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Abstract A new approximation technique based on L1-minimization is introduced.
It is proven that the approximate solution converges to the viscosity solution in the case
of one-dimensional stationary Hamilton–Jacobi equation with convex Hamiltonian.
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1 Introduction

The goal of the present paper is to investigate the approximation properties of a new
class of L1-minimization techniques for approximating stationary Hamilton–Jacobi
equations in one space dimension.

Most approximation algorithms of Hamilton–Jacobi equations are based on
monotonicity and Lax–Friedrichs approximate Hamiltonians, see, e.g., Kao et al. [13].
Monotonicity is very often invoked to prove convergence of low-order approximations,
see, e.g., Crandall and Lions [6], Barles and Souganidis [2]. In this spirit, Abgrall [1]
proved convergence for a class of first-order schemes on meshes composed of triangles
using a monotonicity-based argument by Crandal and Lions [6]. For higher-order
approximations, limiters must be brought into the game as monotonicity cannot be
preserved. For instance, second-order MUSCL-type finite difference approximations
have been shown to converge to viscosity solutions by Lions and Souganidis [17], see
also Osher and Shu [19] for higher-order discretizations. We refer to Osher and Fedkiw
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270 J.-L. Guermond, B. Popov

[18] and Sethian [21] for reviews of the approximation literature of Hamilton–Jacobi
equations.

In the present paper we take a radically different point of view by formulating the
discrete problem as a minimization in L1(a, b). The motivation behind this approach
is based on observations made in [8] that L1-minimization is capable of selecting
viscosity solutions of transport equations equipped with ill-posed boundary conditions.
This fact has indeed been proved in [10] in one space dimension. This encouraged us
to build a research program in this direction and the purpose of the present work is
to show that indeed L1-minimization is a viable technique. The idea of using L1 to
construct nonlinear approximations of PDE’s is quite new (although, for early attempts
in computational fluid dynamics we refer to [8,12,15,16]) but seems to be gaining
momentum in the image processing/denoising community [3–5,20].

In this paper we describe a nonlinear finite element technique to approximate
viscosity solutions of stationary Hamilton–Jacobi equations in one space dimen-
sion using continuous finite elements of arbitrary degree. The method is based on
L1-minimization: a functional containing the L1-norm of the Hamiltonian plus dis-
crete entropy terms is minimized over the finite element space. Under appropriate
hypotheses on the Hamiltonian (say convexity and Lipschitz boundedness), it is shown
that the algorithm converges to the unique viscosity solution. The main results of the
paper are Theorems 5.2 and 6.2.

The paper is organized as follows. The continuous problem is introduced in Sect. 2.
The discrete finite element setting along with the minimization problem is introduced
in Sect. 3. The existence of minimizers to the discrete problem is proved in Sect. 4.
The passage to the limit is done in Sect. 5, i.e., it is shown in this section that the limit
solution solves the PDE almost everywhere. The proof that the limit solution is indeed
a viscosity solution is reported in Sect. 6. The main argument consists of proving a
one-sided bound on second-order finite differences of the solution.

2 The continuous problem

We consider the following stationary Hamilton–Jacobi equation

H(x, u, u′) = 0, in (a, b), with u(a) = α, u(b) = β, (2.1)

where [a, b] is a bounded interval. We henceforth assume that Hamiltonian H satisfies
the following properties:

|p| ≤ cs (|H(x, v, p)| + |v| + 1), ∀(x, v, p) ∈ [a, b]×R×R, (2.2)

H(x, v, p) is uniformly Lipschitz on [a, b]×[−R, R]×B(0, R) for all R > 0.

(2.3)

A typical example is the eikonal equation or any stationary Hamilton–Jacobi equations
derived from scalar conservation laws with convex flux, see Evans [7], Kružkov [14],
or Lions and Souganidis [17].
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L1-minimization methods for 1D Hamilton–Jacobi equations 271

We assume that (2.1) has a unique viscosity solution u such that

u ∈ W 1,∞(a, b) ∩ C0[a, b], (2.4)

u is q-semiconcave for some q > 1, (2.5)

where we understand q-semiconcavity in the following sense:

Definition 2.1 A function u in W 1,∞(a, b) is said to be q-semiconcave if there is a
concave function vc ∈ W 1,∞(a, b) and a function w ∈ W 2,q(a, b) so that u = vc +w.

