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\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We introduce a (linear) positive and asymptotic-preserving method for solving the
one-group radiation transport equation. The approximation in space is discretization agnostic: the
space approximation can be done with continuous or discontinuous finite elements (or finite volumes,
or finite differences). The method is first-order accurate in space. This type of accuracy is consistent
with Godunov's theorem since the method is linear. The two key theoretical results of the paper are
Theorem 4.4 and Theorem 4.8. The method is illustrated with continuous finite elements, and it is
observed to converge with the rate \scrO (h) in the L2-norm on manufactured solutions, and it is \scrO (h2)
in the diffusion regime. The proposed method does not suffer from overshoots at the interfaces of
optically thin and optically thick regions, is positive, and is asymptotic-preserving with respect to
the diffusion limit.
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\bfone . \bfI \bfn \bft \bfr \bfo \bfd \bfu \bfc \bft \bfi \bfo \bfn . The goal of this paper is to construct approximation tech-
niques for the radiation transport equation that are both positive and asymptotic-
preserving in the diffusion limit. Here we adopt the terminology used in the hyperbolic
literature (see, e.g., Jin [14]). Letting \psi \epsilon be the solution to a problem that
depends on a small parameter \epsilon , and letting \psi \epsilon 

h be the approximation of \psi \epsilon by some
discretization method with mesh-size h, we say that the discretization method is
asymptotic-preserving if it is convergent (meaning limh\downarrow 0 \psi \epsilon ,h = \psi \epsilon for every \epsilon ) and
lim\epsilon \downarrow 0 limh\downarrow 0 \psi 

\epsilon 
h = limh\downarrow 0 lim\epsilon \downarrow 0 \psi 

\epsilon 
h. In the elliptic PDE literature, any numerical

method with the above properties is said to be ``robust,"" and a method is said to
``lock"" if it is not robust, i.e., if it is not asymptotic-preserving (see, e.g., Babu\v ska and
Suri [3]). These two terminologies are use interchangeably in the present paper.

In the wake of Reed and Hill [24] and Lesaint and Raviart [19], a dominant
paradigm in the kinetic literature to solve the radiation transport equation consists of
using the discontinuous Galerkin (dG) technique with the upwind flux. Unfortunately,
to the best of our knowledge, there does not exist yet in the literature a dG technique
that both is positive and does not lock in the thick diffusion limit. For instance,
it was pointed out in Larsen [16] that the finite volume scheme ``step scheme"" (i.e.,
piecewise constant dG) with standard upwind locks in the diffusion limit. Several
variations of the ``step scheme"" have been analyzed in Larsen, Morel, and Miller, Jr.
[18]: it was shown that the ``Lund--Wilson"" and the ``Castor"" variants yield cell-edge
angular fluxes that also lock in the diffusion limit. Furthermore, the cell-edge fluxes
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for these schemes cannot reproduce the infinite medium solution. A ``new"" scheme
was proposed in Larsen, Morel, and Miller, Jr. [18] but was subsequently dismissed
due to a poor behavior at the boundaries. For many years, the diamond-difference
scheme was found to be the best performing finite-difference scheme, even though its
cell-edge fluxes lock in the thick diffusion limit. In Larsen and Morel [17], most of
the previous schemes have been set aside in favor of the linear discontinuous finite
element scheme (the piecewise linear dG technique with standard upwinding).

The cause for locking has been identified in a seminal paper by Adams [2]. The au-
thor analyzed multidimensional dG approximations and showed that some dG schemes
lock in the diffusion limit because the upwind numerical flux forces the scalar flux,
and thus the angular flux, to be continuous across the mesh cells. This observation
has been confirmed in Guermond and Kanschat [9], where the equivalence of the limit
problem to a mixed discretization for the Laplacian was proved and the nature of
boundary layers appearing when the boundary flux is not isotropic was discussed.
The asymptotic analysis in [2] and [9] suggests that the problem could be allevi-
ated by modifying the upwind numerical flux. By making the amount of stabilization
dependent on the scattering cross section so that the amount of upwinding decreases as
the scattering cross section increases, it is shown in Ragusa, Guermond, and Kanschat
[23] that locking can indeed be avoided in the thick diffusive limit, including for the
dG0 approximation. The dG scheme thus obtained converges robustly for finite ele-
ment spaces of any polynomial order, including piecewise constant functions (dG0),
but, like all the other methods mentioned above, it is not guaranteed to be positive.

The objective of this work is to revisit the approximation theory for the radiation
transport equation in heterogeneous media by using the algebraic framework (i.e., dis-
cretization agnostic) introduced in Guermond and Popov [10] and Guermond, Popov,
and Tomas [12] and by incorporating in a roundabout way some ideas from Gosse and
Toscani [8] and Ragusa, Guermond, and Kanschat [23]. We propose a method that
is both positivity-preserving and does not lock (i.e., is asymptotic-preserving) in the
thick diffusion limit. (The method shares some similarities with the two-dimensional
finite volume technique from Buet, Despr\'es, and Franck [6, eqs. (18) and (19)].) Being
linear, and in compliance with Godunov's theorem, the proposed algorithm is only
first-order accurate in space though. This work is the first part of an ongoing project
aiming at developing techniques that are high-order accurate, positivity-preserving,
and robust (i.e., asymptotic-preserving) in the diffusion limit. The next step will be
to increase the accuracy by introducing a nonlinear process; however, since this is not
the purpose of the paper, we just mention in passing possible techniques to achieve
this goal. This could be done in many ways; for instance, one could invoke a smooth-
ness indicator like in Guermond and Popov [11, sect. 4.3], one could use a limiting
technique in the spirit of the flux-corrected-transport method, or one could enforce
positivity through inequality constraints like in Hauck and McClarren [13, sect. 4].

The paper is organized as follows. We introduce the model problem and the
discrete setting (continuous and discontinuous finite elements) in section 2. The notion
of graph viscosity, as defined in [10, 12], is introduced in section 3. We show in this
section that the graph viscosity gives a scheme that is positive, but the scheme locks
in the diffusion regime. This section is meant to give some perspective on the material
introduced in section 4. The positive- and asymptotic-preserving scheme announced
above is introduced in section 4. Originality is only claimed for the material presented
in this section and the next one; the key results are Theorem 4.4 and Theorem 4.8. In
section 5 we report numerical experiments illustrating the performance of the proposed
method. The paper finishes with section 6 where we make concluding remarks.
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\bftwo . \bfP \bfr \bfe \bfl \bfi \bfm \bfi \bfn \bfa \bfr \bfi \bfe \bfs . In this section, we introduce the model problem under inves-
tigation and some notation regarding the discretization.

\bftwo .\bfone . \bfT \bfh \bfe \bfm \bfo \bfd \bfe \bfl \bfp \bfr \bfo \bfb \bfl \bfe \bfm . Let D be an open, bounded, connected Lipschitz
domain in \BbbR 3, and let \scrS be the unit sphere in \BbbR 3. We denote by | \scrS | the measure of
\scrS , i.e., | \scrS | = 4\pi . The boundary of D is denoted by \partial D, and the outer unit normal is
denoted by \bfitn . We want to solve the linear, one-group, radiation transport equation

\bfOmega \cdot \nabla \psi (\bfitx ,\bfOmega ) + \sigma t(\bfitx )\psi (\bfitx ,\bfOmega ) = \sigma s(\bfitx )\psi (\bfitx ) + q(\bfitx ,\bfOmega ), (\bfitx ,\bfOmega ) \in D\times \scrS ,(2.1a)

\psi (\bfitx ,\bfOmega ) = \alpha (\bfitx ,\bfOmega ), (\bfitx ,\bfOmega ) \in \partial D - ,(2.1b)

\psi (\bfitx ) =
1

| \scrS | 

\int 
\scrS 
\psi (\bfitx ,\bfOmega ) d\bfOmega , \bfitx \in D(2.1c)

with \partial D - := \{ (\bfitx ,\bfOmega ) \in \partial D \times \scrS | \bfOmega \cdot \bfitn (\bfitx ) < 0\} . The independent variable (\bfitx ,\bfOmega )
spans D\times \scrS . The dependent variable \psi (\bfitx ,\bfOmega ) is referred to as the angular intensity
or angular flux, and the quantity \psi (\bfitx ) is called scalar intensity or flux. The symbols
\sigma t(\bfitx ) and \sigma s(\bfitx ) denote the total and scattering cross sections, respectively.

We want to investigate the approximation of (2.1) using either continuous or dis-
continuous finite elements. The objective is to construct a method that is asymptotic-
preserving in the diffusion limit and positive (assuming that the boundary data, the
cross sections, and the source term are nonnegative). In order to do that, we are
going to adopt an idea from Gosse and Toscani [8], where a relaxation of the so-called
hyperbolic heat equation is introduced, and combine it with an idea from Ragusa,
Guermond, and Kanschat [23] where, in addition to the mesh-size, the stabilization
parameters of the approximation have been made to depend on the cross sections
as well.

\bftwo .\bftwo . \bfA \bfn \bfg \bfu \bfl \bfa \bfr \bfd \bfi \bfs \bfc \bfr \bfe \bft \bfi \bfz \bfa \bft \bfi \bfo \bfn . In order to simplify the presentation we assume
that the discretization in angle is done using a discrete ordinate technique. The (finite)
angular quadrature is denoted (\mu l,\bfOmega l)l\in \scrL and is assumed to satisfy

(2.2)
\sum 
l\in \scrL 

\mu l = | \scrS | ,
\sum 
l\in \scrL 

\mu l\bfOmega l = \bfzero ,
\sum 
l\in \scrL 

\bfOmega l| \bfitc \cdot \bfOmega l| = \bfzero ,
\sum 
l\in \scrL 

\mu l\bfOmega l\otimes \bfOmega l =
| \scrS | 
3
\BbbI 

for all \bfitc \in \BbbR 3, where \BbbI is the 3\times 3 identity matrix. Recall that | \scrS | = 4\pi . For further
reference we also define the set \scrA L := \{ \bfOmega l \in \BbbR 3, l \in \scrL \} with L := card(\scrL ).

\bftwo .\bfthree . \bfC \bfo \bfn \bft \bfi \bfn \bfu \bfo \bfu \bfs fi\bfn \bfi \bft \bfe \bfe \bfl \bfe \bfm \bfe \bfn \bft \bfs . We describe in this section the Galerkin
approximation of (2.1) with continuous finite elements. This technique is not posi-
tive and is known to exhibit severe oscillations; it will be appropriately stabilized in
section 4.

Let (\scrT h)h>0 be a shape-regular sequence of unstructured matching meshes. For
simplicity we assume that all the elements are generated from a reference element
denoted \widehat K. The geometric transformation mapping \widehat K to an arbitrary elementK \in \scrT h
is denoted TK : \widehat K  - \rightarrow K. We now introduce a reference finite element ( \widehat K, \widehat P , \widehat \Sigma ),
which we assume, for simplicity, to be a Lagrange element. We define the following
scalar-valued finite element space:

P \mathrm{g}(\scrT h) = \{ v \in \scrC 0(D;\BbbR ) | v| K\circ TK \in \widehat P \forall K \in \scrT h\} .(2.3)

The superscript \mathrm{g} is meant to remind us that the space is conforming for the gra-
dient operator, e.g., P \mathrm{g}(\scrT h) \subset H1(D). The global shape functions are denoted by
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\{ \varphi i\} i\in \scrV ; the associated Lagrange nodes are denoted \{ \bfita i\} i\in \scrV (here \scrV is the index set
enumerating the shape functions). We recall that the global shape functions satisfy
the partition of unity property

\sum 
i\in \scrV \varphi i(\bfitx ) = 1 for all \bfitx \in D. We assume that they

have positive mass

(2.4) mi :=

\int 
D

\varphi i(\bfitx ) d\bfitx > 0 \forall i \in \scrV .

For any i \in \scrV , the adjacency list \scrI (i) is defined by setting \scrI (i) := \{ j \in \scrV | \varphi i\varphi j \not \equiv 0\} .
The approximation space for (2.1) is then defined to be

(2.5) \bfitP \mathrm{g}(\scrT h,\scrA L) := P \mathrm{g}(\scrT h)\times . . .\times P \mathrm{g}(\scrT h)\underbrace{}  \underbrace{}  
L \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

.

