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Abstract. We propose a numerical method for solving general hyperbolic systems in any space
dimension using forward Euler time stepping and continuous finite elements on nonuniform grids.
The properties of the method are based on the introduction of an artificial dissipation that is defined
so that any convex invariant set containing the initial data is an invariant domain for the method.
The invariant domain property is proved for any hyperbolic system provided a CFL condition holds.
The solution is also shown to satisfy a discrete entropy inequality for every admissible entropy of the
system. The method is formally first-order accurate in space and can be made high-order in time by
using strong stability preserving algorithms. This technique extends to continuous finite elements
the work of [D. Hoff, Math. Comp., 33 (1979), pp. 1171–1193], [D. Hoff, Trans. Amer. Math. Soc.,
289 (1985), pp. 591–610], and [H. Frid, Arch. Ration. Mech. Anal., 160 (2001), pp. 245–269].
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1. Introduction. The objective of this paper is to propose a first-order approx-
imation technique for general nonlinear hyperbolic systems using continuous finite
elements of arbitrary polynomial degree and explicit time stepping on nonuniform
meshes in any space dimension. The method is invariant domain preserving and sat-
isfies a local entropy inequality for every admissible entropy pair for any hyperbolic
system on any unstructured meshes.

Consider the following hyperbolic system in conservation form:

(1.1)

{
∂tu +∇·f(u) = 0 for (x, t) ∈ Rd×R+,

u(x, 0) = u0(x) forx ∈ Rd,

where the dependent variable u takes values in Rm and the flux f takes values in
(Rm)d. In this paper u is considered as a column vector u = (u1, . . . , um)T. The flux
is a matrix with entries fij(u), 1 ≤ i ≤ m, 1 ≤ j ≤ d, and ∇·f is a column vector
with entries (∇·f)i =

∑
1≤j≤d ∂xjfij . For any n = (n1, . . . , nd)

T ∈ Rd, we denote by
f(u)·n the column vector with entries

∑
1≤l≤d nlfil(u), where i ∈ {1:m}. The unit

sphere in Rd centered at 0 is denoted by Sd−1(0, 1).
To simplify questions regarding boundary conditions, we assume that either pe-

riodic boundary conditions are enforced, or the initial data is compactly supported
or constant outside a compact set. In both cases we denote by D the spatial domain
where the approximation is constructed. The domain D is the d-torus in the case of
periodic boundary conditions. In the case of the Cauchy problem, D is a compact,
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FINITE ELEMENT APPROXIMATION FOR HYPERBOLIC SYSTEMS 2467

polygonal portion of Rd large enough so that the domain of influence of u0 is always
included in D over the entire duration of the simulation.

The method that we propose is explicit in time and uses continuous finite elements
on nonuniform grids in any space dimension. The algorithm is described in section
3.2; see (3.9) with definitions (3.5)-(3.8)-(3.16). It is a somewhat loose adaptation
of the nonstaggered Lax–Friedrichs scheme to continuous finite elements. The key
results of the paper are Theorems 4.1 and 4.7. It is shown in Theorem 4.1 that the
proposed scheme preserves all the convex invariant sets as defined in Definition 2.3,
and it is shown in Theorem 4.7 that the approximate solution satisfies a discrete
entropy inequality for every entropy pair of the hyperbolic system. Similar results
have been established by Hoff [13, 14], Perthame and Shu [27], and Frid [9] for the
compressible Euler equations and the p-system using various finite volumes schemes
based on piecewise constant approximation. Our scheme has no restriction on the
nature of the hyperbolic system, besides the speed of propagation being finite, and
can use continuous finite elements of arbitrary polynomial degree on unstructured
meshes in any space dimension. To the best of our knowledge, we are not aware of
any similar scheme in the continuous finite element literature. The proposed method
is meant to be a stepping stone for the construction of higher-order continuous finite
element methods by using, for instance, the flux transport correction methodology à
la Boris, Book, and Zalesak, or any generalization thereof, to implement limitation on
the artificial viscosity. None of these generalizations is discussed in this paper. Our
sole objective is to prepare the groundwork for future research on limitation by giving
a firm, indisputable, theoretical footing for first-order, invariant-domain preserving
methods using continuous finite elements on unstructured grids in arbitrary space
dimension for every hyperbolic system.

The paper is organized as follows. The notions of invariant sets and invariant
domains with various examples and other preliminaries are introduced in section 2.
The method is introduced in section 3. Stability properties of the algorithm are
analyzed in section 4. Numerical illustrations and comparisons with existing first-
order methods are presented in section 5.

2. Preliminaries. The objective of this section is to introduce notation and
preliminary results that will be useful in the rest of the paper. We mostly use the
notation and terminology of Chueh, Conley, and Smoller [5], Hoff [13, 14], and Frid
[9]. The reader who is familiar with the notions of invariant domains and Riemann
problems may skip this section and go directly to section 3, although the reader should
be aware that our definitions of invariant sets and domains are slightly different from
those of [5, 13, 14, 9].