Remark 2.1 Recall that a function v in W 1,∞(a, b) is usually called uniformly semi-
concave in textbooks if and only if it can be decomposed into v(x) = vc(x) + cvx2

where cv is a nonnegative constant and vc is concave and in W 1,∞(a, b). Definition 2.1
is a slight generalization of semiconcavity.

An immediate consequence of Definition 2.1 is that if a function u is q-semiconcave,
then there is c > 0 such that for all δ > 0 and all ω ⊂ (a, b) so that ω ± δ ⊂ �, the
following hold

u(x + δ) − 2u(x) + u(x − δ) ≤ c δ
2− 1

q , ∀x ∈ ω (2.6)

‖(u(· + δ) − 2u(·) + u(· − δ))+‖Lq (ω) ≤ c δ2, (2.7)

where (t)+ := 1
2 (t + |t |) denotes the positive part of t for all t ∈ R. Henceforth c

denotes a generic constant which may vary at each occurrence but does not depend on
δ (nor on the mesh parameter h, see Sect. 3).

Remark 2.2 Note that (2.4)–(2.5) implies that u′ ∈ BV(a, b). Actually, Definition 2.1
implies u = vc + w where vc ∈ W 1,∞(a, b) is concave and w ∈ W 2,q(a, b) ⊂
W 2,1(a, b). Hence,

|u′|BV(a,b) ≤ 2‖v′
c‖L∞(a,b) + ‖w′‖BV(a,b).

To be able to collectively refer to (2.4)-(2.5), we define

X =
{
v ∈ W 1,∞(�) ∩ C0[a, b]; v is q-semiconcave

}
. (2.8)

The goal of this paper is to construct a sequence of approximate solution to (2.1)
using continuous finite elements and by minimizing the residual in L1(a, b). We show
that upon introducing an appropriate entropy, the sequence of approximate solutions
converges to the unique viscosity solution to (2.1). The fact that the residual is mini-
mized in L1(a, b) is a key.
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272 J.-L. Guermond, B. Popov

3 The discrete problem

3.1 The meshes

Let {Th}h>0 be an indexed family of finite element meshes. We assume that for any
given h > 0, Th is a partition of the interval [a, b]. Namely, for all index h > 0,
there is an integer n > 0 such that Th = ∪n

i=0[xi , xi+1] with x0 = a, xn+1 = b,
and hi = xi+1 − xi . The quantity h = max0≤i≤n hi is called the meshsize of the
partition Th . We denote by Vh = {xi ; 0 ≤ i ≤ n} and V i

h = Vh ∩ (a, b) = {xi }n
i=1 the

collection of the mesh vertices and interior mesh vertices, respectively. Let Nh(x, δ)

denote the number of interior vertices in the interval (x − δ, x + δ), i.e., Nh(x, δ) =
card(V i

h ∩ (x − δ, x + δ)).

Definition 3.1 We say that the mesh family {Th}h>0 is almost uniform if there are
c1, c2 > 0 such that for all h > 0

x1 − a ≥ c1h, b − xn ≥ c1h, (3.1)

Nh(x, δ) ≤ c2

(
δ

h
+ 1

)
, ∀x, δ, s.t. x − δ, x + δ ∈ [a, b]. (3.2)

In this paper, we will only consider almost uniform mesh families.
Let k ≥ 1 be an integer and denote by Pk the set of real-valued polynomials in

[a, b] of total degree at most k. We introduce

Xh =
{
vh ∈ C0[a, b]; vh|K ∈ Pk, ∀K ∈ Th; vh(a) = α, vh(b) = β

}
, (3.3)

X(h) = X + Xh . (3.4)

For every function v in X(h) we denote by {−∂nv}+ : V i
h −→ R

+ the map such
that for all {x} = K1 ∩ K2 ∈ V i

h ,

{−∂nv}+(x) =
(
− 1

2 (v′|K1
(x)·n1 + v′|K2

(x)·n2)
)

+ ,

where n1 and n2 are the unit outward normals to the mesh cells K1 and K2 at x
respectively. Note that, if K1 = [xi−1, xi ] and K2 = [xi , xi+1], then {−∂nv}(xi )

is the jump of v′
h at xi , i.e., {−∂nv}(xi ) = v′

h(xi + 0) − v′
h(xi − 0). That gives

{−∂nv}+(xi ) = (v′
h(xi + 0) − v′

h(xi − 0))+.