Let \sigma t,i and \sigma s,i be consistent approximations of \sigma t and \sigma s at the Lagrange
node \bfita i. For instance, let us assume that the mesh \scrT h is such that \sigma t and \sigma s are
continuous over each cell K in \scrT h (\sigma t and \sigma s can be discontinuous across some
mesh interfaces). Let us denote \scrT (i) = \{ K \in \scrT h | \bfita i \in K\} . Then we can set
\sigma t,i =

1
\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(\scrT (i))

\sum 
K\in \scrT (i) \sigma t| K(\bfita i) and \sigma s,i =

1
\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(\scrT (i))

\sum 
K\in \scrT (i) \sigma s| K(\bfita i). For further

reference we denote the absorption cross section at the node \bfita i by \sigma a,i := \sigma t,i  - \sigma s,i.
Let \bfitpsi h := (\psi h,1, . . . , \psi h,L) \in \bfitP \mathrm{g}(\scrT h,\scrA L) be the discrete ordinate Galerkin ap-

proximation of (2.1) with \psi h,k :=
\sum 

j\in \scrV \Psi jk\varphi j \in P (\scrT h) for all k \in \scrL . The field
\bfitpsi h \in \bfitP \mathrm{g}(\scrT h,\scrA L) is obtained by solving the following set of linear equations:\sum 

j\in \scrI (i)

\Psi jk

\int 
D

(\bfOmega k\cdot \nabla \varphi j)\varphi i d\bfitx +mi\sigma t,i\Psi ik = mi\sigma s,i\Psi i +miqik + b\partial ik(\alpha 
\partial 
ik  - \Psi ik),(2.6a)

\Psi i =
1

| \scrS | 
\sum 
k\in \scrL 

\mu k\Psi ik,(2.6b)

where we have lumped the mass matrix, defined qik := 1
mi

\int 
D
\varphi i(\bfitx )q(\bfitx ,\bfOmega k) d\bfitx , and

set

(2.7) b\partial ik = m\partial 
i

| \bfOmega k\cdot \bfitn i|  - \bfOmega k\cdot \bfitn i

2
.

Here m\partial 
i :=

\int 
\partial D

\varphi i(\bfitx ) ds, \bfitn i is the unit normal vector (or approximation thereof) at

the Lagrange node \bfita i, and \alpha 
\partial 
ik := \alpha (\bfita i,\bfOmega k). To refer to boundary degrees of freedom

we introduce the following set of indices:

(2.8) (\scrV \times \scrL )\partial := \{ (j, l) \in \scrV \times \scrL | \bfOmega l\cdot \bfitn j < 0\} .

For further reference, we introduce

(2.9) \bfitc ij :=

\int 
D

\varphi i(\bfitx )\nabla \varphi j(\bfitx ) d\bfitx .

With this notation, the discrete system is rewritten as follows for all (i, k) \in \scrV \times \scrL :

(2.10)
\sum 

j\in \scrI (i)\setminus \{ i\} 

\bfOmega k\cdot \bfitc ij(\Psi jk  - \Psi ik) +mi\sigma t,i\Psi ik = mi\sigma s,i\Psi i +miqik + b\partial ik(\alpha 
\partial 
ik  - \Psi ik).

Notice that here we have used the partition of unity property which implies that\sum 
j\in \scrI (i) \bfitc ij = \bfzero .
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Remark 2.1 (boundary conditions). We have imposed the boundary condition
weakly in (2.10) by using the penalty technique usually invoked in the context of dG
approximations. One can also enforce the boundary conditions strongly; in that case
one sets b\partial ik = 0, and one adds the equations \Psi ik = \alpha \partial 

ik to (2.10) for all (i, k) \in 
(\scrV \times \scrL )\partial . \square 

As mentioned above, the linear system (2.10) has no positivity property. We are
going to remedy this problem in section 3 by introducing some upwinding based on the
graph Laplacian. But making the method positivity-preserving by simply introducing
upwinding makes it lock. We present in section 4 a modification of the upwind graph
viscosity that is both positivity-preserving and asymptotic-preserving.

\bftwo .\bffour . \bfD \bfi \bfs \bfc \bfo \bfn \bft \bfi \bfn \bfu \bfo \bfu \bfs fi\bfn \bfi \bft \bfe \bfe \bfl \bfe \bfm \bfe \bfn \bft \bfs . We briefly describe in this section the
dG approximation of (2.1) with the centered numerical flux.

We use the same notation as in section 2.3 for the shape-regular sequence of
unstructured matching meshes (\scrT h)h>0. We also introduce a reference finite element

( \widehat K, \widehat P , \widehat \Sigma ). This may not be a Lagrange element. We define the following scalar-valued
broken finite element space:

P \mathrm{b}(\scrT h) = \{ v \in L1(D;\BbbR ) | v| K\circ TK \in \widehat P \forall K \in \scrT h\} .(2.11)

The superscript \mathrm{b} is meant to remind us that the space is broken, i.e., the members
of P \mathrm{b}(\scrT h) can be discontinuous across the mesh interfaces. We denote by \{ \varphi i\} i\in \scrV the
collection of the global shape functions generated from the reference shape functions.
The support of each shape function is restricted to one mesh cell only. We assume
that all the shape functions have a positive mass

(2.12) mi :=

\int 
D

\varphi i dx > 0 \forall i \in \scrV .

We introduce the following adjacency sets:

\scrI (K) :=
\bigl\{ 
i \in \scrV | \varphi i| K \not \equiv 0

\bigr\} 
, \scrI (\partial K) :=

\bigl\{ 
i \in \scrV | \varphi i| \partial K \not \equiv 0

\bigr\} 
.(2.13)

Note that \scrI (\partial K) not only includes indices of shape functions with support in \scrI (K),
but this set also includes indices of shape functions that do not have support in K.
More precisely \scrI (\partial K) is the union of two disjoint sets \scrI (\partial K \mathrm{i}) and \scrI (\partial K\mathrm{e}) defined as

\scrI (\partial K \mathrm{i}) :=
\bigl\{ 
i \in \scrI (K)

\bigm| \bigm| \varphi i| \partial K \not \equiv 0
\bigr\} 
, \scrI (\partial K\mathrm{e}) := \scrI (\partial K)\setminus \scrI (\partial K \mathrm{i}).(2.14)

For any i \in \scrV , let K \in \scrT h be such that i \in \scrI (K); then we define the adjacency set \scrI (i)
to be the collection of the indices j \in \scrV such that either j \in \scrI (K) and \varphi i\varphi j | K \not \equiv 0,
or j \in \scrI (\partial K\mathrm{e}) and \varphi i\varphi j | \partial K \not \equiv 0.

Let K \in \scrT h. We finally assume that the reference finite element is such that the
sets of shape functions \{ \varphi j\} j\in \scrI (K) form a partition of unity over K, and the shape
functions \{ \varphi j\} j\in \scrI (\partial K\mathrm{i}), \{ \varphi j\} j\in \scrI (\partial K\mathrm{e}) form partitions of unity over \partial K, i.e.,\sum 

j\in \scrI (K)

\varphi j| K = 1,
\sum 

j\in \scrI (\partial K\mathrm{i})

\varphi j| \partial K = 1, and
\sum 

j\in \scrI (\partial K\mathrm{e})

\varphi j| \partial K = 1.(2.15)

Let i \in V , j \in \scrI (i), let us set

(2.16) \bfitc Kij :=

\int 
K

\varphi i\nabla \varphi j d\bfitx , \bfitc \partial Kij := 1
2

\int 
\partial K

\varphi j\varphi i\bfitn K ds,
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and let us define the vector \bfitc ij as follows:

(2.17) \bfitc ij :=

\left\{       
\bfitc Kij if j \in \scrI (K)\setminus \scrI (\partial K \sansi ),

\bfitc Kij  - \bfitc \partial Kij if j \in \scrI (\partial K \sansi ),

\bfitc \partial Kij if j \in \scrI (\partial K\sanse ).

The partition of unity property (2.15) implies that
\sum 

j\in \scrI (i) \bfitc ij = \bfzero (see, for instance,

[12, Lem. 4.1]).
Let us introduce the discrete broken space

(2.18) \bfitP \mathrm{b}(\scrT h,\scrA L) := P \mathrm{b}(\scrT h)\times . . .\times P \mathrm{b}(\scrT h)\underbrace{}  \underbrace{}  
L \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

.

Let us denote by \bfitpsi h := (\psi h,1, . . . , \psi h,L) \in \bfitP \mathrm{b}(\scrT h,\scrA L) the dG approximation of (2.1)
using the centered flux with \psi h,k :=

\sum 
j\in \scrV \times \scrL \Psi jk\varphi j \in P \mathrm{b}(\scrT h). The field \bfitpsi h \in 

\bfitP \mathrm{b}(\scrT h,\scrA L) is defined to be the solution of

(2.19)
\sum 

j\in \scrI (i)\setminus \{ i\} 

\bfOmega k\cdot \bfitc ij(\Psi jk  - \Psi ik) +mi\sigma t,i\Psi ik = mi\sigma s,i\Psi i +miqik + b\partial ik(\alpha 
\partial 
ik  - \Psi ik).

We insist here that we are using the centered flux; there is no upwinding. The proper
stabilization will be introduced in section 4.

Remark 2.2 (definition of \sigma t,i and \sigma s,i). The definition of the coefficients \sigma t,i
and \sigma s,i depend on the definition of the shape functions. If the shape functions
are nodal-based (i.e., Lagrange polynomials), then one can take \sigma t,i = \sigma t| K(\bfita i) and
\sigma s,i = \sigma s| K(\bfita i), where K contains the support of \varphi i and \bfita i is the Lagrange node
associated with \varphi i. Recall that we denote \sigma a,i := \sigma t,i  - \sigma s,i. \square 

\bfthree . \bfG \bfr \bfa \bfp \bfh \bfv \bfi \bfs \bfc \bfo \bfs \bfi \bft \bfy , \bfp \bfo \bfs \bfi \bft \bfi \bfv \bfi \bft \bfy , \bfa \bfn \bfd \bfl \bfo \bfc \bfk \bfi \bfn \bfg . In order to give some perspec-
tive, we start by introducing a mechanism that ensures positivity but fails to be robust
in the diffusion limit. A correction that makes the method asymptotic-preserving in
the diffusion limit is introduced in section 4.

\bfthree .\bfone . \bfP \bfo \bfs \bfi \bft \bfi \bfv \bfi \bft \bfy . Our starting point is the algebraic system (2.10) or (2.19),
which we call Galerkin, or centered, or inviscid approximation. We are not go-
ing to make any distinction between the continuous and the dG approximations.
The discrete space are henceforth denoted P (\scrT h) and \bfitP (\scrT h), i.e., we have removed
the superscripts \mathrm{g} and \mathrm{b}. We consider the following linear system: Find \bfitpsi h =\sum 

i\in \scrV (\Psi i1, . . . ,\Psi iL)\varphi i \in \bfitP (\scrT h) so that the following holds for all (i, k) \in \scrV \times \scrL :

(3.1)
\sum 

j\in \scrI (i)\setminus \{ i\} 

\bfOmega k\cdot \bfitc ij(\Psi jk  - \Psi ik) +mi\sigma t,i\Psi ik = mi\sigma s,i\Psi i +miqik + b\partial ik(\alpha 
\partial 
ik  - \Psi ik),

where we recall that
\sum 

j\in \scrI (i) \bfitc ij = 0 for all i \in \scrV . Taking inspiration from Guermond

and Popov [11], we introduce the coefficient dkij defined by setting

(3.2) dkij = max(max(\bfOmega k\cdot \bfitc ij , 0),max(\bfOmega k\cdot \bfitc ji, 0)).

Then we perturb (3.1) as follows:

(3.3)
\sum 

j\in \scrI (i)\setminus \{ i\} 

(\bfOmega k\cdot \bfitc ij - dkij)(\Psi jk - \Psi ik)+mi\sigma t,i\Psi ik = mi\sigma s,i\Psi i+miqik+b
\partial 
ik(\alpha 

\partial 
ik - \Psi ik).
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The extra term
\sum 

j\in \scrI (i)\setminus \{ i\}  - dkij(\Psi jk  - \Psi ik) is a graph viscosity since it acts on the
connectivity graph of the degrees of freedom. Notice that this perturbation is first-
order consistent since it vanishes if \Psi jk = \Psi ik for all j \in \scrI (i). In one dimension on a

uniform mesh, where the adjacency list is \{ i - 1, i, i+1\} , we have dkij =
| \bfOmega k| 
2 both for

continuous piecewise linear finite elements and for piecewise constant discontinuous

elements; as a result, we have
\sum 

j\in \scrI (i)\setminus \{ i\}  - dkij(\Psi jk  - \Psi ik) =  - | \bfOmega k| 
2 (\Psi i - 1,k  - 2\Psi ik +

\Psi i+1,k), which is the expression one expects from an artificial viscosity term. Further
insight on the graph viscosity is given in Remark 3.2 in the context of the dG0 setting.
The following result is the key motivation for introducing the graph viscosity.