2.1. Riemann problem. We assume that (1.1) is such that there is a clear
notion for the solution of the Riemann problem. That is, there exists a (nonempty)
admissible set A ⊂ Rm such that for any pair of states (uL,uR) ∈ A×A and any unit
vector n ∈ Sd−1(0, 1), the one-dimensional Riemann problem

(2.1) ∂tu + ∂x(f(u)·n) = 0, (x, t) ∈ R×R+, u(x, 0) =

{
uL if x < 0,

uR if x > 0

has a unique (physical) solution, which we henceforth denote u(n,uL,uR).
The theory of the Riemann problem for general nonlinear hyperbolic systems with

data far apart is an open problem. Moreover, it is unrealistic to expect a general the-
ory for every system with arbitrary initial data. However, when the system is strictly
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2468 JEAN-LUC GUERMOND AND BOJAN POPOV

hyperbolic with smooth flux and all the characteristic fields are either genuinely non-
linear or linearly degenerate, it is possible to show that there exists δ > 0 such that
the Riemann problem has a unique self-similar weak solution in Lax’s form for any
initial data such that ‖uL − uR‖`2 ≤ δ; see Lax [21] and Bressan [3, Thm. 5.3]. In
particular, there are 2m numbers

(2.2) λ−1 ≤ λ
+
1 ≤ λ

−
2 ≤ λ

+
2 ≤ · · · ≤ λ−m ≤ λ+m

defining up to 2m+ 1 sectors (some could be empty) in the (x, t) plane:

(2.3)
x

t
∈ (−∞, λ−1 ),

x

t
∈ (λ−1 , λ

+
1 ), . . . ,

x

t
∈ (λ−m, λ

+
m),

x

t
∈ (λ+m,∞).

The Riemann solution is uL in the sector x
t ∈ (−∞, λ−1 ), and uR in the last sector

x
t ∈ (λ+m,∞). The solution in the other sectors is either a constant state or an

expansion; see Bressan [3, Chap. 5]. The sector λ−1 t < x < λ+mt, 0 < t, is henceforth
referred to as the Riemann fan. The key result that we are going to use is that there
is a maximum speed of propagation λmax(n,uL,uR) := max(|λ−1 |, |λ+m|) such that for
t ≥ 0 we have

(2.4) u(x, t) =

{
uL if x ≤ −tλmax(n,uL,uR),

uR if x ≥ tλmax(n,uL,uR).

Actually, even if the above structure of the Riemann solution is not available or
valid, we henceforth make the following assumption:

(2.5)
The unique solution of (2.1) has a finite speed of propagation for any n;
i.e., there is λmax(n,uL,uR) such that (2.4) holds.

For instance, this is the case for strictly hyperbolic systems that may have character-
istic families that are either not genuinely nonlinear or not linearly degenerate; see,
e.g., Liu [24, Thm. 1.2] and Dafermos [8, Thm. 9.5.1]. We refer the reader to Osher
[26, Thm. 1] for the theory of the Riemann problem for scalar conservation equations
with nonconvex fluxes. In the case of general hyperbolic systems, we refer the reader
to Bianchini and Bressan [2, section 14] for characterizations of the Riemann solution
using viscosity regularization. We also refer the reader to Young [30, Thm. 2] for
the theory of the Riemann problem for the p-system with arbitrary data (i.e., with
possible formation of vacuum).

The following elementary result is an important, well-known consequence of (2.4);
i.e., the Riemann solution is equal to uL for x ∈ (−∞, λ−1 t) and equal to uR for
x ∈ (λ+mt,∞).

Lemma 2.1. Let uL,uR ∈ A, let u(n,uL,uR) be the Riemann solution to (2.1),

let u(t,n,uL,uR) :=
∫ 1

2

− 1
2

u(n,uL,uR)(x, t) dx, and assume that t λmax(n,uL,uR) ≤
1
2 ; then

(2.6) u(t,n,uL,uR) =
1

2
(uL + uR)− t

(
f(uR)·n− f(uL)·n

)
.

If the system (1.1) has an entropy pair (η, q), and if the Riemann solution is
defined to be entropy satisfying, i.e., if the following holds:

(2.7) ∂tη(u(n,uL,uR)) + ∂x
(
q(u(n,uL,uR))·n

)
≤ 0

in some appropriate sense (distribution sense, measure sense, etc.), then we have the
following additional result.
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Lemma 2.2. Let (η, q) be an entropy pair for (1.1), and assume that (2.7) holds.
Let uL,uR ∈ A, and let u(n,uL,uR) be the Riemann solution to (2.1). Assume that
t λmax(n,uL,uR) ≤ 1

2 . Then

(2.8) η(u(t,n,uL,uR)) ≤ 1

2
(η(uL) + η(uR))− t(q(uR)·n− q(uL)·n).

Proof. Under the CFL assumption t λmax(n,uL,uR) ≤ 1
2 , the inequality (2.7)

implies that

(2.9)

∫ 1
2

− 1
2

η(u(n,uL,uR))(x, t) dx ≤ 1

2
(η(uL) + η(uR))− t(q(uR)·n− q(uL)·n).

Jensen’s inequality η(u(t,n,uL,uR)) ≤
∫ 1

2

− 1
2

η(u(n,uL,uR)(x, t)) dx then implies the

desired result.