3.2 The discrete minimization problem

Let p be a fixed real number such that

1 < p ≤ q. (3.5)
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L1-minimization methods for 1D Hamilton–Jacobi equations 273

We define the following functional Jh : X(h) � v −→ Jh(v) ∈ R
+ by:

Jh(v) =
b∫

a

|H(x, v, v′)|dx + h
∑

K∈Th

∫

K

(v′′(x))
p
+dx + h2−p

∑

xi ∈V i
h

({−∂nv}+(xi ))
p .

(3.6)

For every function v in X(h) we refer to
∫ b

a |H(x, v, v′)|dx as the residual. The two
extra terms in the right-hand side above are referred to as the volume entropy term
and the interface entropy term.

Remark 3.1 Whenever v ∈ W 1,∞(a, b) is a concave function, for example in the case
of the eikonal equation, the two entropy term are zero, i.e., these two terms do not
add extra viscosity. They are meant to prevent the occurrence of large positive second
derivatives.

Remark 3.2 If the solution to (2.1) is known to be smooth and if high-order finite
elements are used (i.e., k > 1), the functional Jh must be modified as follows

Jh(v) =
b∫

a

|H(x, v, v′)|dx

+ hk
∑

K∈Th

∫

K

(v′′(x))
p
+dx + h1+k(1−p)

n∑
i=1

({−∂nv}+(xi ))
p , (3.7)

to benefit from the high-order interpolating capability of the finite elements. Rescaled
this way, the three terms composing Jh(v) are each of order hk whenever v is a smooth
function. Of course, better expressions for the functional can be devised by using the
local mesh size hK = diam(K ) instead of h.

We henceforth focus our attention on the following minimization problem: Seek
uh in Xh such that

Jh(uh) = inf
vh∈Xh

Jh(vh). (3.8)

The goal of the rest of the paper is to show that (at least) one minimizer exists and
every sequence of minimizers (or sequence of almost minimizers) converges to the
unique viscosity solution to (2.1).

4 Existence of minimizers

The goal of this section is to prove the existence of (at least) one minimizer for the
discrete problem (3.8). This is done by deriving a decay rate (in terms of h) of the
discrete residual, deriving a priori bounds, and using a compactness result.
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274 J.-L. Guermond, B. Popov

4.1 The W 1,1(a, b) bound

For every positive real number γ > 0 we define the set Sh,γ = {
vh ∈ Xh;∫ b

a |H(x, vh, v′
h)|dx ≤ γ h

}
. The following result shows that the collection

{
Sh,γ

}
h>0

is uniformly bounded.

Lemma 4.1 Let γ > 0 and assume that Sh,γ is not empty, then there is c0(γ ) > 0,
independent of h, and h0 > 0 such that

∀h < h0, ∀vh ∈ Sh,γ , ‖vh‖W 1,1 + ‖vh‖L∞ ≤ c0(γ ). (4.1)

Proof Let vh be a member of Sh,γ . For a ≤ x ≤ b we define

F(x) =
x∫

a

|v′
h(s)|ds.

Owing to (2.2), we infer

F(x) ≤
x∫

a

cs(|H(s, vh, v′
h)| + |vh | + 1)ds.

The fact that vh is a member of Sh,γ implies

F(x) ≤ cs

⎛
⎝γ h +

x∫

a

|vh(s)|ds + x − a

⎞
⎠ .

Note that
|vh(s)| ≤ |vh(a)| + |vh(s) − vh(a)| ≤ |α| + F(s). (4.2)

Using the above, we derive

F(x) ≤ cs (γ + (|α| + 1)(b − a)) + cs

x∫

a

F(s)ds

for all a ≤ x ≤ b and all h ≤ h0 := 1. Applying Gronwall’s lemma, we infer

F(x) ≤ cs (γ + (|α| + 1)(b − a)) ecs (x−a) ≤ c, (4.3)

where c is a constant which depends on cs , γ , the size of the interval b − a, and the
boundary value u(a) = α but is independent of h for any h ≤ 1. Using (4.2) and (4.3),
we derive the following maximum principle and variation bound

‖vh‖L∞ + ‖vh‖BV = ‖vh‖L∞ + ‖vh‖W 1,1 ≤ c0(γ ).