Lemma 3.1 (minimum/maximum principle). Let dkij be defined in (3.2). Let

(\Psi ik)(i,k)\in \scrV \times \scrL be the solution to (3.3). Let \Psi \mathrm{m}\mathrm{i}\mathrm{n} := min(i,k)\in \scrV \times \scrL \Psi ik and \Psi \mathrm{m}\mathrm{a}\mathrm{x} :=
max(i,k)\in \scrV \times \scrL \Psi ik. Let (i0, k0), (i1, k1) \in \scrV \times \scrL be so that \Psi i0k0

= \Psi \mathrm{m}\mathrm{i}\mathrm{n} and \Psi i1k1
=

\Psi \mathrm{m}\mathrm{a}\mathrm{x}.
(i) Assume that min(j,l)\in \scrV \times \scrL (\sigma a,j + b\partial jl) > 0. Then

(3.4)
mi0qi0k0

+ b\partial i0k0
\alpha \partial 
i0k0

mi0\sigma a,i0 + b\partial i0k0

\leq \Psi \mathrm{m}\mathrm{i}\mathrm{n} \leq \Psi \mathrm{m}\mathrm{a}\mathrm{x} \leq 
mi1qi1k1

+ b\partial i1k1
\alpha \partial 
i1k1

mi1\sigma a,i1 + b\partial i1k1

.

(ii) Otherwise, assume that for all i \in \scrV such that \sigma a,i = 0 and b\partial ik = 0 the definition
of dkij is slightly modified so that \bfOmega k\cdot \bfitc ij < dkij for all j \in \scrI (i) (instead of \bfOmega k\cdot \bfitc ij \leq 
dkij). If 0 \leq min(i,k)\in \scrV \times \scrL qik and 0 \leq min(i,k)\in (\scrV \times \scrL )\partial \alpha 

\partial 
ik, then 0 \leq \Psi \mathrm{m}\mathrm{i}\mathrm{n}.

(iii) Moreover, under the same assumptions on dkij as in (ii), if max(i,k)\in \scrV \times \scrL qik \leq 0,

then \Psi \mathrm{m}\mathrm{a}\mathrm{x} \leq max(i,k)\in (\scrV \times \scrL )\partial \alpha 
\partial 
ik.

Proof. Proof of (i) assuming that min(j,l)\in \scrV \times \scrL (\sigma a,j+b
\partial 
jl) > 0. Let (i0, k0) \in \scrV \times \scrL 

be the indices of the degree of freedom where the minimum is attained; that is,
\Psi ik \geq \Psi i0k0 for all (i, k) \in \scrV \times \scrL . Then using that

\bfOmega k\cdot \bfitc ij  - dkij \leq max(\bfOmega k\cdot \bfitc ij , 0) - dkij \leq 0,

together with \Psi jk0
 - \Psi i0k0

\geq 0 for all j \in \scrI (i0), and \Psi i0k0
\leq \Psi i0 , we infer that

mi0\sigma s,i0\Psi i0k0
+mi0qi0k0

+ b\partial i0k0
(\alpha \partial 

i0k0
 - \Psi i0k0

)

\leq mi0\sigma s,i0\Psi i0 +mi0qi0k0
+ b\partial i0k0

(\alpha \partial 
i0k0
 - \Psi i0k0

)

=
\sum 

j\in \scrI (i0)\setminus \{ i0\} 

(\bfOmega k0
\cdot \bfitc i0j  - d

k0
i0j

)(\Psi jk0
 - \Psi i0k0

) +mi0\sigma t,i0\Psi i0k0
\leq mi0\sigma t,i0\Psi i0k0

.

Hence mi0qi0k0
+ b\partial i0k0

\alpha \partial 
i0k0
\leq (mi0\sigma a,i0 + b\partial i0k0

)\Psi i0k0
. The assertion follows readily

since we assumed thatmi0\sigma a,i0+b
\partial 
i0k0

> 0. The proof of the other assertion, regarding
\Psi \mathrm{m}\mathrm{a}\mathrm{x}, is analogous.

Proof of (ii) assuming that 0 \leq min(i,k)\in \scrV \times \scrL qik and 0 \leq min(i,k)\in (\scrV \times \scrL )\partial \alpha 
\partial 
ik.

From part (i) we have mi0qi0 + b\partial i0k0
\alpha \partial 
i0k0
\leq (mi\sigma a,i0 + b\partial i0k0

)\Psi i0k0
. So, we need to

prove that \Psi i0k0
\geq 0 only in the case \sigma a,i0 = 0 and b\partial i0k0

= 0. Assuming that \sigma a,i0 = 0

and b\partial i0k0
= 0, we have from part (i) the following inequality:

0 \leq mi0qi0k0
\leq 

\sum 
j\in \scrI (i0)\setminus \{ i0\} 

(\bfOmega k0
\cdot \bfitc i0j  - d

k0
i0j

)(\Psi jk0
 - \Psi i0k0

) \leq 0.

The assumption \bfOmega k\cdot \bfitc i0j  - d
k0
i0j

< 0 for all j \in \scrI (i0) implies that \Psi jk0
 - \Psi i0k0

= 0 for
all j \in \scrI (i0). Therefore, we conclude that the global minimum is attained not only at
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the degree of freedom (i0, k0) but also in the whole neighborhood, i.e., for all j \in \scrI (i0).
Repeating the above argument for a global minimum at (j, k0) for all j \in \scrI (i0), we
derive that the global minimum is either nonnegative (if mj\sigma a,j + b\partial jk0

> 0) or again
attained in the whole neighborhood of j, i.e., for all s \in \scrI (j). This process can
terminate in two ways only: (i) either the global minimum is nonnegative at some j
becausemj\sigma a,j+b

\partial 
jk0

> 0 or (ii) the global minimum is attained at all of the degrees of
freedom topologically connected to i0. In this case we have that \Psi jk0

= \Psi i0k0
for all j

in the same connected component as i0, which is the entire set \scrV since \scrT h is connected
(because D is connected). However, for any fixed k0 there exists j such that \Psi jk0

is
on the inflow boundary for \bfOmega k0 , that is, b

\partial 
jk0

> 0, and we conclude \Psi i0k0 = \Psi jk0 \geq 0.
Proof of (iii) assuming that min(i,k)\in \scrV \times \scrL qik \leq 0. By proceeding as in step (i),

we infer that

mi1\sigma s,i1\Psi i1k1
+mi1qi1k1

+ b\partial i1k1
(\alpha \partial 

i1k1
 - \Psi i1k1

)

\geq 
\sum 

j\in \scrI (i1)\setminus \{ i1\} 

(\bfOmega k1
\cdot \bfitc i1j  - d

k1
i1j

)(\Psi jk1
 - \Psi i1k1

) +mi1\sigma t,i1\Psi i1k1
,

i.e., (mi1\sigma a,i1 + b\partial i1k1
)\Psi i1k1

\leq mi1qi1k1
+ b\partial i1k1

\alpha \partial 
i1k1

, which implies \Psi i1k1
\leq \alpha \partial 

i1k1
if

mi1\sigma a,i1 + b\partial i1k1
> 0. If mi1\sigma a,i1 + b\partial i1k1

> 0, then 0 \geq 
\sum 

j\in \scrI (i1)\setminus \{ i1\} (\bfOmega k1
\cdot \bfitc i1j  - 

dk1
i1j

)(\Psi jk1  - \Psi i1k1) \geq 0 and \Psi jk1 = \Psi i1k1 for all j \in \scrI (i1). Then we proceed as in
step (ii) until we reach a degree of freedom j that is on the inflow boundary for \bfOmega k1 ,
i.e., b\partial jk1

> 0. The \Psi \mathrm{m}\mathrm{a}\mathrm{x} = \Psi i1k1
= \Psi jk1

\leq \alpha \partial 
j,k1

.

Remark 3.2 (dG0). To give some insight about (3.2) to the reader who is fa-
miliar with the dG formulation of the radiation transport equation, we now interpret
the graph viscosity in terms of numerical flux. Assume that P \mathrm{b}(\scrT h) is composed
of piecewise constant polynomials. In this case the indices i \in \scrV coincide with
the enumeration of the cells in \scrT h. Let Ki \in \scrT h be a cell, and let (Kj)j\in \scrI (i)
be all the cells that share a face with Ki; then recalling (2.17), we have \bfitc ii =\int 
Ki
\varphi i\nabla \varphi i d\bfitx  - 1

2

\int 
\partial Ki

\varphi 2
i\bfitn K ds and \bfitc ij =

1
2

\int 
\partial Ki

\varphi i\varphi j\bfitn K ds for all j \in \scrI (i)\setminus \{ i\} . Let
us set \psi h,k(\bfitx ) =

\sum 
j\in \scrV \Psi jk\varphi j \in P \mathrm{b}(\scrT h). Let us denote \psi \mathrm{e}

h,k and \psi \mathrm{i}
h,k, respectively, the

exterior trace and the interior trace of \psi h,k on \partial Ki. Recall that \psi h,k| K = \psi \mathrm{i}
h,k = \Psi ik\varphi i

and \psi \mathrm{e}
h,k =

\sum 
j\in \scrI (i)\setminus \{ i\} \Psi jk\varphi j . Then\sum 

j\in \scrI (i)

\bfOmega k\cdot \bfitc ij\Psi jk  - 
\sum 

j\in \scrI (i)\setminus \{ i\} 

dkij(\Psi jk  - \Psi ik) =

\int 
Ki

\varphi i\bfOmega k\cdot \nabla \psi h,k(\bfitx ) d\bfitx 

+

\int 
\partial Ki

1

2
(\psi \mathrm{e}

h,k  - \psi \mathrm{i}
h,k)\varphi i\bfOmega k\cdot \bfitn K ds - 

\int 
\partial Ki

1

2
(\psi \mathrm{e}

h,k  - \psi \mathrm{i}
h,k)\varphi i| \bfOmega k\cdot \bfitn K | ds

=  - 
\int 
Ki

\psi h,k(\bfitx )\bfOmega k\cdot \nabla \varphi i d\bfitx 

+

\int 
\partial Ki

\Bigl( 1
2
(\psi \mathrm{e}

h,k + \psi \mathrm{i}
h,k)\bfOmega k\cdot \bfitn K +

1

2
(\psi \mathrm{i}

h,k  - \psi \mathrm{e}
h,k)| \bfOmega k\cdot \bfitn K | 

\Bigr) 
\varphi i ds.