2.2. Invariant sets and domains. We introduce in this section the notions
of invariant sets and invariant domains. Our definitions are slightly different from
those in Chueh, Conley, and Smoller [5], Hoff [14], Smoller [28], and Frid [9]. We will
associate invariant sets only with solutions of Riemann problems and define invariant
domains only for an approximation process.

Definition 2.3 (invariant set). We say that a set B ⊂ A ⊂ Rm is invariant for
(1.1) if for any pair (uL,uR) ∈ B×B, any unit vector n ∈ Sd−1(0, 1), and any t > 0,
the average of the entropy solution of the Riemann problem (2.1) over the Riemann

fan, say, 1
t(λ+

m−λ−1 )

∫ λ+
mt

λ−1 t
u(n,uL,uR)(x, t) dx, remains in B.

Note that if in addition we assume that B is convex, then the above definition
implies that given t > 0 and any interval I such that (λ−1 t, λ

+
mt) ⊂ I, we have that

1
I

∫
I
u(n,uL,uR)(x, t) dx ∈ B. Note also that most of the time expansion waves and

shocks are not invariant sets.
We now introduce the notion of invariant domain for an approximation process.

Let Xh ⊂ L1(Rd;Rm) be a finite-dimensional approximation space, and let Sh : Xh 3
uh 7−→ Sh(uh) ∈ Xh be a discrete process over Xh. Henceforth we abuse notation
by saying that a member of Xh, say uh, is in the set B ⊂ Rm when actually we mean
that {uh(x) | x ∈ Rd} ⊂ B.

Definition 2.4 (invariant domain). A convex invariant set B ⊂ A ⊂ Rm is
said to be an invariant domain for the process Sh if and only if for any state uh in
B, the state Sh(uh) is also in B.

For scalar conservation equations the notions of invariant sets and invariant do-
mains are closely related to the maximum principle; see Example 1 in section 2.3. In
the case of nonlinear systems, the notion of maximum principle does not apply and
must be replaced by the notion of invariant domain. To the best of our knowledge, the
definition of invariant sets for the Riemann problem was introduced in Nishida [25],
and the general theory of positively invariant regions was developed in Chueh, Conley,
and Smoller [5]. Applications and extensions to numerical methods were developed
in Hoff [13, 14] and Frid [9].

The invariant domain theory when m = 2 and d = 1 relies on the existence of
global Riemann invariants; the best known examples are the hyperbolic systems of
isentropic gas dynamics in Eulerian and Lagrangian form; see Example 2 in section 2.4
and Lions, Perthame, and Souganidis [22]. For results on general hyperbolic systems,
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2470 JEAN-LUC GUERMOND AND BOJAN POPOV

we refer the reader to Frid [9], where a characterization of invariant domains for the
Lax–Friedrichs scheme and some flux splitting schemes is given. In particular the
existence of invariant domains is established for the above-mentioned schemes for the
compressible Euler equations in the general case m = d+ 2 (positive density, internal
energy, and minimum principle on the specific entropy); see Frid [9, Thms. 7 and 8].
Similar results have been established for various finite volume schemes in two-space
dimension for the Euler equations in Perthame and Shu [27, Thm. 3].

The objective of this paper is to propose an explicit numerical method based on
continuous finite elements to approximate (1.1) such that any convex invariant set of
(1.1) is an invariant domain for the process generated by the said numerical method.

To facilitate the reading of the paper we now illustrate the abstract notions of
invariant sets and invariant domains with some examples.

2.3. Example 1: Scalar equations. Assume that m = 1 and d is arbitrary;
i.e., (1.1) is a scalar conservation equation. Provided f ∈ Lip(R;Rd), any bounded
interval is an admissible set for (1.1). For any Riemann data uL, uR, the maximum
speed of propagation in (2.4) is bounded by λmax(uL, uR) := ‖f ·n‖Lip(umin,umax),
where umin = min(uL, uR), umax = max(uL, uR). If f is convex and is of class
C1, we have λmax(uL, uR) = max(|n·f ′(uL)|, |n·f ′(uR)|) if n·f ′(uL) ≤ n·f ′(uR)
and λmax(uL, uR) = n·(f(uL) − f(uR))/(uL − uR) otherwise. Any interval [a, b] ⊂
R is admissible and is an invariant set for (1.1), i.e., if uR, uL ∈ [a, b], then a ≤
u(n, uL, uR) ≤ b for all times; this is the maximum principle. For any a ≤ b ∈ R, the
interval [a, b] is an invariant domain for any maximum principle satisfying numerical
schemes. Note that the maximum principle can be established for a large number of
numerical methods (whether monotone or not); see, for example, Crandall and Majda
[7].

2.4. Example 2: p-system. The one-dimensional motion of an isentropic gas
is modeled by the so-called p-system, and in Lagrangian coordinates the system is
written as follows:

(2.10)

{
∂tv + ∂xu = 0,

∂tu+ ∂xp(v) = 0 for (x, t) ∈ R×R+.

Here d = 1 and m = 2. The dependent variables are the velocity u and the specific
volume v, i.e., the reciprocal of density. The mapping v 7→ p(v) is the pressure and
assumed to be of class C2(R+;R) and to satisfy

(2.11) p′ < 0, 0 < p′′.