��
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L1-minimization methods for 1D Hamilton–Jacobi equations 275

4.2 Consistency

We are going to derive a consistency property. Let Ih : X −→ Xh be the linear
Lagrange interpolation operator on piecewise linear polynomials. Note that Ih is stable
on W 1,∞(a, b), and convexity preserving. The following lemma gives an estimate of
the discrete residual Jh in terms of h.

Lemma 4.2 Let u solve (2.1), then there is c(u) independent of h such that

Jh(Ihu) ≤ c(u) h. (4.4)

Proof Observe that
(1) Since Ihu is piecewise linear, the second derivative of Ihu is zero inside each

interval Ki = [xi , xi+1], i.e., (Ihu)′′|Ki
= 0 for all 0 ≤ i ≤ n;

(2) Owing to Definition 2.1 and the linearity of Ih , we have (Ihu)′ = (Ihvc)
′ +

(Ih(w))′. Since Ih is convexity preserving and Ihvc is concave, we derive that for all
1 ≤ i ≤ n the following holds

{−∂nIhu}+(xi ) ≤ {−∂nIhvc}+(xi ) + {−∂nIh(w)}+(xi )

= {−∂nIh(w)}+(xi ) ≤ |{−∂nIh(w)}(xi )|.

Now we represent {−∂nIh(w)}(xi ) as follows:

{−∂nIh(w)}(xi ) = 1

hi

xi+1∫

xi

w′(s)ds − 1

hi−1

xi∫

xi−1

w′(s)ds

=
1∫

0

xi +thi∫

xi +(t−1)hi−1

w′′(s)dsdt.

Then Hölder’s inequality yields

h2−p
∑

xi ∈V i
h

|{−∂nIh(w)}(xi )|p ≤ ch‖u‖p
W 2,p ≤ c′h‖u‖p

W 2,q = c′′h.

(3) Since Ih is uniformly stable in W 1,∞(a, b), there is c ≥ 0, independent of h,
such that ‖Ihu‖W 1,∞ ≤ c ‖u‖W 1,∞ . Let us set R = c ‖u‖W 1,∞ , then owing to (2.3),
there is cR ≥ 0 such that for all x ∈ [a, b]

|H(x, Ihu, (Ihu)′)| = |H(x, Ihu, (Ihu)′) − H(x, u, u′)|
≤ cR(|Ihu − u| + |(Ihu)′ − u′|).
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276 J.-L. Guermond, B. Popov

This immediately implies

b∫

a

|H(x, Ihu, (Ihu)′)|dx ≤ cR‖Ihu − u‖W 1,1(a,b) ≤ c cRh‖u′‖BV(a,b),

where ‖u′‖BV(a,b) is bounded, see Remark 2.2.
(4) Now, we use the three items above to estimate

Jh(Ihu) ≤ c h(cu + cR‖u′‖BV(a,b)) ≤ c′h.

��
Remark 4.1 Note that it has been critical to use the L1-norm of the residual to obtain
(4.4). This is compatible with the fact that u′ is in BV(a, b) only. Using any other
Lr -norm would yield a suboptimal exponent on h.

4.3 Existence of a minimizer

We now use the above a priori and consistency estimates to prove the existence of a
minimizer to problem (3.8).

Corollary 4.3 The discrete problem (3.8) has at least one minimizer uh and there is
c > 0 independent of h such that

‖uh‖W 1,1 + ‖uh‖L∞ ≤ c, (4.5)

Jh(uh) ≤ ch. (4.6)

Proof Let Kh = {vh ∈ Xh; Jh(vh) ≤ Jh(Ihu)}. Clearly Ihu is a member of Kh .
Owing to Lemma 4.2, for every vh in Kh

b∫

a

|H(x, vh, v′
h)|dx ≤ Jh(vh) ≤ Jh(Ihu) ≤ c(u) h.