Hence the dG numerical flux is 1
2 (\psi 

\mathrm{e}
h,k + \psi \mathrm{i}

h,k)\bfOmega k\cdot \bfitn K + 1
2 (\psi 

\mathrm{i}
h,k  - \psi \mathrm{e}

h,k)| \bfOmega k\cdot \bfitn K | , and
we recognize the standard upwind flux. In conclusion, in the dG0 context, the sys-
tem (3.3) with dkij defined in (3.2) simply corresponds to the standard upwinding
approximation. \square 

\bfthree .\bftwo . \bfL \bfo \bfc \bfk \bfi \bfn \bfg . Unfortunately, as reported numerous times in the literature, just
enforcing positivity in a scheme does not prevent locking. Actually the approxi-
mation (3.3) with the graph viscosity defined in (3.2) locks in the diffusive regime.
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More precisely, let \epsilon > 0, and let us consider the following rescaled version of the
problem (2.1):

\bfOmega \cdot \nabla \psi \epsilon (\bfitx ,\bfOmega ) +
\sigma t(\bfitx )

\epsilon 
\psi \epsilon (\bfitx ,\bfOmega ) =

\sigma s(\bfitx )

\epsilon 
\psi 
\epsilon 
(\bfitx ) + \epsilon q(\bfitx ,\bfOmega ), (\bfitx ,\bfOmega ) \in D\times \scrS ,(3.5a)

\psi \epsilon (\bfitx ,\bfOmega ) = \alpha (\bfitx ,\bfOmega ), (\bfitx ,\bfOmega ) \in \partial D - (3.5b)

with the additional assumption that \sigma t(\bfitx ) - \sigma s(\bfitx )
\epsilon = \epsilon \sigma a(\bfitx ). The limit solution to

this problem when \epsilon \downarrow 0 has been investigated thoroughly in the literature; see, e.g.,
Chandrasekhar [7] and Malvagi and Pomraning [21]. It is known in particular that
\psi 0 := lim\epsilon \downarrow \psi 

\epsilon is isotropic (i.e., does not depend on \bfOmega ) and satisfies the following
diffusion equation:

 - \nabla \cdot 
\biggl( 

1

3\sigma s
\nabla \psi 0

\biggr) 
+ \sigma a\psi 

0 = q, \bfitx \in D,(3.6a)

\psi 0(\bfitx ) =
1

2\pi 

\int 
\partial D - 

W (| \bfOmega \cdot \bfitn (\bfitx )| )\alpha (\bfOmega ,\bfitx ) d\bfOmega , \bfitx \in \partial D,(3.6b)

where W (\mu ) =
\surd 
3
2 \mu H(\mu ) is defined in terms of Chandrasekhar's H-function for iso-

tropic scattering in a conservative medium (see [21] for the asymptotic analysis and
[7] for details on the H-function). It is known that the convergence \psi \epsilon \rightarrow \psi 0 is not
uniform unless 1

6m+\bfitM \cdot \bfitn = 0 with

m(\bfitx ) :=
1

\pi 

\int 
\partial D - 

\alpha (\bfOmega ,\bfitx )| \bfOmega \cdot \bfitn (\bfitx )| d\bfOmega ,(3.7a)

\bfitM (\bfitx ) :=
1

4\pi 

\int 
\partial D - 

\alpha (\bfOmega ,\bfitx )| \bfOmega \cdot \bfitn (\bfitx )| \bfOmega d\bfOmega .(3.7b)

Observe that m = \alpha and \bfitM =  - 1
6\alpha \bfitn , i.e.,

1
6m+\bfitM \cdot \bfitn = 0, if \alpha is isotropic (see also

Guermond and Kanschat [9, Thms. 5.3 and 5.4]).
Let \bfitpsi \epsilon 

h be the discrete ordinate approximation to the solution of (3.5) with dkij
defined in (3.2):

(3.8)
\sum 

j\in \scrI (i)\setminus \{ i\} 

(\bfOmega k\cdot \bfitc ij  - dkij)(\Psi \epsilon 
jk  - \Psi \epsilon 

ik) + \epsilon mi\sigma a,i\Psi 
\epsilon 
ik

= mi
\sigma s,i
\epsilon 

(\Psi 
\epsilon 

i  - \Psi \epsilon 
ik) + \epsilon miqik + b\partial ik(\alpha 

\partial 
ik  - \Psi ik).

Proposition 3.3 (locking). Let the graph viscosity dkij be defined in (3.2). As-

sume that mini,j
\sum 

k\in \scrL \mu kd
k
ij > 0. If the boundary conditions are homogeneous, i.e.,

\alpha \partial 
ik = 0, then lim\epsilon \rightarrow 0 \Psi 

\epsilon 
jk = 0 for all i, j \in \scrV and all k \in \scrL . Hence there is locking if

q \not \equiv 0.

Proof. To avoid losing the reader who is not familiar with functional analysis
techniques, we are going to proceed formally. A rigorous proof can be done by pro-
ceeding as in Guermond and Kanschat [9, sect. 4]. Using Landau's notation, let us
introduce the formal asymptotic expansion \bfitpsi \epsilon 

h = \bfitpsi 0
h + \epsilon \bfitpsi 1

h + \epsilon 2\bfitpsi 2
h +\scrO (\epsilon 3). Inserting

this expansion into (3.8) gives

0 = mi\sigma s,i(\Psi 
0

i  - \Psi 0
ik),\sum 

j\in \scrI (i)\setminus \{ i\} 

(\bfOmega k\cdot \bfitc ij  - dkij)(\Psi 0
jk  - \Psi 0

ik) = mi\sigma s,i(\Psi 
1

i  - \Psi 1
ik) + b\partial ik(\alpha 

\partial 
ik  - \Psi 0

ik).
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The first equation shows that \Psi 
0

i = \Psi 0
ik. Then integrating the second equation with

respect to the angles gives\sum 
j\in \scrI (i)\setminus \{ i\} 

(\Psi 
0

j  - \Psi 
0

i )

\biggl( \Bigl( \sum 
k\in \scrL 

\mu k\bfOmega k)
\Bigr) 
\cdot \bfitc ij  - 

\sum 
k\in \scrL 

\mu kd
k
ij

\biggr) 
= m\partial 

i

1

4
m\partial 

i  - m\partial 
i \delta 

\partial 
i \Psi 

0

i ,

where m\partial 
i := 4

| \scrS | 
\sum 

k\in \scrL  - 
i
\mu k\alpha 

\partial 
ik| \bfOmega k\cdot \bfitn i| and \delta \partial i := 1

| \scrS | 
\sum 

k\in \scrL  - 
i
\mu k| \bfOmega k\cdot \bfitn i| with \scrL  - 

i :=

\{ k \in \scrL | \bfOmega k\cdot \bfitn i < 0\} . (Note that the continuous counterparts of the coefficients
m\partial 

i and \delta \partial i are 4
| \scrS | 

\int 
\bfOmega \cdot \bfitn i<0

\alpha (\bfita i,\bfOmega )| \bfOmega \cdot \bfitn i| d\bfOmega and 1
| \scrS | 

\int 
\bfOmega \cdot \bfitn i<0

| \bfOmega \cdot \bfitn i| d\bfOmega = 1
4 , respec-

tively.) Recalling that the assumptions on the angular quadrature (2.2) imply that\sum 
k\in \scrL \mu k\bfOmega k = \bfzero , setting \gamma ij :=

\sum 
k\in \scrL \mu kd

k
ij we obtain

\sum 
j\in \scrI (i)\setminus \{ i\} \gamma ij(\Psi 

0

j  - \Psi 
0

i ) =

m\partial 
i (

1
4m

\partial 
i  - \delta \partial i \Psi 

0

i ). Let us assume now that \alpha \partial 
ik = 0, and let us multiply this equation

by 2\Psi 
0

i ; then\sum 
j\in \scrI (i)\setminus \{ i\} 

\gamma ij(\Psi 
0

j )
2 + \gamma ij(\Psi 

0

j  - \Psi 
0

i )
2  - \gamma ij(\Psi 

0

i )
2 =  - 2m\partial 

i \delta 
\partial 
i (\Psi 

0

i )
2.

Now we observe that \gamma ij = \gamma ji, and we sum the above identity over i \in \scrV . This

yields
\sum 

i\in \scrV (2m
\partial 
i \delta 

\partial 
i (\Psi 

0

i )
2 +

\sum 
j\in \scrI (i)\setminus \{ i\} \gamma ij(\Psi 

0

j  - \Psi 
0

i )
2) = 0. This in turn implies that

\Psi 
0

j = \Psi 
0

i = 0 for all i, j \in \scrV since mini,j \gamma ij > 0. Then we have established that
lim\epsilon \downarrow 0\bfitpsi \epsilon ,h = 0, which in turn immediately implies that limh\downarrow 0 lim\epsilon \downarrow 0\bfitpsi \epsilon ,h = 0. Let
R : \scrP (\scrT h) \rightarrow L2(D\times \scrS ) be some suitable linear reconstruction operator. Then we
have lim\epsilon \downarrow 0 lim\epsilon \downarrow 0R(\bfitpsi \epsilon ,h) = 0. On the other hand (referring the reader to [21, 7] for
the details), the limit solution to (3.5), i.e., the solution to (3.6), is not zero because
we assumed q \not \equiv 0. Moreover, using standard approximation techniques, it can be
established that limh\downarrow 0R(\bfitpsi \epsilon ,h) = \psi \epsilon for every \epsilon > 0. Hence, we have proved that

lim
\epsilon \downarrow 0

lim
h\downarrow 0

R(\bfitpsi \epsilon ,h) = lim
\epsilon \downarrow 0

\psi \epsilon = \psi 0 \not \equiv 0 = lim
\epsilon \downarrow 0

lim
\epsilon \downarrow 0

R(\bfitpsi \epsilon ,h),

which in turn shows that the approximation is not asymptotic-preserving, i.e., the
approximation locks.

\bffour . \bfA \bfn \bfa \bfs \bfy \bfm \bfp \bft \bfo \bft \bfi \bfc -\bfp \bfr \bfe \bfs \bfe \bfr \bfv \bfi \bfn \bfg \bfs \bfc \bfh \bfe \bfm \bfe . The goal of this section is to introduce
the asymptotic-preserving method mentioned in the introduction of the paper. This
scheme is somewhat discretization agnostic since it is solely based on the algebraic
formulations (2.10) and (2.19).

\bffour .\bfone . \bfP \bfr \bfe \bfl \bfi \bfm \bfi \bfn \bfa \bfr \bfy \bfn \bfo \bft \bfa \bft \bfi \bfo \bfn . In the rest of the paper we use the following no-
tation:

\scrL  - 
i := \{ k \in \scrL | \bfOmega k\cdot \bfitn i < 0\} , \delta \partial i :=

1

| \scrS | 
\sum 
k\in \scrL  - 

i

\mu k| \bfOmega k\cdot \bfitn i| ,(4.1a)

m\partial 
i :=

4

| \scrS | 
\sum 
k\in \scrL  - 

i

\mu k\alpha 
\partial 
ik| \bfOmega k\cdot \bfitn i| , \frakM \frakM \frakM \partial 

i :=
1

| \scrS | 
\sum 
k\in \scrL  - 

i

\mu k\alpha 
\partial 
ik| \bfOmega k\cdot \bfitn i| \bfOmega k.(4.1b)

We also denote \scrV \circ = \{ i \in \scrV | \varphi i| \partial D \equiv 0\} and \scrV \partial = \scrV \setminus \scrV \circ . For further reference we de-

fine \scrL (\bfitx ) - := \{ k \in \scrL | \bfOmega k\cdot \bfitn (\bfitx ) < 0\} , m\partial (\bfitx ) := 4
| \scrS | 

\sum 
k\in \scrL (\bfitx ) - \mu k\alpha (\bfitx ,\bfOmega k)

\partial | \bfOmega k\cdot \bfitn (\bfitx )| ,
and \frakM \frakM \frakM \partial (\bfitx ) := 1

| \scrS | 
\sum 

k\in \scrL (\bfitx ) - \mu k\alpha (\bfitx ,\bfOmega k)
\partial | \bfOmega k\cdot \bfitn (\bfitx )| \bfOmega k for all \bfitx \in \partial D.
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Now, depending whether one uses (or prefers using) continuous finite elements or
discontinuous finite elements, we introduce two sets of coefficients. In the context of
continuous finite elements we set

(4.2) c\mathrm{g},\mathrm{d}ij =

\int 
D

1\widetilde \sigma s(\bfitx )\nabla \varphi i(\bfitx )\cdot \nabla \varphi j(\bfitx ) d\bfitx , i, j \in \scrV ,

where \widetilde \sigma s(\bfitx ) = max(\sigma s(\bfitx ), \varepsilon max( 1
\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(D) , \| \sigma s\| L\infty (D))) with \varepsilon = 10 - 14. The quantity\widetilde \sigma s is introduced to avoid divisions by zero. For discontinuous finite elements of degree

1 or larger we proceed as follows. We assume for simplicity that \widetilde \sigma s is constant over
each mesh cell and denote \widetilde \sigma K := \widetilde \sigma s| K for all cells K. Let K \in \scrT h, and let \scrF \circ 

K be the
set of the faces of K that are not on \partial D; that is, F \in \scrF \circ 

K if there exists K \prime \in \scrT h,
K \prime \not = K, such that F := K \cap K \prime . For every F \in \scrF \circ 

K , we define \widetilde \sigma F := 2\widetilde \sigma K\widetilde \sigma K\prime \widetilde \sigma K+\widetilde \sigma K\prime 

and hF := diam(F ). Let v \in \bfitP \mathrm{b}(\scrT h), and let vK , vK\prime be the restrictions of \bfitv on K
and K \prime , respectively; we define the weighted average of v across F \in \scrF \circ 

K as follows:

\{ v\} := \widetilde \sigma K\widetilde \sigma K+\widetilde \sigma K\prime 
vK| F + \widetilde \sigma K\prime \widetilde \sigma K+\widetilde \sigma K\prime 

vK\prime | F . The jump of v across F \in \scrF \circ 
K is defined by

setting [[v]] := vK  - v\prime K . We now define for all j \in \scrI (i)

c\mathrm{b},\mathrm{d}ij =

\int 
K

1\widetilde \sigma s\nabla \varphi i\cdot \nabla (\varphi j| K) d\bfitx + \gamma 
\sum 