A typical example is the so-called gamma-law, p(v) = rv−γ , where r > 0 and γ ≥ 1.
Using the notation u = (v, u)T, any set A in (0,∞)×R is admissible.

Using the notation dµ :=
√
−p′(s) ds, and assuming

∫∞
1

dµ < ∞, the system
has two families of global Riemann invariants:

(2.12) w1(u) = u+

∫ ∞
v

dµ and w2(u) = u−
∫ ∞
v

dµ.

Note that
∫∞
1

dµ < ∞ if γ > 1. If γ = 1, we can use w1(u) = u −
√
r log v and

w2(u) = u +
√
r log v. Let a, b ∈ R; then it can be shown that any set Aab ∈ R+×R

of the form

(2.13) Aab := {u ∈ R+×R | a ≤ w2(u), w1(u) ≤ b}
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is an invariant set for the system (2.10) for γ ≥ 1; see Hoff [14, Exp. 3.5, p. 597] for a
proof in the context of parabolic regularization, or use the results from Young [30] for
a direct proof. Moreover, Aab is an invariant domain for the Lax–Friedrichs scheme;
see Hoff [13, Thm. 2.1] and Hoff [14, Thm. 4.1].

Since in the rest of the paper the maximum wave speed is the only information
we are going to need from the Riemann solution, we give the following result.

Lemma 2.5. Let (vL, uL), (vR, uR) ∈ R+×R with vR, vL <∞. Then

λmax(uL,uR) =

{√
−p′(min(vL, vR)) if uL − uR >

√
(vL − vR)(p(vR)− p(vL)),√

−p′(v∗) otherwise,

where v∗ is the unique solution of φ(v) := fL(v) + fR(v) + uL − uR = 0 and

fZ(v) :=

−
√

(p(v)− p(vZ)(vZ − v) if v ≤ vZ ,∫ v

vZ

dµ if v > vZ .

Upon setting wmax
1 := max(w1(uL), w1(uR)) and wmin

2 := min(w2(uL), w2(uR)) we
also have v0 ≤ min(vL, vR, v

∗), i.e., λmax(uL,uR) ≤
√
−p′(v0), where

v0 := (γr)
1

γ−1

(
4

(γ − 1)(wmax
1 − wmin

2 )

) 2
(γ−1)

.

Proof. It is well known that the solution of the Riemann problem consists of
three constant states uL, u∗, and uR connected by two waves: a 1-wave connects
uL and u∗, and a 2-wave connects u∗ and uR. Moreover, a vacuum forms if and
only if limv→+∞ φ(v) ≥ 0; see Young [30] for details. In the presence of vacuum, the
equation φ(v) = 0 has no solutions, and in this case we conventionally set v∗ := +∞
and

√
−p′(v∗) := 0. Note that since φ is an increasing and concave function with

limv→0+ φ(v) = −∞, the solution v∗ is unique. We also have that the maximum
speed of the exact solution is λmax(uL,uR) = max(

√
−p′(vL),

√
−p′(v∗),

√
−p′(vR)).

The only possibility for λmax(uL,uR) =
√
−p′(v∗) is if v∗ ≤ min(vL, vR), i.e., the

solution contains two shock waves, which is equivalent to φ(min(vL, vR)) ≥ 0. Us-
ing the definition of φ we derive that λmax(uL,uR) =

√
−p′(v∗) if and only if

φ(min(vL, vR)) = uL − uR −
√

(vL − vR)(p(vR)− p(vL)) ≥ 0. This finishes the proof
of the first part of the lemma.

The exact value of v∗ can be found using Newton’s method starting with a guess
v0 ≤ v∗. This guarantees that at each step of Newton’s method the estimated max-
imum speed is an upper bound for the exact maximum speed. One can obtain such
a guess v0 by using the invariant domain property (2.13); i.e., we define the state
u0 := (v0, u0) by wmax

1 = w1(u0) and wmin
2 = w2(u0), thereby giving

v0 = (γr)
1

γ−1

(
4

(γ − 1)(wmax
1 − wmin

2 )

) 2
(γ−1)

.

The invariant domain property guarantees that v0 ≤ v∗. Hence, the result is estab-
lished.

Remark 2.6. Note that the estimate on λmax(uL,uR) given in Lemma 2.5 is valid
whether or not vacuum is created in the Riemann solution.
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Remark 2.7. We only consider the case where both uL and uR are not vacuum
states in Lemma 2.5, since the algorithm that we propose never produces vacuum
states if vacuum is not present in the initial data.

2.5. Example 3: Euler. Consider the compressible Euler equations

(2.14) ∂tc +∇·(f(c)) = 0, c =

 ρ
m
E

 , f(c) =

 m
m⊗m

ρ + pI
m
ρ (E + p)

 ,

where the independent variables are the density ρ, the momentum vector field m,
and the total energy E. The velocity vector field u is defined by u := m/ρ and
the internal energy density e by e := E

ρ −
1
2 |u|

2. The quantity p is the pressure.

The symbol I denotes the identity matrix in Rd. Let s be the specific entropy of the
system, and assume that −s(e, ρ−1) is strictly convex. It is known that

(2.15) Ar := {(ρ,m, E) | ρ ≥ 0, e ≥ 0, s ≥ r}

is an invariant set for the Euler system for any r ∈ R. It is shown in Frid [9, Thms.
7 and 8] that the set Ar is convex and is an invariant domain for the Lax–Friedrichs
scheme.