That is, the hypothesis of Lemma 4.1 is satisfied, i.e., Sh,c(u) is not empty. This implies
that there is c′(u) independent of h such that for all vh ∈ Kh , ‖vh‖L∞ + ‖vh‖W 1,1 ≤
c′(u). In other words, Kh is uniformly bounded in W 1,1(a, b) ∩ L∞(a, b). Finite-
dimensionality implies that Kh is compact. It is also clear that Jh : Kh −→ R

is continuous in every norm (possibly not uniformly with respect to h). Since for
every function vh in Xh\Kh , Jh(vh) is larger than Jh(Ihu), and the functional Jh is
continuous on a compact set, we infer

inf
vh∈Xh

Jh(vh) = inf
vh∈Kh

Jh(vh) = min
vh∈Kh

Jh(vh),

which concludes the proof. ��
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L1-minimization methods for 1D Hamilton–Jacobi equations 277

Since in practice uh might not be computed exactly or might be approximated to
some extend through some iterative process (the details of the process in question are
irrelevant for our discussion), we now define the notion of almost minimizer. We say
that a family of functions {vh ∈ Xh}h>0 is a sequence of almost minimizers if there is
c > 0 such that for all h > 0,

Jh(vh) ≤ c h. (4.7)

It is clear that minimizers are almost minimizers, thus showing that the class of almost
minimizers is not empty. The rest of the paper consists of proving that sequences of
almost minimizers converge to the viscosity solution of (2.1).

5 Convergence to a weak solution

In this section it is proved that any sequence of almost minimizers as defined above
converges to a weak solution to (2.1).

5.1 W 1,∞ bound via BV gradient bound

We proceed by showing that v′
h has bounded variation which in turn implies a W 1,∞

bound on vh and convergence of the sequence to a weak solution.

Lemma 5.1 Let {vh ∈ Xh}h>0 be a sequence of almost minimizers, then

‖v′
h‖L∞(a,b) + ‖v′

h‖BV(a,b) ≤ c. (5.1)

Proof Since the mesh family is almost uniform, the number of mesh elements, n + 1,
is proportional to b−a

h , and the first and last mesh intervals are of size O(h), see (3.1).
We compute the variation of v′

h on [a,b] as follows

|v′
h |BV =

n∑
i = 0

xi+1∫

xi

|v′′
h (s)| ds +

n∑
i=1

|{−∂nv}(xi )| .

Using that |t | = 2(t)+ − t , we obtain

|v′
h |BV = 2

n∑
i=0

xi+1∫

xi

(v′′
h (s))+ ds + 2

n∑
i=1

{−∂nv}+(xi )

−
n∑

i=0

xi+1∫

xi

v′′
h (s) −

n∑
i=1

{−∂nv}(xi ).
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278 J.-L. Guermond, B. Popov

Recalling that {−∂nv}(xi ) = vh(xi + 0) − vh(xi − 0), we obtain

|v′
h |BV = 2

n∑
i = 0

xi+1∫

xi

(v′′
h (s))+ ds + 2

n∑
i=1

{−∂nv}+(xi ) − (v′
h(b) − v′

h(a)). (5.2)

Recall that x1 − a ≥ c1h and b − xn ≥ c1h, and vh is a polynomial of fixed degree
(at most k on [a, x1)). Therefore,

|v′
h(a)| ≤ ‖v′

h‖L∞(a,x1) ≤ c

x1 − a
‖v′

h‖L1(a,x1)
≤ c

c1h
‖v′

h‖L1(a,x1)
,

where the constant c depends only on k. Owing to (2.2) and (4.7), we infer

‖v′
h‖L1(a,x1)

≤ cs

x1∫

a

|H(s, vh, v′
h)|ds + cs(‖vh‖L∞(a,b) + 1)(x1 − a) ≤ c h.

Then, we conclude that

|v′
h(a)| ≤ c

c1h
‖v′

h‖L1(a,x1)
≤ c. (5.3)

Similarly, we infer

|v′
h(b)| ≤ c,

where the constant c is independent of h. Using the above bounds for |v′
h(a)| and

|v′
h(b)| in (5.2), we derive

|v′
h |BV ≤ 2

n∑
i = 0

xi+1∫

xi

(v′′
h (s))+ ds + 2

n∑
i=1

{−∂nv}+(xi ) + c. (5.4)

We now bound the two terms in the right-hand side of (5.4) using the estimate (4.7).
Using Hölder’s inequality, we infer

n∑
i = 0

xi+1∫

xi

(v′′
h (s))+ ds ≤

⎛
⎝

n∑
i = 0

⎛
⎝

xi+1∫

xi

(v′′
h (s))+ ds

⎞
⎠

p⎞
⎠

1
p

(n + 1)
1− 1

p . (5.5)