F\in \scrF \circ 
K

1\widetilde \sigma FhF
\int 
F

[[\varphi i]][[\varphi j ]] ds(4.3)

 - 
\sum 

F\in \scrF \circ 
K

\int 
F

\biggl( \biggl\{ 
1\widetilde \sigma s\nabla \varphi i

\biggr\} 
\cdot \bfitn K [[\varphi j ]] +

\biggl\{ 
1\widetilde \sigma s\nabla \varphi j

\biggr\} 
\cdot \bfitn K [[\varphi i]]

\biggr) 
ds,

where \gamma is a user-defined constant of order 1, and with the convention that \varphi j| K = 0

if j \in \scrI (\partial K\mathrm{e}). Denoting by c\mathrm{d}ij either c
\mathrm{g},\mathrm{d}
ij or c\mathrm{b},\mathrm{d}ij , depending on the context, and with

vh :=
\sum 

j\in \scrV \sansV j\varphi j and wh :=
\sum 

j\in \scrV \sansW j\varphi j , the bilinear form a : P (\scrT h)\times P (\scrT h) \rightarrow \BbbR 
defined by

(4.4) a(vh, wh) :=
1

3

\sum 
i,j\in \scrV 

c\mathrm{d}ij\sansV j\sansW i

is the discrete weak form of the operator  - \nabla \cdot ( 1
3\sigma s
\nabla v) which naturally appears in the

diffusion limit of (2.1), i.e., (3.6). Notice that the partition of unity property implies
that

\sum 
j\in \scrI (i) c

\mathrm{d}
ij = 0; hence, we can also write a(vh, wh) =

1
3

\sum 
i\in \scrV 

\sum 
j\in \scrV \setminus \{ i\} c

\mathrm{d}
ij(\sansV j  - 

\sansV i)\sansW i.

\bffour .\bftwo . \bfD \bfe \bfs \bfc \bfr \bfi \bfp \bft \bfi \bfo \bfn \bfo \bff \bft \bfh \bfe \bfm \bfe \bft \bfh \bfo \bfd . To avoid repeating the same argument for
continuous finite elements and discontinuous finite elements, we denote by c\mathrm{d}ij either

c\mathrm{g},\mathrm{d}ij or c\mathrm{b},\mathrm{d}ij depending on the context. For any pair i, j \in \scrV in the same stencil, say,
j \in \scrI (i) (or equivalently i \in \scrI (j)), we define

dkij := max(max(\bfOmega k\cdot \bfitc ij , 0),max(\bfOmega k\cdot \bfitc ji, 0)), \sigma s,ij :=
1

2
(\sigma s,i + \sigma s,j),(4.5a)

hij :=
3

\sigma s,ij | c\mathrm{d}ij | 
1

| \scrS | 
\sum 
k\in \scrL 

\mu kd
k
ij , hi :=

1

card(\scrI (i)) - 1

\sum 
j\in \scrI (i)\setminus \{ i\} 

hij .(4.5b)

Notice that dkij = | \bfitc ij \cdot \bfOmega k| if either i \in \scrV \circ or j \in \scrV \circ since in this case \bfitc ij =  - \bfitc ji.
The stabilized formulation we consider consists of solving the following set of linear
equations:
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\sum 
j\in \scrI (i)\setminus \{ i\} 

1

\sigma s,ijhij + 1
(\bfOmega k\cdot \bfitc ij  - dkij)(\Psi jk  - \Psi ik) +mi\sigma a,i\Psi ik(4.6a)

= miqik +
mi\sigma s,i

\sigma s,ihi + 1

\bigl( 
 - \Psi ik +\Psi i

\bigr) 
+

1

\sigma s,ihi + 1
b\partial ik(\beta 

\partial 
ik  - \Psi ik),

\beta \partial 
ij := \theta i\alpha 

\partial 
ik + (1 - \theta i)

\biggl( 
1

2
m\partial 

i  - 3\frakM \frakM \frakM \partial 
i \cdot \bfitn i

\biggr) 
, \theta i := max(1 - 2\sigma s,ihi, 0),(4.6b)

where it is implicitly understood that \beta \partial 
ij = 0 if i \in \scrV \circ .

Remark 4.1 (consistency). The above formulation coincides with the centered
Galerkin approximation (3.1) if dkij = 0. In the general case, i.e., with dkij as defined in

(4.5a), we have dkij \sim mih
 - 1, where h is the mesh-size; hence hij \sim mih

 - 1/(mih
 - 2) \sim 

h and hi \sim h. This computation shows that both hij and hi scale like the mesh-size
(at most). Hence, (4.6a) converges to (3.3) when \sigma sh\rightarrow 0. In other words, the solu-
tions to (4.6a) and (3.3) are close when the mesh-size is significantly finer than the
mean free path. The above arguments shows that (4.6a) is a consistent approximation
of (2.1) (the consistency error is first-order with respect to the mesh-size). \square 

Remark 4.2 (boundary conditions). The boundary conditions in (4.6) are en-
forced weakly. Observe that we recover \beta \partial 

ij \approx \theta i\alpha 
\partial 
ij when the boundary condition

at the degree of freedom i is isotropic, and we have equality \beta \partial 
ij = \theta i\alpha 

\partial 
ij if the angular

quadrature satisfies 1 = 4
| \scrS | 

\sum 
k\in \scrL  - 

i
\mu k| \bfOmega k\cdot \bfitn i| (notice that \theta i = 1+\scrO (\sigma s,ihi)). When

the boundary condition is anisotropic and when the local mesh-size is not small enough
to resolve the mean free path, i.e., 2\sigma s,ih(i) \geq 1, we obtain \beta \partial 

ij := 1
2m

\partial 
i  - 3\frakM \frakM \frakM \partial 

i \cdot \bfitn i.
The key motivation for the proposed definition of the boundary condition is based
on the following observation: Let \psi 0 := lim\epsilon \rightarrow 0 \psi 

\epsilon , where \psi \epsilon solves the rescaled
problem (3.5). Let \psi \epsilon 

dG,h be the dG approximation of (3.5) with the upwind numer-
ical flux (assuming that the polynomial degree is larger than or equal to 1), and let
\psi 0
dG := limh\rightarrow 0 lim\epsilon \rightarrow 0 \psi 

\epsilon 
dG,h; here the order the two limits are taken is important.

Then it is observed in Adams [2, sect. III.D] and proved in Guermond and Kanschat
[9, Thm. 5.4] that \psi 0

dG| \partial D = 1
2m

\partial  - 3\frakM \frakM \frakM \partial \cdot \bfitn (notice that all the arguments in [9] hold

true by replacing integrals over the angles by any discrete measure (i.e., quadrature)
with the properties stated in (2.2)). If the incoming flux at the boundary is such that
1
2m

\partial + 3\frakM \frakM \frakM \partial \cdot \bfitn \not = 0, it is known that \psi 0 \not = \psi 0
dG, but it also known nevertheless that

1
2m

\partial  - 3\frakM \frakM \frakM \partial \cdot \bfitn is a very good approximation of \psi 0
| \partial D; see, e.g., discussions in [2, p. 318]

and [9, sect. 5.5]. Moreover we have \psi 0
| \partial D = \psi 0

dG| \partial D = 1
2m

\partial  - 3\frakM \frakM \frakM \partial \cdot \bfitn = m\partial when
1
2m

\partial + 3\frakM \frakM \frakM \partial \cdot \bfitn = 0 (i.e., the incoming flux is isotropic); see, e.g., [9, Thm. 5.3]. \square 

Remark 4.3 (literature). Let us now show the connection between (4.6) and the
technique introduced in Gosse and Toscani [8]. The system solved in this reference is
the time-dependent version of (2.1) in one space dimension with two angular directions
only: \rho \partial t(u, v) + \partial x(u, - v) + \sigma s(u, v) = \sigma s

1
2 (u + v, u + v). Using upwind finite dif-

ferences (or finite volumes), the proposed scheme is \rho \partial t(ui, vi) + (ui - ui - 1

h , vi - vi+1

h ) =
\sigma s

\sigma sh+1 (vi - ui - 1, ui - vi+1); see equation (6) in [8]. After simple manipulations, we ob-

serve that the scheme can be recast as follows: \rho \partial t(ui, vi)+
1

\sigma sh+1 (
ui - ui - 1

h , vi - vi+1

h )+
\sigma s

\sigma sh+1 (ui, vi) =
\sigma s

\sigma sh+1
1
2 (ui + vi, ui + vi). Hence, the trick introduced in [8] consists of

multiplying both the upwind finite differences and the scattering terms by the coef-
ficient 1

\sigma sh+1 . This is exactly what is done in (4.6a). In our case the upwind finite

difference is the term
\sum 

j\in \scrI (i)\setminus \{ i\} (\bfOmega k\cdot \bfitc ij  - dkij)(\Psi jk  - \Psi ik). This trick is now well
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accepted in the finite volume literature; see, e.g., Buet and Cordier [4, eq. (10)], Buet
and Despr\'es [5, eq. (31)], Buet, Despr\'es, and Franck [6, eq. (19)], Jin and Lever-
more [15, sect. 2.6], and Li and Wang [20, eq. (2.4)]. Notice that, in addition to our
recasting the technique from [8] into a discretization agnostic framework, two other
novelties are our handling of the boundary condition, which is inspired from [2, sect.
III.D] and [9, sect. 5.5] and the definitions of hij and hi; see (4.5b). \square 

\bffour .\bfthree . \bfD \bfi ff\bfu \bfs \bfi \bfo \bfn \bfl \bfi \bfm \bfi \bft \bfe \bfx \bfp \bfa \bfn \bfs \bfi \bfo \bfn . We investigate the diffusion limit of the for-
mulation (4.6) by proceeding as in section 3.2. We rescale the problem as in (3.5)
by replacing \sigma s,ij , \sigma s,i, \sigma a,i, and qik by 1

\epsilon \sigma s,ij ,
1
\epsilon \sigma s,i, \epsilon \sigma a,i, and \epsilon qik, respectively.

The discrete problem consists of seeking \bfitpsi \epsilon 
h such that the following holds true for all

(i, k) \in \scrV \times \scrL :

(4.7)
\sum 

j\in \scrI (i)\setminus \{ i\} 

\epsilon 

\sigma s,ijhij

1

1 + \epsilon 
\sigma s,ijhij

(\bfOmega k\cdot \bfitc ij  - dkij)(\Psi \epsilon 
jk  - \Psi \epsilon 

ik) + \epsilon mi\sigma a,i\Psi 
\epsilon 
ik

= \epsilon miqik +
mi

hi

1

1 + \epsilon 
\sigma s,ihi

\Bigl( 
 - \Psi \epsilon 

ik +\Psi 
\epsilon 

i

\Bigr) 
+

\epsilon 

\sigma s,ihi

1

1 + \epsilon 
\sigma s,ihi

b\partial ik(\beta 
\partial 
ik  - \Psi \epsilon 

ik)

with \beta \partial 
ik := \theta \epsilon i\alpha 

\partial 
ik + (1 - \theta \epsilon i )( 12m

\partial 
i  - 3\frakM \frakM \frakM \partial 

i \cdot \bfitn i), \theta 
\epsilon 
i := max(1 - 2

\sigma s,i

\epsilon hi, 0).

Theorem 4.4 (diffusion limit). Let \bfitpsi \epsilon 
h be the solution of the linear system (4.7).

Assume that the mesh family (\scrT h)h>0 is such c\mathrm{d}ij < 0 for all i \in \scrV , j \in \scrI (i)\setminus \{ i\} . Let

\bfitpsi 0
h = lim\epsilon \rightarrow 0\bfitpsi 

\epsilon 
h. Then \bfitpsi 0

h is isotropic, i.e., \bfitpsi 0
h = (\psi 0

h, . . . , \psi 
0
h), and for all i \in \scrV the

scalar field \psi 0
h :=

\sum 
j\in \scrV \Psi 0

j\varphi j solves

(4.8) a(\psi 0
h, \varphi i) +mi\sigma a,i\Psi 

0

i +
m\partial 

i

\sigma s,ihi
\delta \partial i \Psi 

0

i = miqi +
m\partial 

i

\sigma s,ihi
\delta \partial i

\Bigl( m\partial 
i

2
 - 3\frakM \frakM \frakM \partial 

i \cdot \bfitn i

\Bigr) 
.