Let n ∈ Sd−1(0, 1), and let us formulate the Riemann problem (2.1) for the Eu-
ler equations. This problem was first described in the context of dimension split-
ting schemes with d = 2 in Chorin [4, p. 526]. The general case is treated in
Colella [6, p. 188], see also Toro [29, Chap. 4.8]. We make a change of basis and
introduce t1, . . . , td−1 so that {n, t1, . . . , td−1} forms an orthonormal basis of Rd.
With this new basis we have m = (m,m⊥)T, where m := ρu, u := u·n, m⊥ :=
ρ(u·t1, . . . ,u·td−1) := ρu⊥. The projected equations are

(2.16) ∂tc + ∂x(n·f(c)) = 0, c =


ρ
m
m⊥

E

 , n·f(c) =


m

1
ρm

2 + p

um⊥

u(E + p)

 .

Using the density ρ and the specific entropy s as dependent variables for the pressure,
p(ρ, s), the linearized Jacobian is

u ρ 0T 0
ρ−1∂ρp u 0T ρ−1∂sp

0 0 uI 0
0 0 0T u

 .

The eigenvalues are u, with multiplicity d, u +
√
∂ρp(ρ, s), with multiplicity 1, and

u−
√
∂ρp(ρ, s), with multiplicity 1. One key observation is that the Jacobian does not

depend on m⊥; see Toro [29, p. 150]. As a consequence, the solution of the Riemann
problem with data (cL, cR) is such that (ρ, u, p) is obtained as the solution to the
one-dimensional Riemann problem

(2.17) ∂t

 ρ
m
E

+ ∂x

 m
1
ρm

2 + p

u(E + p)

 = 0, with ρe = E − m2

2ρ
,
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with data cnL := (ρL,mL·n, EL), cnR := (ρR,mR·n, ER), where EZ = EZ − 1
2

‖m⊥Z‖
2
`2

ρZ
,

Z ∈ {L,R}. Moreover, for an ideal gas obeying the caloric equation of state p =
(γ − 1)ρe, it can be shown (see Toro [29, p. 150]) that m⊥ is the solution of the
transport problem ∂tm

⊥ + ∂x(um) = 0. The bottom line of this argumentation is
that the maximum wave speed in (2.16) is

λmax(cL, cR) = max(|λ−1 (cnL, c
n
R)|, |λ+3 (cnL, c

n
R)|),

where λ−1 (cnL, c
n
R) and λ+3 (cnL, c

n
R) are the two extreme wave speeds in the Riemann

problem (2.17) with data (cnL, c
n
R).

We now determine the values of λ−1 (cnL, c
n
R) and λ+3 (cnL, c

n
R). We only consider

the case where both states, cL and cR, are not vacuum states, since the algorithm
that we are proposing never produces vacuum states if vacuum is not present in the
initial data. That is, we assume ρL, ρR > 0 and pL, pR ≥ 0. Then the local sound

speed is given by aZ =
√

γpZ
ρZ

, where Z is either L or R. We introduce the notation

AZ := 2
(γ+1)ρZ

, BZ := γ−1
γ+1pZ and the functions

φ(p) := f(p, L) + f(p,R) + uR − uL,(2.18)

f(p, Z) :=


(p− pZ)

(
AZ
p+BZ

) 1
2

if p ≥ pZ ,

2aZ
γ−1

((
p
pZ

) γ−1
2γ − 1

)
if p < pZ ,

(2.19)

where again Z is either L or R. It is shown in Toro [29, Chap. 4.3.1] that the
function φ(p) ∈ C1(R+;R) is monotone increasing and concave down. Observe that
φ(0) = uR − uL − 2aL

γ−1 −
2aR
γ−1 . Therefore, φ has a unique positive root if and only if

the nonvacuum condition

(2.20) uR − uL <
2aL
γ − 1

+
2aR
γ − 1

holds; see Toro [29, (eq. 4.40), p. 127]; we denote this root by p∗, i.e., φ(p∗) = 0, and
p∗ can be found via Newton’s method. If (2.20) does not hold, we set p∗ = 0. Then
it can be shown that whether or not there is formation of vacuum, we have

λ−1 (cnL, c
n
R) = uL − aL

(
1 +

γ + 1

2γ

(
p∗ − pL
pL

)
+

) 1
2

,(2.21)

λ+3 (cnL, c
n
R) = uR + aR

(
1 +

γ + 1

2γ

(
p∗ − pR
pR

)
+

) 1
2

,(2.22)

where z+ := max(0, z).

