (from left to right). ALE (top) and Eulerian (bottom). In both cases we use 
GMS-EV with convex limiting and relaxation on the entropy and the specific entropy; CFL = 0.6.

interface is exponential and the rate is exp(αt) where α ∝A, and A = (ρmax −ρmin)/(ρmax +ρmin) is the Atwood number; 
here we take A = 1/3. The initial density field is slightly regularized by setting

ρ0(x) := 2 + tanh

(
y − η(x)

0.01d

)
. (6.14)

The initial pressure is hydrostatic. The slip boundary condition is enforced on the four walls of D0. The mesh is composed 
of 50×200 squares divided into two triangles. The ALE velocity is computed with P̂ geo = P4,2 Lagrange finite elements. 
The simulations are run until t = 7.5 with CFL = 0.6. The mesh undergoes very large deformations in the time interval 
[0, t]. The mesh is smoothed with Method 2 using �(α) = 1 − (1 − α)

1
3 . We show in Fig. 11 the density field ob-

tained with the GMS-EV scheme with limiting and relaxation on the density and the specific entropy. We compare the 
solution obtained with the ALE approach (top panels) with the solution obtained with the Eulerian approach (bottom pan-
els).

Finally, in order to illustrate that the method is robust when using fourth-order polynomials to describe the mesh motion, 
i.e., P̂ geo = P4,2, we show in Fig. 12 the meshes and the amplitude of the velocity at the four times t = 4, 5, 6, 7.5. These 
pictures show that the mesh undergoes very large deformations in this test.
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Fig. 12. Magnitude of the velocity field and mesh obtained with the ALE method with GMS-EV and limiting: t = 4, 5, 6, 7.5 (from left to right). Initial mesh 
is composed of 50 × 200 cells divided into two triangles; CFL = 0.6.

Appendix A. Technical material

Proof of Lemma 2.1. (1) Observe that∑
1≤i≤m

(∂ui η(u))∂u j (ui W k) =
∑

1≤i≤m

(∂ui η)δi j W k =
∑

1≤i≤m

(∂u j η(u)W k).

Hence the entropy flux associated with u ⊗ W is η(u)W . This proves (1).
(2) Let v(x, t) be the entropy solution to the Riemann problem (2.4), and let w(x, t) be the entropy solution to the Riemann 
problem (2.2). Let (η(u), F (u)) be an entropy pair for the flux f . Then

∞∫
0

∫
R

(−η(w(x, t))∂tφ(x, t) − n·F (w(x, t))∂xφ(x, t))dx dt −
∫
R

η(w0(x))φ(x,0)dx ≤ 0, (A.1)

for all φ ∈ C1
0([0, ∞); R+). Making the change of variable x := x′ + (W·n)t , setting ψ(x′, t) := φ(x′ + (W·n)t, t), and observing 

that ∂tψ(x′, t) = (∂tφ)(x′ + (W·n)t, t) + (W·n)(∂xφ)(x′ + (W·n)t, t), we infer that

∞∫
0

∫
R

(−η(w(x′ + (W·n)t, t))∂tψ(x′, t) − (n·F (w(x′ + (W·n)t, t)) − w(x′ + (W·n)t, t)(W·n))∂xψ(x′, t))dx′ dt

−
∫
R

η(w0(x′ + (W·n)t))ψ(x′,0)dx′ ≤ 0, (A.2)

for all ψ ∈ C1
0([0, ∞); R+). Using (1), i.e., the entropy flux associated with (f(w) − w ⊗ W )n is n·F (w) − (W ·n)w , the 

above computation shows that w is an entropy solution to (2.2) iff w(x + (W·n)t, t) is an entropy solution to (2.4), thereby 
proving (2). (Recall that using in (A.1) the family of entropies η±

i (u) = ±ui and associated entropy fluxes F ±
i (u) = ±fi(u), 

i ∈ {1 :m}, one deduces from (A.1) that w(x, t) is a weak solution to (2.2); similarly, (A.2) implies that w(x + (W ·n)t, t) is a 
weak solution to (2.4).)
(3) This is a direct consequence of (2).
(4) The solution w to the Riemann problem is self-similar, i.e., there exists ψ such that w(x, t) = ψ( x

t ). Hence v(x, t) =
w(x +W·nt, t) = ψ( x

t +W·n). This implies that if x
t +W·n ≤ λL(fn, v L, v R) then v(x, t) = v L and if x

t +W·n ≥ λR(fn, v L, v R)

then v(x, t) = v R ; which completes the proof. �
Appendix B. Sod, Lax, and Leblanc shocktubes

We give here all the details that are needed to compute the exact solution to the Sod, Lax, and Leblanc shocktubes so 
that any reader without access to a Riemann solver can estimate the exact solution up to fifteen digits of accuracy. Denoting 
by ρ, v, p the density, velocity, and pressure, and recalling that the equation of state is the gamma law p = (γ − 1)ρe, we 
give in Table 6 the Riemann data for these three tests.
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Table 6
Data for Sod, Lax and Leblanc shocktubes.

ρL ρR v L v R pL pR γ

Sod 1.0 0.125 0.0 0.0 1.0 0.1 7
5

Lax 0.445 0.5 0.698 0.0 3.528 0.571 7
5

Leblanc 1.0 0.001 0.0 0.0 2
3 10−1 2

3 10−10 5
3

Table 7
Solution of the Sod, Lax and Leblanc shocktubes.

ξ ≤ λ−
1 λ−

1 < ξ ≤ λ+
1 λ+

1 < ξ ≤ v∗ v∗ < ξ ≤ λ3 λ3 < ξ

ρ ρL ρ(ξ) ρ∗
L ρ∗

R ρR

v v L v(ξ) v∗ v∗ v R

p pL p(ξ) p∗ p∗ pR

Table 8
Star states for Sod, Lax and Leblanc shocktubes.

Sod Lax Leblanc

λ−
1 −1.183215956619923 −2.6335650740600323 − 1

3
λ+

1 −0.07027281256118334 −1.6366974421005713 0.49578489518897934
v∗ 0.92745262004894991 1.5287230266328840 0.62183867139173454
λ3 1.7521557320301779 2.4793214809898405 0.82911836253346982
ρ∗

L 0.4263194281784952 0.34456847418960945 5.4079335349316249×10−2

ρ∗
R 0.26557371170530708 1.3040845320261998 3.9999980604299963×10−3

p∗ 0.3031301780506468 2.4660979192073564 5.1557792765096996×10−4

The solutions to these three problems have the same structure: the left-wave (or 1-wave) is an expansion, the middle 
wave is a contact discontinuity, and the right-wave (or 3-wave) is a shock. Denoting ξ = (x − x0)/t the self-similar variable, 
where x0 ∈R is the location of the discontinuity at t = 0, we introduce the following functions describing the left expansion 
wave (i.e., the 1-wave):

ρ(ξ) = ρL

[
2

γ +1 + γ −1
(γ +1)cL

(v L − ξ)
] 2

γ −1
, (B.1a)

v(ξ) = 2
γ +1

[
cL + γ −1

2 v L + ξ
]
, (B.1b)

p(ξ) = pL

[
2

γ +1 + γ −1
(γ +1)cL

(v L − ξ)
] 2γ

γ −1
, (B.1c)

where cL = √
γ pL/ρL is the sound speed of the left state. Then the full self-similar solution is described in Table 7 with the 

parameters λ−
1 , λ+

1 , v∗ , λ3, ρ∗
L , ρ∗

R , and p∗ given in Table 8.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2019 .108927.
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