Moreover, setting \bfitJ \epsilon 
i := 1

\epsilon | \scrS | 
\sum 

k\in \scrL \mu k\bfOmega k\Psi 
\epsilon 
ik, and \bfitJ 0

i := lim\epsilon \rightarrow 0 \bfitJ 
\epsilon 
i , the vector \bfitJ \epsilon 

i

satisfies the following consistent approximation of Fick's law for all i \in \scrV \circ :

(4.9) mi\bfitJ 
0
i =  - 

\sum 
j\in \scrI (i)\setminus \{ i\} 

hi
hij

1

3\sigma s,ij
\bfitc ij(\Psi 

0
j  - \Psi 0

i ).

Proof. A rigorous functional analytic argument can be made by proceeding as in
[9, sect. 4], but since the mesh-size is fixed and the approximation space is finite-
dimensional, there is no fundamental obstacle to proceed formally; hence, we consider
the asymptotic expansion \bfitpsi h = \bfitpsi 0

h + \epsilon \bfitpsi 1
h + \epsilon 2\bfitpsi 2

h +\scrO (\epsilon 3).
Proof of (4.8). Notice first that \theta \epsilon i = 0 for all \epsilon \leq 2\sigma s,ihi; hence, \beta 

\partial 
ik = \beta \partial 

i :=
1
2m

\partial 
i  - 3\frakM \frakM \frakM \partial 

i \cdot \bfitn i. Using that 1
1+ \epsilon 

\sigma h
= 1 - \epsilon 

\sigma h +\scrO (\epsilon 2), we have\sum 
j\in \scrI (i)\setminus \{ i\} 

\epsilon 

\sigma s,ijhij
(\bfOmega k\cdot \bfitc ij  - dkij)(\Psi jk  - \Psi ik) + \epsilon mi\sigma a,i\Psi ik

= \epsilon miqik +
mi

hi
(1 - \epsilon 

\sigma s,ihi
)
\bigl( 
 - \Psi ik +\Psi i

\bigr) 
+

\epsilon 

\sigma s,ihi
b\partial ik(\beta 

\partial 
i  - \Psi ik) +\scrO (\epsilon 2).

Inserting now the formal asymptotic expansion \bfitpsi h = \bfitpsi 0
h + \epsilon \bfitpsi 1

h + \scrO (\epsilon 2) into this

equation, we infer that \Psi 
0

i  - \Psi 0
ik = 0 for all (i, k) \in \scrV \times \scrL and\sum 

j\in \scrI (i)\setminus \{ i\} 

1

\sigma s,ijhij
(\bfOmega k\cdot \bfitc ij  - dkij)(\Psi 0

jk  - \Psi 0
ik) +mi\sigma a,i\Psi 

0
ik(4.10)

= miqik +
mi

hi

\Bigl( 
 - \Psi 1

ik +\Psi 
1

i

\Bigr) 
+

1

\sigma s,ihi
b\partial ik(\beta 

\partial 
i  - \Psi 0

ik).
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Taking the (weighted) average of the second equation over the discrete ordinates, we
obtain\sum 
j\in \scrI (i)\setminus \{ i\} 

(\Psi 
0

j  - \Psi 
0

i )
1

\sigma s,ijhij

1

| \scrS | 
\sum 
k\in \scrL 

 - \mu kd
k
ij +mi\sigma a,i\Psi 

0

i = miqi +
m\partial 

i

\sigma s,ihi
(\delta \partial i \beta 

\partial 
i  - \delta \partial i \Psi 

0

i ).

(Recall that \delta \partial i \approx 1
4 ). Now we use the definition of hij (see (4.5b)) and recall that the

mesh family (\scrT h)h>0 is assumed to be such that c\mathrm{d}ij < 0 for all i \in \scrV , j \in \scrI (i)\setminus \{ i\} ;
then we obtain

m\partial 
i

\sigma s,ihi
\delta \partial i \Psi 

0

i +
\sum 

j\in \scrI (i)\setminus \{ i\} 

1

3
c\mathrm{d}ij(\Psi 

0

j  - \Psi 
0

i ) +mi\sigma a,i\Psi 
0

i = miqi +
m\partial 

i

\sigma s,ihi
\delta \partial i \beta 

\partial 
i .

Now using the partition of unity property, i.e.,
\sum 

j\in \scrI (i) c
\mathrm{d}
ij = 0, and recalling the

definition of \beta \partial 
i , we infer that

m\partial 
i

\sigma s,ihi
\delta \partial i \Psi 

0

i + a(\nabla \psi 0
h, \varphi i) +mi\sigma a,i\Psi 

0

i = miqi +
m\partial 

i

\sigma s,ihi
\delta \partial i (

1

2
m\partial 

i  - 3\frakM \frakM \frakM \partial 
i \cdot \bfitn i).

Proof of (4.9). Since \bfitpsi 0
h is isotropic, we have

\bfitJ \epsilon 
i :=

1

\epsilon | \scrS | 
\sum 
k\in \scrL 

\mu k\bfOmega k\Psi 
\epsilon 
ik =

1

| \scrS | 
\sum 
k\in \scrL 

\mu k\bfOmega k\Psi 
1
ik +\scrO (\epsilon ).

That is, \bfitJ 0
i := lim\epsilon \rightarrow 0 \bfitJ 

\epsilon 
i = 1

| \scrS | 
\sum 

k\in \scrL \mu k\bfOmega k\Psi 
1
ik. We now multiply (4.10) by \bfOmega k,

take the (weighted) average over the discrete ordinates, and recall that the angular
quadrature satisfies

\sum 
k\in \scrL \mu k\bfOmega k| \bfitn \cdot \bfOmega k| = \bfzero for all \bfitn \in \BbbR 3:

\sum 
j\in \scrI (i)\setminus \{ i\} 

1

3\sigma s,ijhij
\bfitc ij(\Psi 

0
j  - \Psi 0

i ) - 
\sum 

j\in \scrI (i)\setminus \{ i\} 

(\Psi 0
j  - \Psi 0

i )

\sigma s,ijhij

\sum 
k\in \scrL 

\mu k

| \scrS | 
\bfOmega kd

k
ij

=  - mi

hi
\bfitJ 0
i +

m\partial 
i

\sigma s,ihi

1

6
(\beta \partial 

i  - \Psi 0
i )\bfitn i,

where we used that 1
| \scrS | 

\sum 
k\in \scrL  - 

i
| \bfOmega k\cdot \bfitc | \bfOmega k = 1

6\bfitc for any \bfitc \in \BbbR 3. If i \in \scrV \circ , then

dkij = | \bfitc ij \cdot \bfOmega k| , which in turn implies that
\sum 

k\in \scrL \mu k\bfOmega kd
k
ij = 0. The assertion follows

readily.

Remark 4.5 (limit problem and boundary conditions). Since hi behaves like the
mesh-size, h, the discrete problem (4.8) is a weak formulation with a penalty on the
boundary condition scaling like h - 1. The continuous problem associated with the
discrete problem (4.8) consists of seeking \psi \mathrm{l}\mathrm{i}\mathrm{m} \in H1(D) so that

(4.11)  - \nabla \cdot 
\Bigl( 1

3\sigma s
\nabla \psi \mathrm{l}\mathrm{i}\mathrm{m}

\Bigr) 
+ \sigma a\psi 

\mathrm{l}\mathrm{i}\mathrm{m} = q, \psi \mathrm{l}\mathrm{i}\mathrm{m}
| \partial D =

1

2
m\partial  - 3\frakM \frakM \frakM \partial \cdot \bfitn .

This result is coherent with [9, Thm. 5.4]. Recall that in general \psi \mathrm{l}\mathrm{i}\mathrm{m} \not = \psi 0 unless
1
2m

\partial + 3\frakM \frakM \frakM \partial \cdot \bfitn = 0; see [9, sect. 5.5]. \square 

Remark 4.6 (Fick's law). Let us now interpret (4.9). Assume that the mesh is
uniform or quasi-uniform in the neighborhood of the Lagrange node \bfita i; then hi \approx hij
and \sigma s,ij \approx \sigma s,i. Hence, mi\bfitJ 

0
i \approx  - 1

3\sigma s,i

\sum 
j\in \scrI (i) \bfitc ij\Psi 

0
j . Owing to the definition of

the coefficients \bfitc ij , this equation is a consistent approximation of Fick's law \bfitJ =
 - 1

3\sigma s
\nabla \psi 0. \square 
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Remark 4.7 (meshes). It is known for simplicial meshes and piecewise linear con-

tinuous finite elements that a sufficient condition for the inequality c\mathrm{g},\mathrm{d}ij < 0 to hold
for all i \in \scrV , j \in \scrI (i)\setminus \{ i\} is that the mesh family (\scrT h)h>0 satisfies the so-called acute
angle condition; see, e.g., Xu and Zikatanov [26, eq. (2.5)]. \square 

\bffour .\bffour . \bfP \bfo \bfs \bfi \bft \bfi \bfv \bfi \bft \bfy . We establish in this section the positivity of the method defined
in (4.6) using the definitions in (4.5). We set \Psi \mathrm{m}\mathrm{i}\mathrm{n} := min(j,l)\in \scrV \times \scrL \Psi j,l and \Psi \mathrm{m}\mathrm{a}\mathrm{x} :=
max(j,l)\in \scrV \times \scrL \Psi j,l.

Theorem 4.8 (minimum/maximum principle). Let (\Psi ik)(i,k)\in \scrV \times \scrL be the

solution to (4.6) with dkij and all the other parameters defined in (4.5a)--(4.5b). Let

(i0, k0), (i1, k1) \in \scrV \times \scrL be such that \Psi i0k0
= \Psi \mathrm{m}\mathrm{i}\mathrm{n} and \Psi i1k1

= \Psi \mathrm{m}\mathrm{a}\mathrm{x}.
(i) Assume that min(j,l)\in \scrV \times \scrL (\sigma a,j + b\partial jl) > 0. Then

(4.12)
mi0

qi0k0
+

b\partial i0k0
\sigma s,i0

hi0
+1\beta 

\partial 
i0k0

mi0
\sigma a,i0

+
b\partial 
i0k0

\sigma s,i0
hi0

+1

\leq \Psi \mathrm{m}\mathrm{i}\mathrm{n} \leq \Psi \mathrm{m}\mathrm{a}\mathrm{x} \leq 
mi1

qi1k1
+

b\partial i1k1
\sigma s,i1

hi1
+1\beta 

\partial 
i1k1

mi1
\sigma a,i1

+
b\partial 
i1k1

\sigma s,i1
hi1

+1

.

(ii) Otherwise, assume that for all i \in \scrV such that \sigma a,i = 0 and b\partial ik = 0 the definition
of dkij is slightly modified so that \bfOmega k\cdot \bfitc ij < dkij for all j \in \scrI (i) (instead of \bfOmega k\cdot \bfitc ij \leq 
dkij). If 0 \leq min(i,k)\in \scrV \times \scrL qik and 0 \leq min(i,k)\in (\scrV \times \scrL )\partial \alpha 

\partial 
ik, then 0 \leq \Psi \mathrm{m}\mathrm{i}\mathrm{n}.

(iii) Moreover, under the same assumptions on dkij as in (ii), if max(i,k)\in \scrV \times \scrL qik \leq 0,

then \Psi \mathrm{m}\mathrm{a}\mathrm{x} \leq max(i,k)\in (\scrV \times \scrL )\partial \beta 
\partial 
ik

Proof. We proceed as in the proof of Lemma 3.1. We start with the proof of (i)
and assume that min(j,l)\in \scrV \times \scrL (\sigma a,j + b\partial jl) > 0. Let (i0, k0) \in \scrV \times \scrL be the indices of
the degree of freedom where the minimum is attained; that is, \Psi ik \geq \Psi i0k0 for all
(i, k) \in \scrV \times \scrL . Then using that \bfOmega k\cdot \bfitc ij  - dkij \leq max(\bfOmega k\cdot \bfitc ij , 0) - dkij \leq 0, together with

\Psi jk0  - \Psi i0k0 \geq 0 for all j \in \scrI (i0), and \Psi i0k0 \leq \Psi i0 , we infer that

mi0qi0k0
+

b\partial i0k0

\sigma s,i0hi0 + 1
\beta \partial 
i0k0

=
\sum 

j\in \scrI (i0)\setminus \{ i0\} 

\bfOmega k0 \cdot \bfitc i0j  - d
k0
i0j

\sigma s,i0jhi0j + 1
(\Psi jk0

 - \Psi i0k0
)

+
mi0\sigma s,i0

\sigma s,i0hi0 + 1
(\Psi i0k0

 - \Psi i0) +mi0\sigma a,i0\Psi i0k0 +
b\partial i0k0

\sigma s,i0hi0 + 1
\Psi i0k0

\leq mi0\sigma a,i0\Psi i0k0 +
b\partial i0k0

\sigma s,i0hi0 + 1
\Psi i0k0 .