We apply Hölder’s again in (5.5) and use that xi+1 − xi ≤ h ≤ c
n to derive

n∑
i = 0

xi+1∫

xi

(v′′
h (s))+ ds ≤ c

⎛
⎝

n∑
i = 0

xi+1∫

xi

(v′′
h (s))p

+ ds

⎞
⎠

1
p

. (5.6)

123



L1-minimization methods for 1D Hamilton–Jacobi equations 279

Similarly, we estimate the second term

n∑
i=1

{−∂nv}+(xi ) ≤ ch−1+ 1
p

(
n∑

i=1

{−∂nv}p
+(xi )

) 1
p

. (5.7)

Using the estimate (4.7) in (5.6) and (5.7), we obtain

n∑
i = 0

xi+1∫

xi

(v′′
h (s))+ ds +

n∑
i=1

{−∂nv}+(xi ) ≤ c,

which implies, see (5.4),
|v′

h |BV ≤ c. (5.8)

The W 1,∞ bound for vh immediately follows from (5.8) and (5.3)

‖v′
h‖L∞(a,b) ≤ |vh(a)| + |v′

h |BV ≤ c, (5.9)

which concludes the proof. ��

5.2 Convergence to a weak solution

We say that v ∈ W 1,∞(a, b) ∩ C0[a, b] is a weak solution to (2.1), if v solves (2.1)
almost everywhere.

Theorem 5.2 Let {vh ∈ Xh}h>0 be a family of almost minimizers, then the sequence
{vh}h>0 converges, up to a subsequence, to a weak solution v to (2.1).

Proof Owing to Lemma 5.1, the sequence {vh}h>0 is precompact in W 1,∞(a, b)

equipped with the weak-� topology and precompact in W 1,1(a, b) equipped with
the strong topology. Let v ∈ W 1,∞(a, b) be the limit, up to subsequences, of {vh}h>0
in W 1,∞(a, b). Moreover, the limit v is in C0[a, b], since the sequence {vh}h>0 is
equi-continuous.

We now prove that v is a weak solution to (2.1) by showing that ‖H(·, v, v′)‖L1(a,b)

= 0. Using that vh → v in W 1,1(a, b), we conclude that vh → v and v′
h → v′ a.e.

in (a, b). Then, we can apply Egorov’s Theorem. Given ε > 0, there exists a set E
with meas(E) < ε, such that the convergence of v′

h → v′ on (a, b)\E is uniform.
Recall that the convergence of vh → v is uniform on [a, b]. Therefore, for every ε′′,
1 ≥ ε′′ > 0, we can find h(ε′′) > 0 such that for every h < h(ε′′),

|vh(x) − v(x)| < ε′′ and |v′
h(x) − v′(x)| < ε′′, ∀x ∈ (a, b)\E .

Note also that for every x ∈ (a, b)\E and every h < h(1), we have

max(|vh(x)|, |v(x)|, |v′
h(x)|, |v′(x)|) ≤ R,

123



280 J.-L. Guermond, B. Popov

where R := ‖v‖W 1,∞(a,b) +1. Hence, we use that H is uniformly Lipschitz (see (2.3))
and derive that there exists a value of ε′′ > 0 such that

|H(x, v, v′) − H(x, vh, v′
h)| < cε′′ < ε (5.10)

for every x ∈ (a, b)\E and every h < h(ε′′). Note that at this point the value of ε′′
solely depends on ε. We now split ‖H(·, v, v′)‖L1(a,b) in the following way

‖H(·, v, v′)‖L1(a,b) = ‖H(·, v, v′)‖L1((a,b)\E) + ‖H(·, v, v′)‖L1(E). (5.11)

We use v ∈ W 1,∞(a, b) and (2.3) to estimate

‖H(·, v, v′)‖L1(E) ≤ c meas(E) = cε.