Remark 2.8 (fast algorithm). Note that if both φ(pL) > 0 and φ(pR) > 0, there
is no need to compute p∗, since in this case λ−1 (uL, uR) = uL − aL and λ+3 (uL, uR) =
uR+aR; i.e., two rarefaction waves are present in the solution with a possible formation
of vacuum. This observation is important since traditional techniques for computing
p∗ may require a large number of iterations in this situation; see Toro [29, p. 128].
Note finally that there is no need to compute p∗ exactly since one needs only an upper
bound on λmax. A very fast algorithm, with guaranteed upper bound on λmax up to
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any prescribed accuracy ε of the type λmax ≤ λ̃max ≤ (1 + ε)λmax, is described in
Guermond and Popov [11]. It is also shown therein that

(2.23) p̃∗ =

aL + aR − γ−1
2 (uR − uL)

aL p
− γ−1

2γ

L + aR p
− γ−1

2γ

R


2γ
γ−1

is an upper bound for p∗ for γ ∈ (1, 53 ]. Therefore, denoting by λ̃−1 (uL, uR) and

λ̃+3 (uL, uR) the wave speeds computed with p̃∗ instead of p∗ in (2.21)–(2.22), we have
λ̃−1 (uL, uR) ≤ λ−1 (uL, uR) ≤ λ+3 (uL, uR) ≤ λ̃+3 (uL, uR), which in turn implies that
λ̃max = max(|λ̃−1 (uL, uR)|, |λ̃+3 (uL, uR)|) is a guaranteed upper bound for λmax, i.e.,
λmax ≤ λ̃max.

3. First-order method. In this section we describe an explicit first-order finite
element technique that, up to a CFL restriction, preserves all convex invariant sets of
(1.1) that contain reasonable approximations of u0. Although most of the arguments
invoked in this section are quite standard and mimic Lax’s one-dimensional finite
volume scheme, we are not aware of the existence of such a finite element–based
scheme in the literature.

3.1. The finite element space. We want to approximate the solution of (1.1)
with continuous finite elements. Let (Th)h>0 be a shape-regular sequence of matching
meshes. The elements in the mesh sequence are assumed to be generated from a
finite number of reference elements denoted K̂1, . . . , K̂$. For example, the mesh Th
could be composed of a combination of triangles and parallelograms in two space
dimensions ($ = 2 in this case); it could also be composed of a combination of
tetrahedra, parallelepipeds, and triangular prisms in three space dimensions ($ = 3

in this case). The diffeomorphism mapping K̂r to an arbitrary element K ∈ Th is

denoted TK : K̂r −→ K, and its Jacobian matrix is denoted JK , 1 ≤ r ≤ $. We now
introduce a set of reference finite elements {(K̂r, P̂r, Σ̂r)}1≤r≤$ (the index r ∈ {1:$}
will be omitted in the rest of the paper to alleviate notation).

Then we define the scalar-valued and vector-valued finite element spaces

P (Th) = {v ∈ C0(D;R) | v|K◦TK ∈ P̂ ∀K ∈ Th}, P (Th) = [P (Th)]m,(3.1)

where P̂ is the reference polynomial space defined on K̂ (note that the index r has been

omitted). The shape functions on the reference element are denoted {θ̂i}i∈{1:nsh},

i.e., nsh := dim P̂ . We assume that the basis {θ̂i}i∈{1:nsh} has the partition of unity
property ∑

i∈{1:nsh}

θ̂i(x̂) = 1 ∀x̂ ∈ K̂.(3.2)

The global shape functions in P (Th) are denoted by {ϕi}i∈{1:I}. Recall that these
functions form a basis of P (Th). Let j : Th×{1:nsh} −→ {1:I} be the connectivity
array. This array is defined such that

(3.3) ϕj(i,K)(x) = θ̂i((TK)−1(x)) ∀i ∈ {1:nsh}, ∀K ∈ Th.

This definition, together with the partition of unity property, implies that∑
i∈{1:I}

ϕi(x) = 1 ∀x ∈ D.(3.4)
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We denote by Si the support of ϕi and by |Si| the measure of Si, i ∈ {1:I}. We
also define by Sij := Si ∩ Sj the intersection of the two supports Si and Sj . Let E
be a union of cells in Th; we define by I(E) := {j ∈ {1:I} | |Sj ∩ E| 6= 0} the set
that contains the indices of all the shape functions whose support on E is of nonzero
measure. We are going to regularly invoke I(K) and I(Si) and the partition of unity
property

∑
i∈I(K) ϕi(x) = 1 for all x ∈ K.

Let M ∈ RI×I be the consistent mass matrix with entries
∫
Sij

ϕi(x)ϕj(x) dx,

and let ML be the diagonal lumped mass matrix with entries

(3.5) mi :=

∫
Si

ϕi(x) dx.

The partition of unity property implies that mi =
∑
j∈I(Si)

∫
ϕj(x)ϕi(x) dx; i.e., the

entries ofML are obtained by summing the rows ofM. One key assumption that we
use in the rest of the paper is that

(3.6) mi > 0 ∀i ∈ {1:I}.

This assumption is satisfied by many finite element families.

3.2. The scheme. Let uh0 =
∑I
i=1 U

0
iϕi ∈ P (Th) be a reasonable approx-

imation of u0 (we will be more precise in the following sections). Let n ∈ N,
τ be the time step, tn be the current time, and let us set tn+1 = tn + τ . Let
unh =

∑I
i=1 U

n
i ϕi ∈ P (Th) be the space approximation of u at time tn, and set

un+1
h =

∑I
i=1 U

n+1
i ϕi, where Un+1

i is yet to be determined. Using the observation
that f(unh) =

∑
j∈{1:I} f(Unj )ϕj if f is linear, we adopt the following ansatz, which

is formally second-order accurate in space:∫
D

∇·(f(unh))ϕi dx ≈
∑

j∈I(Si)

f(Unj )·cij ,(3.7)

where the coefficients cij ∈ Rd are defined by

(3.8) cij =

∫
D

ϕi∇ϕj dx.