Hence mi0qi0k0
+

b\partial i0k0

\sigma s,i0hi0+1\beta 
\partial 
i0k0
\leq (mi0\sigma a,i0 +

b\partial i0k0

\sigma s,i0hi0+1 )\Psi i0k0
. The assertion follows

readily. The proof of the other assertion regarding \Psi \mathrm{m}\mathrm{a}\mathrm{x} is analogous.
Proof of (ii) assuming that 0 \leq min(i,k)\in \scrV \times \scrL qik and 0 \leq min(i,k)\in (\scrV \times \scrL )\partial \alpha 

\partial 
ik.

From part (i) we conclude that we need to prove \Psi i0k0
\geq 0 only in the case \sigma a,i0 = 0

and b\partial i0k0
= 0. Assuming that \sigma a,i0 = 0 and b\partial i0k0

= 0, we have from part (i) the
following inequality:

0 \leq mi0qi0k0
\leq 

\sum 
j\in \scrI (i0)\setminus \{ i0\} 

\bfOmega k0 \cdot \bfitc i0j  - d
k0
i0j

\sigma s,i0j0hi0j + 1
(\Psi jk0

 - \Psi i0k0
) \leq 0.

The assumption\bfOmega k\cdot \bfitc i0j - d
k0
i0j

< 0 for all j \in \scrI (i0) implies that \Psi jk0
 - \Psi i0k0

= 0 for all
j \in \scrI (i0). Therefore, we conclude that the global minimum is attained not only at the
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degree of freedom (i0, k0) but also in the whole neighborhood, i.e., for all j \in \scrI (i0).
Repeating the above argument for a global minimum at (j, k0) for all j \in \scrI (i0),
we derive that the global minimum is either nonnegative (if mj\sigma a,j + b\partial jk0

> 0) or
again attained in the whole neighborhood of j, i.e., for all s \in \scrI (j). This process
can terminate in two ways: (i) either the global minimum is nonnegative at some j
because mj\sigma a,j + b\partial jk0

> 0 or (ii) the global minimum is attained at all of the degrees
of freedom topologically connected to i0. In this case we have that \Psi jk0

= \Psi i0k0
for

all j in the same connected component as i0, which is the entire set \scrV since \scrT h is
connected (because D is connected). However, for any fixed k0 there exists j such
that \Psi jk0 is on the inflow boundary for \bfOmega k0 . That is, we have b\partial jk0

> 0, and conclude

(see (4.6)) that \Psi i0k0 \geq 0 because \beta \partial 
ij = \theta i\alpha 

\partial 
ik + (1 - \theta i)( 12m

\partial 
i  - 3\frakM \frakM \frakM \partial 

i \cdot \bfitn i) \geq 0 on the

the inflow boundary (notice that m\partial 
i \geq 0 and \frakM \frakM \frakM \partial 

i \cdot \bfitn i \leq 0).
Proof of (iii) assuming that min(i,k)\in \scrV \times \scrL qik \leq 0. By proceeding as in step (i),

we infer that

mi1qi1k1
+

b\partial i1k1

\sigma s,i1hi1 + 1
(\beta \partial 

i1k1
 - \Psi i1k1

)

\geq 
\sum 

j\in \scrI (i1)\setminus \{ i1\} 

\bfOmega k1
\cdot \bfitc i1j  - d

k1
i1j

\sigma s,i1jhi1j + 1
(\Psi jk1

 - \Psi i1k1
) +mi1\sigma a,i1\Psi i1k1

\geq 0,

i.e., (mi1\sigma a,i1 +
b\partial i1k1

\sigma s,i1hi1+1 )\Psi i1k1
\leq mi1qi1k1

+
b\partial i1k1

\sigma s,i1hi1+1\beta 
\partial 
i1k1

, which implies \Psi i1k1
\leq 

\beta \partial 
i1k1

if b\partial i1k1
> 0. Hence we just need to consider the case b\partial i1k1

= 0. In that case

0 \geq 
\sum 

j\in \scrI (i1)\setminus \{ i1\} 
\bfOmega k1

\cdot \bfitc i1j - d
k1
i1j

\sigma s,i1jhi1j+1 (\Psi jk1
 - \Psi i1k1

) \geq 0 and \Psi jk1
= \Psi i1k1

for all j \in \scrI (i1).
Then we proceed as in step (ii) until we reach a degree of freedom j that is on the
inflow boundary for \bfOmega k1 , i.e., b

\partial 
jk1

> 0. Then \Psi \mathrm{m}\mathrm{a}\mathrm{x} = \Psi i1k1 = \Psi jk1 \leq \beta \partial 
j,k1

.

\bffive . \bfN \bfu \bfm \bfe \bfr \bfi \bfc \bfa \bfl \bfi \bfl \bfl \bfu \bfs \bft \bfr \bfa \bft \bfi \bfo \bfn \bfs . We present in this section numerical results to
illustrate the positive- and asymptotic-preserving algorithm (4.6) described in section
4.2. We compare this technique in various regimes with the standard dG1 technique
using the upwind flux.

\bffive .\bfone . \bfN \bfu \bfm \bfe \bfr \bfi \bfc \bfa \bfl \bfd \bfe \bft \bfa \bfi \bfl \bfs . The positive- and asymptotic-preserving algorithm
defined in (4.6) is implemented with piecewise linear continuous finite elements on
simplices. We use the same code for one-dimensional and two-dimensional tests. The
meshes in one dimension are uniform. The meshes in two space dimension are non-
uniform, are composed of triangles, and have the Delaunay property. Nothing special
is done to make the triangulations satisfy the acute angle condition, i.e., the condition
may not be satisfied for a few pairs of vertices. In one dimension we use the Gauss--
Legendre quadrature for the angular discretization: the x1-component of the angles
are the quadrature points of the Gaussian quadrature over [ - 1, 1], and the weights
are the weights of the Gaussian quadrature. In two dimensions we use the standard
triangular SN quadrature (Gauss--Legendre quadrature along the polar axis and equi-
distributed angles along the azimuth with 1

8N(N + 2) angles per octant). Since the
size of the problems involved here is small (at most 2\times 106 degrees of freedom), we
assemble the sparse matrix defined in (4.6) using the compressed sparse row format
and solve it using Pardiso (see, e.g., Petra, Schenk, and Anitescu [22]). More sophisti-
cated techniques involving source iterations and synthetic acceleration could be used
for significantly larger systems. We do not discuss this issue since it is out of the
scope of the paper.
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In order to assess the asymptotic-preserving approach, we compare it against a
state-of-the-art technique. More specifically, (2.1) is solved using dG1 with the upwind
numerical flux and the same triangular SN quadrature as above. The linear system
is solved by iterating on the scattering source (see, e.g., Adams and Larsen [1]); for

instance, starting with some guess \bfitpsi 
(0)

h , one constructs a sequence \bfitpsi 
(0)
h , . . . ,\bfitpsi 

(\ell )
h , . . .

Given some state \bfitpsi 
(\ell )
h we compute an intermediate state \bfitpsi 

(\ell + 1
2 )

h such that\sum 
j\in \scrI (i)

Ak
ij\Psi 

(\ell + 1
2 )

jk +mi\sigma t,i\Psi 
(\ell + 1

2 )

ik + b\partial ik\Psi 
(\ell + 1

2 )

ik = mi\sigma s,i\Psi 
(\ell )

i +miqik + b\partial ik\alpha 
\partial 
ik,(5.1a)

Ak
ij :=

\left\{                   

\int 
K

(\bfOmega k\cdot \nabla \varphi j)\varphi i d\bfitx , j \in \scrI (K)\setminus \scrI (\partial K \mathrm{i}),\int 
K

(\bfOmega k\cdot \nabla \varphi j)\varphi i d\bfitx +

\int 
\partial K

\varphi i\varphi j(\bfOmega k\cdot \bfitn K) - d\bfitx , j \in \scrI (\partial K \mathrm{i}),

 - 
\int 
\partial K

| \bfOmega k\cdot \bfitn K |  - \bfOmega k\cdot \bfitn K

2
\varphi i\varphi j d\bfitx , j \in \scrI (\partial K\mathrm{e})

(5.1b)

with z - := 1
2 (| z|  - z). For each direction k, (5.1a) is solved cell-by-cell by sweeping

through the mesh from the inflow boundary to the outflow boundary defined by the
angle \bfOmega k (a process termed ``transport sweep"" in the radiation transport community).

Without synthetic acceleration, we set \bfitpsi 
(\ell +1)
h = \bfitpsi 

(\ell +1/2)
h , and the new source iteration

(\ell \leftarrow \ell + 1) can proceed. However, in highly diffusive configurations, a diffusion
synthetic accelerator is invoked to compute a correction \delta \bfitpsi \ell +1

h to improve the scalar

flux iterate; at the end of the process we set \bfitpsi 
(\ell +1)
h = \bfitpsi 

(\ell +1/2)
h +\delta \bfitpsi \ell +1

h . Here, we use a
dG compatible diffusion synthetic accelerator based on an interior penalty technique;
see, e.g., Wang and Ragusa [25] for additional details.

\bffive .\bftwo . \bfM \bfa \bfn \bfu \bff \bfa \bfc \bft \bfu \bfr \bfe \bfd \bfs \bfo \bfl \bfu \bft \bfi \bfo \bfn . We first test our piecewise linear, continuous
finite element implementation of the algorithm described in section 4.2 on a manu-
factured solution. The domain is D = (0, 1)2\times \BbbR with \sigma t = \sigma s = 1, and the solution
is \bfitpsi := (\psi 1, . . . , \psi L) with

(5.2) \psi k(\bfitx ) = 2 + sin(\bfOmega k\cdot \bfitx ) + sin(\pi x1) sin(\pi x2),

where k \in \scrL , \bfitx := (x1, x2) \in D. The source term q(\bfitx ,\bfOmega k) is computed accordingly
with \psi (\bfitx ) := 1

| \scrS | 
\sum 

k\in \scrK \psi k(\bfitx ).

The relative errors in the L2-norm, L\infty -norm, and H1-seminorm are calculated
on five nonuniform meshes composed of triangles with 140, 507, 1927, 7545, and
29870 Lagrange nodes, respectively; the corresponding mesh-sizes are approximately
h \approx 0.1, 0.5, 0.025, 0.125, and 0.00625. We define the error \bfite := (e1, . . . , eL) with
ek := \psi h,k  - \Pi \mathrm{L}

h(\psi k), where \Pi \mathrm{L}
h(\psi k) is the Lagrange interpolant of \psi k in P \mathrm{g}(\scrT h), and

we set

(5.3) \| \bfite \| 2L2 =
\sum 
k\in \scrL 

\mu k\| ek\| 2L2(D), \| \bfite \| L\infty = max
k\in \scrL 
\| ek\| L\infty (D).

The relative errors are denoted and defined as follows: rel(\| \bfite \| L2) = \| \bfite \| L2/\| \bfitpsi \| L2 ,
rel(\| \bfite \| L\infty ) = \| \bfite \| L\infty /\| \bfitpsi \| L\infty , rel(\| \nabla \bfite \| \bfitL 2) = \| \nabla \bfite \| \bfitL 2/\| \nabla \bfitpsi \| \bfitL 2 . The results for the
S6 and S10 quadratures are reported in Table 1. We observe that, as expected, the
method is first-order accurate in space in the L2-norm, and it is \scrO (h 1

2 ) in the L\infty -
norm and in the H1-seminorm. These results are compatible with the best theoretical



536 JEAN-LUC GUERMOND, BOJAN POPOV, AND JEAN RAGUSA

Table 1
Convergence tests with respect to mesh-size with solution (5.2) and quadrature S6 and S10.