The other term in (5.11) is estimated as follows

‖H(·, v, v′)‖L1((a,b)\E) ≤ ‖H(·, v, v′) − H(·, vh, v′
h)‖L1((a,b)\E)

+‖H(·, vh, v′
h)‖L1((a,b)\E)

≤ ε meas((a, b)\E) + ‖H(·, vh, v′
h)‖L1(a,b)

≤ cε + ch,

where we used (5.10) and (4.7) to derive the above inequality. As a result for every
ε > 0 and every h < h(ε),

‖H(·, v, v′)‖L1(a,b) ≤ c(ε + h),

which implies ‖H(·, v, v′)‖L1(a,b) = 0. ��
Remark 5.1 Theorem 5.2 still holds true if p = 1 since the BV bound from Lemma 5.1
holds for any p ≥ 1. The requirement p > 1 (see (3.5)) is necessary for proving
convergence to the viscosity solution which is dealt with in the next section.

6 Convergence to the viscosity solution

We prove in this section that the limit solution v is the viscosity solution to (2.1). We
now make the following assumption:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A weak solution u ∈ W 1,∞(a, b) ∩ C0[a, b] which
satisfies the one-sided bound

δu(x) := u(x + δ) − 2u(x) + u(x − δ) ≤ c δ1+γ

for all x − δ, x + δ ∈ (a, b), with 0 < γ ≤ 1, is the
unique viscosity solution of (2.1).

(6.1)

This property is known to characterize viscosity solutions to stationary (and time
dependent) Hamilton–Jacobi equations with H(x, u, u′) = λu + F(u′) where λ > 0
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and F is convex, see Theorems 2.6–2.7 in Lions and Souganidis [17]. Note that, the
property with γ = 1 is the well known semi-concavity uniqueness criterion, see, e.g.,
Evans [7]. If u is q-semiconcave, then u satisfies the above one-sided bound with
γ = 1 − 1

p for any 1 < p ≤ q.

Lemma 6.1 Let {vh ∈ Xh}h>0 be a sequence of almost minimizers, then there is c
independent of h such that


δvh(x) = vh(x + δ) − 2vh(x) + vh(x − δ) ≤ c δ
2− 1

p (6.2)

for all δ ≥ h and all x − δ, x + δ ∈ (a, b).

Proof We start with the following observation:


δvh(x) =
x+δ∫

x

v′
h(s) − v′

h(s − δ) ds. (6.3)

Recall that Ki = [xi , xi+1], for 0 ≤ i ≤ n. Then for a.e. s ∈ (x, x + δ), we have

v′
h(s) − v′

h(s − δ) =
∑

Ki ∩(s−δ,s) �=∅

∫

Ki ∩(s−δ,s)

v′′
h (τ ) dτ +

∑
xi ∈(s−δ,s)

{−∂nv}(xi ).

Using that x − δ ≤ s − δ < s ≤ x + δ, we derive that

(v′
h(s) − v′

h(s − δ))+ ≤
∑

Ki ∩(x−δ,x+δ) �=∅

∫

Ki

(v′′
h (τ ))+ dτ +

∑
xi ∈(x−δ,x+δ)

{−∂nv}+(xi ).

Using the above bound (6.3), we infer


δvh(x) ≤ δ

⎛
⎜⎝

∑
Ki ∩(x−δ,x+δ) �=∅

∫

Ki

(v′′
h (τ ))+ dτ +

∑
xi ∈(x−δ,x+δ)

{−∂nv}+(xi )

⎞
⎟⎠. (6.4)

We now estimate each sum in (6.4). We have

∑
Ki ∩(x−δ,x+δ) �=∅

∫

Ki

(v′′
h (τ ))+ dτ ≤ c δ

1− 1
p

⎛
⎜⎝

∑
Ki ⊂Th

∫

Ki

(v′′
h (τ ))

p
+ dτ

⎞
⎟⎠

1
p

≤ c δ
1− 1

p , (6.5)
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where we used Hölder’s inequality and the bound (4.7). Similarly, for the second term
in (6.4), we derive

∑
xi ∈(x−δ,x+δ)

{−∂nv}+(xi ) ≤ c (Nh(x, δ))
1− 1

p

⎛
⎜⎝

∑

xi ∈V i
h

{−∂nv}p
+(xi ),

⎞
⎟⎠

1
p

,

where recall Nh(x, δ) is the number of interior vertices in (x − δ, x + δ). Since
the vertices are almost uniformly distributed, we have Nh(x, δ) ≤ c ( δ

h + 1). The
hypothesis δ > h yields Nh(x, δ) ≤ c δ

h . Using this estimate together with the bound
(4.7), we obtain

∑
xi ∈(x−δ,x+δ)

{−∂nv}+(xi ) ≤ c

(
δ

h

)1− 1
p

h
p−1

p = c δ
1− 1

p . (6.6)

Combining (6.4), (6.5), and (6.6), we conclude


δvh(x) ≤ c δ
2− 1

p ,

which proves the lemma. ��
Theorem 6.2 Assume (6.1). Then, every sequence of almost minimizers {vh ∈ Xh}h>0
converges in W 1,1(a, b) to the unique solution u to (2.1).