We propose to compute un+1
h by

(3.9) mi
Un+1
i −Uni

τ
+

∑
j∈I(Si)

f(Unj )·cij −Unj d
n
ij = 0,

where the lumped mass matrix is used for the approximation of the time derivative.
The coefficient dnij is an artificial viscosity for the pair (i, j) that is yet to be clearly
identified. For the time being we assume that

(3.10) dnij ≥ 0, if i 6= j, dnij = dnji, and dnii :=
∑

i 6=j∈I(Si)

− dnji.

Remark 3.1 (conservation). The definition dnii :=
∑
i 6=j∈I(Si)− dnji implies that∑

j∈I(Si) d
n
ji = 0, which in turn implies that

(3.11)

∫
D

un+1
h dx =

∫
D

unh dx− τ
∫
D

∇·

 I∑
j=1

f(Unj )ϕj

 dx ∀n ≥ 0,
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i.e., the method is conservative. Note also that the symmetry assumption in (3.10)
implies dnii :=

∑
i6=j∈I(Si)−d

n
ij , which is often easier to compute.

3.3. The convex combination argument. We motivate the choice of the
artificial viscosity coefficients dnij in this section. Observing that the partition of
unity property

∑
j∈I(Si) ϕj = 1 and (3.10) imply conservation, i.e.,

(3.12)
∑

j∈I(Si)

cij = 0,
∑

j∈I(Si)

dnij = 0,

we rewrite (3.9) as follows:

(3.13) mi
Un+1
i −Uni

τ
= −

∑
j∈I(Si)

(f(Unj )− f(Uni ))·cij + dnij(U
n
j + Uni ).

Using again conservation, i.e., dii = −
∑
i 6=j∈I(Si) d

n
ij , we finally arrive at

(3.14) Un+1
i = Uni

(
1−

∑
i 6=j∈I(Si)

2τdnij
mi

)
+

∑
i 6=j∈I(Si)

2τdnij
mi

U
n+1

ij ,

where we have introduced the auxiliary quantities

(3.15) U
n+1

ij :=
1

2
(Unj + Uni )− (f(Unj )− f(Uni ))· cij

2dnij
.

A first key observation is that (3.14) is a convex combination provided τ is
small enough and provided (3.6) holds. A second key observation at this point is

that upon setting nij := cij/‖cij‖`2 , we realize that U
n+1

ij is exactly of the form
u(t,nij ,U

n
i ,U

n
j ) as defined in (2.6), with a fake time t = ‖cij‖`2/2dnij . The CFL

condition tλmax(nij ,uL,uR) ≤ 1
2 in Lemma 2.1 motivates the following definition for

the viscosity coefficients dnij :

(3.16) dnij := max(λmax(nij ,U
n
i ,U

n
j )‖cij‖`2 , λmax(nji,U

n
j ,U

n
i )‖cji‖`2),

where we recall that λmax(nij ,U
n
i ,U

n
j ) is defined in the assumption (2.5).

Remark 3.2 (symmetry). If either ϕi or ϕj is zero at the boundary of the compu-
tational domain D, one integration by parts gives cij = −cji, which in turn implies
λmax(nij ,U

n
i ,U

n
j ) = λmax(nji,U

n
j ,U

n
i ). In conclusion λmax(nij ,U

n
i ,U

n
j )‖cij‖`2 =

λmax(nji,U
n
j ,U

n
i )‖cji‖`2 if either ϕi or ϕj is an interior shape function.

Remark 3.3 (upwinding). Note that in the scalar one-dimensional case when the
flux f is linear and the shape functions are piecewise linear, (3.9) gives the usual
upwinding first-order method.

4. Stability analysis. We analyze the stability properties of the scheme (3.9)
with the viscosity defined in (3.16).

4.1. Invariant domain property. We now prove the main result of the paper.

Theorem 4.1 (local invariance). Let n ≥ 0 and let i ∈ {1:I}. Assume (3.6).

Assume that τ is small enough so that 1+2τ
dnii
mi
≥ 0. Let B ⊂ A be a convex invariant

set for (1.1) such that {Unj | j ∈ I(Si)} ⊂ B; then Un+1
i ∈ B.
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Proof. Owing to the local CFL assumption 1 + 2τ
dnii
mi
≥ 0, (3.14) defines Un+1

i

as a convex combination of Uni and the collection of states {Un+1

ij }j∈I(Si). Observe

that upon defining nij := cij/‖cij‖`2 , the quantity U
n+1

ij defined in (3.15) is exactly
of the form u(t,nij ,U

n
i ,U

n
j ) as defined in (2.6), with the flux f ·nij and the fake time

t = ‖cij‖`2/2dijn . The definition (3.16) implies that dnij ≥ λmax(nij ,U
n
i ,U

n
j )‖cij‖`2 ,

which is the CFL condition tλmax(nij ,uL,uR) ≤ 1
2 necessary for the conclusions of

Lemma 2.1 to hold. This proves that U
n+1

ij := u(t,nij ,U
n
i ,U

n
j ) ∈ B for all j ∈ I(Si)

since B is a convex invariant set.
The convexity of B implies that Un+1

i ∈ B, since Uni ∈ B by assumption and we

have established above that U
n+1

ij ∈ B for all j ∈ I(Si).