\#DOFs rel(\| \bfite \| L2) Rate rel(\| \bfite \| L\infty ) Rate rel(\| \nabla \bfite \| \bfitL 2) Rate
S
6

140 5.20E-02 -- 2.89E-01 -- 3.07E-01 --
507 2.70E-02 1.02 2.08E-01 0.51 2.01E-01 0.66
1927 1.37E-02 1.01 1.48E-01 0.51 1.36E-01 0.59
7545 6.93E-03 1.00 1.05E-01 0.50 9.38E-02 0.54
29870 3.48E-03 1.00 7.48E-02 0.50 6.55E-02 0.52

S
1
0

140 5.19E-02 -- 2.91E-01 -- 3.07E-01 --
507 2.69E-02 1.02 2.08E-01 0.52 2.01E-01 0.66
1927 1.37E-02 1.01 1.48E-01 0.51 1.37E-01 0.58
7545 6.93E-03 1.00 1.09E-01 0.45 9.48E-02 0.54
29870 3.48E-03 1.00 8.22E-02 0.42 6.64E-02 0.52

error estimates known for the approximation of the linear transport equation using
first-order viscosities.

\bffive .\bftwo .\bfone . \bfD \bfi ff\bfu \bfs \bfi \bfo \bfn \bfl \bfi \bfm \bfi \bft \bfw \bfi \bft \bfh \bfc \bfo \bfn \bfs \bft \bfa \bfn \bft \bfc \bfr \bfo \bfs \bfs \bfs \bfe \bfc \bft \bfi \bfo \bfn \bfs . We consider the two-
dimensional domain D = (0, 1)2\times \BbbR with constant cross sections \sigma t = \sigma s = 1

\epsilon and
source term q(\bfitx ) = \epsilon 23\pi 

2 sin(\pi x1) sin(\pi x2). The diffusion limit corresponding to
\epsilon \rightarrow 0 is \psi 0(\bfitx ) = sin(\pi x1) sin(\pi x2). We solve (2.1) with continuous linear finite
elements and the algorithm described in section 4.2. The meshes are nonuniform and
composed of triangles. To estimate the convergence we use five meshes with 140, 507,
1927, 7545, and 29870 Lagrange nodes, respectively; the corresponding mesh-sizes
are approximately h \approx 0.1, 0.5, 0.025, 0.125, and 0.00625. We use the S6 angular
quadrature.

The results for \epsilon \in \{ 10 - 3, 10 - 4, 10 - 5, 10 - 6\} are reported in Table 2. We show
in this table the relative L2-norm and the relative H1-seminorm of the difference
\bfitpsi h  - \Pi \mathrm{L}

h(\bfitpsi 
0), where \Pi \mathrm{L}

h(\bfitpsi 
0) is the Lagrange interpolant of \bfitpsi 0. We clearly observe

that, just like proved in [9, Thm. 5.3] for the upwind dG1 approximation, the scalar
flux \bfitpsi h converges optimally to \bfitpsi 0

h when \epsilon is significantly smaller than the mesh-size.
The convergence order is \scrO (h2) in the L2-norm. It seems that some supercloseness
phenomenon occurs in the H1-seminorm since \| \nabla (\bfitpsi h  - \Pi \mathrm{L}

h(\bfitpsi 
0))\| \bfitL 2 converges like

\scrO (h1.5).

\bffive .\bfthree . \bfO \bfn \bfe -\bfd \bfi \bfm \bfe \bfn \bfs \bfi \bfo \bfn \bfa \bfl \bfr \bfe \bfs \bfu \bfl \bft \bfs . We now perform four one-dimensional tests
and compare the positive- asymptotic-preserving method (with piecewise linear con-
tinuous finite elements) with the upwind dG1 approximation. We use the S8 angular
quadrature (8 discrete directions in one dimension) for all the cases. The angles are

Table 2
Convergence test on \bfite := \bfitpsi h  - \Pi L

h(\bfitpsi 
0) with respect to the mesh-size and \epsilon .

\epsilon \#DOFs rel(\| \bfite \| L2) Rate rel(\| \nabla \bfite \| \bfitL 2) Rate

1
0
 - 
3

140 2.01E-02 -- 9.68E-03 --
507 2.15E-03 2.34 8.00E-03 1.44
1927 2.91E-03 -.45 6.62E-03 0.28
7545 3.11E-03 -.10 7.75E-03 -.23
29870 3.17E-03 -.03 8.84E-03 -.19

1
0
 - 
4

140 1.92E-02 -- 1.20E-02 --
507 2.87E-03 2.22 5.85E-03 1.85
1927 5.43E-04 2.49 2.16E-03 1.49
7545 2.01E-04 1.45 1.21E-03 0.85
29870 2.53E-04 -.33 1.33E-03 -.13

\epsilon \#DOFs rel(\| \bfite \| L2) Rate rel(\| \nabla \bfite \| \bfitL 2) Rate

1
0
 - 
5

140 1.92E-02 -- 1.22E-02 --
507 3.12E-03 2.12 5.76E-03 1.87
1927 7.59E-04 2.12 1.99E-03 1.59
7545 1.72E-04 2.18 7.17E-04 1.49
29870 3.28E-05 2.41 2.73E-04 1.40

1
0
 - 
6

140 1.91E-02 -- 1.22E-02 --
507 3.14E-03 2.11 5.75E-03 1.87
1927 7.84E-04 2.08 1.98E-03 1.60
7545 1.93E-04 2.06 7.07E-04 1.51
29870 4.64E-05 2.07 2.35E-04 1.60
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Table 3
Data for the one-dimensional test cases.

\#Zones 5

C
a
se

1

Length 2.0 1.0 2.0 1.0 2.0
\sigma s 0.0 0.0 0.0 0.9 0.9
\sigma t 50.0 5.0 0.0 1.0 1.0
q 50.0 0.0 0.0 1.0 1.0

\#DOFs 25 25 25 25 25
B.C. Vac.

\#Zones 1

C
a
se

2

Length 10.0
\sigma s 100.0
\sigma t 100.0
q 0.0

\#DOFs 100
B.C. \psi 5(0) = 0

\#Zones 1

C
a
se

3

Length 10.0
\sigma s 10.0
\sigma t 10.0
q 0.1

\#DOFs 100
B.C. Vac.

\#Zones 1

C
a
se

4

Length 100.0
\sigma s 0.09999
\sigma t 0.1
q 1.0

\#DOFs 100
B.C. Vac.
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Fig. 1. Comparison between the (first-order) positive-, asymptotic-preserving cG1 method and
the (second-order) upwind dG1 method.

enumerated in increasing order from 1 to 8. The data for the four cases are reported
in Table 3. The boundary condition (B.C.) for cases 1, 3, and 4 is \bfitpsi h| \partial D - = 0 (this is
the so-called vacuum boundary condition (Vac.)). The boundary conditions for case
2 are \bfitpsi h,k = 0 for k \not = 5, 1 \leq k \leq 8, and \psi h,5(0) = 1.0.

The results are reported in Figure 1. We show in Figure 1(a)--(c) the scalar flux for
the dG1 approximation (labeled dG1) and for the positive and asymptotic-preserving
technique (labeled AP cG1). We observe a fair agreement between the two methods
given the number of grid points. Figure 1(d) shows the angular flux \psi h,1 for case 4.
For this case the dG1 approximation gives negatives values at x = 100 on the angular
fluxes 1, 2, and 3 (the values are  - 0.24,  - 0.22,  - 0.066, respectively (approximated to
2 digits)). In all the cases the asymptotic-preserving technique is always nonnegative.

\bffive .\bffour . \bfB \bfo \bfu \bfn \bfd \bfa \bfr \bfy \bfe ff\bfe \bfc \bft \bfs . We consider the problem (2.1) in the two-dimensional
domain D = (0, 100)2\times \BbbR with uniform cross sections \sigma t(\bfitx ) = 0.1, \sigma s(\bfitx ) = 0.0999 and
uniform source term q(\bfitx ,\bfOmega ) = 1 for all (\bfitx ,\bfOmega ) \in D\times \scrS . The boundary condition is set
to zero \alpha (\bfitx ,\bfOmega ) = 0 for all (\bfitx ,\bfOmega ) \in \partial D - . (This is the two-dimensional counterpart of
the one-dimensional case 4 discussed in section 5.3.) We use the S6 quadrature for the
discrete ordinates (24 directions in two dimensions). The approximation in space for
the asymptotic-preserving method is done on a nonuniform grid composed of 151294
triangles with 76160 grid points (i.e., 1 829 520 degrees of freedom in total). The dG1
approximation is done with 64\times 64 cells, that is, 16384 space degrees of freedom (i.e.,
393 216 degrees of freedom in total).

We show in Figure 2 the scalar flux and the angular flux corresponding to the
first angle \bfOmega 1. We have verified that the angular fluxes for the asymptotic-preserving
method are all nonnegative, as expected, but the upwind dG1 approximation gives
negative angular fluxes. In particular, we observe in Figure 2(d) that the minimum
value of the first angular flux of the dG1 approximation is equal to  - 0.2 (1 digit
approximation.)
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(a) \psi h, AP scheme (b) \psi h, dG1 scheme (c) \psi h,1, AP scheme (d) \psi h,1, dG1 scheme

Fig. 2. Scalar \psi h and angular flux \psi h,1.

\bffive .\bffive . \bfR \bfe fl\bfe \bfc \bft \bfi \bfo \bfn \bfe ff\bfe \bfc \bft \bfs . We now consider the two-dimensional problem with
reflection effects. The domain is D = (0, 1)2\times \BbbR with uniform cross sections \sigma t(\bfitx ) =
100, \sigma s(\bfitx ) = 99 if x2 \geq 0.5 (optically thick and diffusive zone), and \sigma t(\bfitx ) =
\sigma s(\bfitx ) = 0 if x2 \leq 0.5 (void). We use the S6 quadrature. The left boundary
is illuminated with intensity 1 along the first direction of the quadrature \bfOmega 1 :=
(0.93802334, 0.25134260, 0.23861919) (eight digits truncation). The incoming flux is
set to 0 along the bottom boundary for \bfOmega 1. For all the other angular fluxes we set
\psi h,k| \partial D - = 0, k \in \scrL \setminus \{ 1\} . The approximation in space for the asymptotic-preserving
method is done on a nonuniform grid composed of 151434 triangles with 76230 grid
points (i.e., 1 829 520 degrees of freedom in total). The dG1 computation is done with
256\times 256 cells to ascertain the accuracy of the solution since it is our reference; that
makes 262144 degrees of freedom for the space approximations (i.e., 6 291 456 degrees
of freedom in total).

We show in Figure 3 the scalar flux and the angular flux corresponding to the
first angle \bfOmega 1. The angular fluxes for the asymptotic-preserving method are all non-
negative, but the upwind dG1 approximation gives negative values for the scalar flux
and the angular fluxes. We observe that the minimum value of the dG1 scalar flux is
approximately  - 0.002 (Figure 3(b)), and the minimum value is  - 0.183 for the first
angular flux (Figure 3(d)). The dG1 approximation is obviously more accurate than
the asymptotic-preserving solution, but it experiences overshoots and undershoots at
the interfaces between the two materials, whereas the positive asymptotic-preserving
solution does not.

(a) \psi h, AP scheme (b) \psi h, dG1 scheme (c) \psi h,1, AP scheme (d) \psi h,1, dG1 scheme

Fig. 3. Scalar \psi h and angular flux \psi h,1.
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\bfsix . \bfC \bfo \bfn \bfc \bfl \bfu \bfs \bfi \bfo \bfn \bfs . We have introduced a (linear) positive-, asymptotic-preserving
method for the approximation of the one-group radiation transport equation (see
(4.6)). The approximation in space is discretization agnostic: the approximation
can be done with continuous or discontinuous finite elements (or finite volumes).
The method is first-order accurate in space. This type of accuracy is coherent with
Godunov's theorem since the method is linear. The two key theoretical results of
the paper are Theorem 4.4 and Theorem 4.8. We have illustrated the performance
of the method with continuous finite elements. We have observed that the method
converges with the rate \scrO (h) in the L2-norm on manufactured solutions. It converges
with the rate \scrO (h2) in the L2-norm in the diffusion limit. The method has also been
observed to be nonnegative (in compliance with Theorem 4.8). It does not suffer from
overshoots like the upwind dG1 approximation at the interfaces of optically thin and
optically thick regions.

The present work is the first part of an ongoing project aimed at developing tech-
niques that are high-order accurate, positivity-preserving, and asymptotic-preserving
in the diffusion limit. To reach higher-order accuracy the technique must be made
nonlinear. This could be done by using smoothness indicators like in [11, sect. 4.3], or
by using limiting technique, or by enforcing positivity through inequality constraints
(see, e.g., Hauck and McClarren [13, sect. 4]). Our progresses in this direction will
be reported elsewhere.
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