Proof Lemma 5.1, implies that {vh}h>0 is uniformly bounded in W 1,∞(a, b). Then

(up to a subsequence), vh
�

⇀ v ∈ W 1,∞(a, b), and by Arzelà–Ascoli Theorem we
have that vh → v uniformly on [a, b]. Hence, given h0 > 0, for any h < h0, vh

satisfies the one-sided bound (6.2) for all δ > h0. Taking the limit as h → 0, we
derive that


δv(x) = v(x + δ) − 2v(x) + v(x − δ) ≤ c δ
2− 1

p

for all δ > h0 and all x such that (x − δ, x + δ) ⊂ (a, b). Since h0 > 0 is arbitrary, we
conclude that v satisfies the one-sided estimate in (6.1) for all δ > 0 with γ = 1 − 1

p
(observe that γ > 0 since p > 1). Therefore, Assumption (6.1) implies that v is the
unique viscosity solution to (2.1). ��

7 Numerical illustration

To illustrate the method, we now perform some numerical tests. Let us consider the
following stationary Hamilton–Jacobi equation on the domain � = (−a, a):

(u′)2 + 3u + 1
2 x2 − |x | = 0, u(±a) = b, (7.1)
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Fig. 1 Left Graph of uvisc. Right Convergence tests

where a = 0.95 and the boundary data b is set so that the viscosity solution uvisc is

uvisc(x) = − 1
2 x2 + 2

3 |x | 3
2 , (7.2)

in other words b = uvisc(a). This solution is in W 1,∞(�) ∩ W 2,q(�) ∩ C0[−a, a]
for any q ∈ [1, 2). It also satisfies the one-sided bound (6.1) for any γ ∈ [0, 1

2 ]. The
graph of uvisc is shown in the left panel of Fig. 1. The purpose of this example is to
illustrate our introducing the q-semiconcavity notion, see Definition 2.1.

We discretize the integral in (3.6) by using the midpoint rule and the minimization
problem (3.8) is solved approximately by means of a fast algorithm that is described
in [9]. This algorithm yields an almost minimizer of (3.8) in O(n) operations.

We show in the right panel of Fig. 1 convergence tests on this problem using p = 1.5
for the entropy functional. We report the error measured in the L1-, L∞-, and W 1,1-
norms with respect to the mesh size. The algorithm is clearly second-order in the
L1-norm. The second-order slope is consistent with the W 2,1 regularity. We observe
superconvergence in the W 1,1-norm and L∞-norm; the convergence rate is better than
first-order.

We observe experimentally that when p is close to 1, which is the lower limit
in Theorem 6.2, the method yields an approximation which is far from the viscosity
solution if the mesh is not fine enough, say if h > h0(p). This phenomenon is observed
only in the range p ∈ (1, 1.16). We report in Table 1 the threshold h0(p) as a function
of p. When p > 1.17 no threshold phenomenon is observed. This seems to confirm
that the condition p > 1 that we inferred in Theorem 6.2 is sharp. More thorough tests
and a description of the fast algorithm mentioned above are reported in [9].

Table 1 Threshold h0(p) in the
range p ∈ (1, 1.16)

p 1.09 1.1 1.12 1.13 1.14 1.15 1.16

h0(p) 4.6e-7 2.5e-6 2.7e-5 1.4e-4 7.6e-4 9.5e-4 1.1e-3
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284 J.-L. Guermond, B. Popov

8 Conclusions

We have introduced an L1-based method for solving stationary Hamilton–Jacobi
equations in one space dimension assuming a q-semiconcavity property on the
solution. A two-dimensional generalization of our main result, i.e., Theorem 6.2, is
reported in [11]. We are currently investigating possible generalization of the fast 1D
minimization algorithm from [9] to two space dimensions.
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