Corollary 4.2 (global invariance). Let n ∈ N. Assume that τ is small enough

so that the global CFL condition mini∈{1:I}
(
1 + 2τ

dnii
mi

)
≥ 0 holds. Let B ⊂ A be a

convex invariant set. Assume that {Uni | i ∈ {1:I}} ⊂ B. Then {Un+1
i | i ∈ {1:I}} ⊂

B.

Proof. The statement is a direct consequence of Theorem 4.1.

Note that the above results say that the invariant domain property holds for the
coefficients Un+1, but they do not say whether this property holds for un+1

h . In order
to be able to extract some information on the approximate solution un+1

h , we introduce
an additional assumption on the reference shape functions. More specifically, we
assume that the basis {θ̂i}i∈{1:nsh} has the following positivity property:

θ̂i(x) ≥ 0 ∀x̂ ∈ K̂.(4.1)

This property holds for linear Lagrange elements on simplices, quadrangular elements,
and hexahedra. This assumption holds also for first-order prismatic elements in three
space dimensions. It holds true also for Bernstein–Bezier finite elements of any poly-
nomial degree; see e.g., Lai and Schumaker [20, Chap. 2] and Ainsworth [1]. This
assumption implies that ϕi(x) ≥ 0 for all i ∈ {1:I} and all x ∈ D. Note that (4.1)
implies (3.6).

Corollary 4.3 (global invariance on un+1
h ). Assume that (4.1) holds. Let

B ⊂ A be a convex invariant set containing the initial data u0. Assume that {U0
i | i ∈

{1:I}} ⊂ B. Let N ∈ N. Assume that τ is small enough so that the CFL condition

1 + 2τ
dnii
mi
≥ 0 holds for all i ∈ {1:I} and all n ∈ {0:N}. Then {Uni | i ∈ {1:I}} ⊂ B

and unh ∈ B for all n ∈ {0:N + 1}.
Proof. The CFL condition, together with (3.6), implies that {Uni | i ∈ {1:I}} ⊂ B

for any n ∈ {0:N + 1} as established in Corollary 4.2. Let x ∈ D; then the expansion
unh(x) =

∑
i∈{1:I}U

n
i ϕi(x) is in the convex hull of {Uni }i∈{1:I} owing to the partition

of unity property (3.4) and the positivity assumption (4.1). Hence, unh(x) ∈ B for
any x ∈ D since B is convex.

Remark 4.4 (construction of u0
h). Let B ⊂ A be a convex invariant set containing

the initial data u0. If P (Th) is composed of piecewise linear Lagrange elements,
then defining u0

h to be the Lagrange interpolant of u0, we have {U0
i | i ∈ {1:I}} ⊂

B. Similarly, if P (Th) is composed of Bernstein finite elements of degree two and
higher, then defining u0

h to be the Bernstein quasi-interpolant of u0, we have {U0
i | i ∈

{1:I}} ⊂ B; see Lai and Schumaker [20, eq. (2.72)]. Note that the approximation of
u0 is only second-order accurate in this case, independently of the polynomial degree
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of the Bernstein polynomials; see [20, Thm. 2.45]. In both cases the assumptions of
Corollary 4.3 hold.

Remark 4.5. The arguments invoking the convex combination (3.14) and the one-
dimensional Riemann averages (3.15) are similar in spirit to those used in the proof
of Theorem 3 in Perthame and Shu [27].

We now give an interpretation of the CFL condition 1 + 2τ
dnii
mi
≥ 0 in terms of

the local mesh size. The local minimum mesh size, hK , for any K ∈ Th is defined as
follows:

(4.2) hK :=
1

maxi6=j∈I(K) ‖∇ϕi‖L∞(Sij)
,

and the global minimum mesh size is h := minK∈Th hK . Due to the shape regularity
assumption, the quantities hK and hK := diam(K) are uniformly equivalent, but it
will turn out that using hK instead of hK gives a sharper estimate of the CFL number.
Let us recall that nsh := card(I(K)), and let us define ϑK := 1

nsh−1 . Note that

(4.3) 0 < ϑmin := min
(Th)h>0

min
K∈Th

ϑK < +∞,

since there are at most $ reference elements defining the mesh sequence. We also
introduce the mesh-dependent quantities

(4.4) µmin := min
K∈Th

min
i∈I(K)

1

|K|

∫
K

ϕi(x) dx, µmax := max
K∈Th

max
i∈I(K)

1

|K|

∫
K

ϕi(x) dx.

Note that µmin = µmax = 1
nsh

= 1
d+1 for meshes uniquely composed of simplices and

that µmin = µmax = 2−d for meshes uniquely composed of parallelograms and cuboids.

Lemma 4.6 (CFL). Let λnmax := maxi∈{1:I}maxj∈I(Si) λmax(nij ,U
n
i ,U

n
j ) for

n ≥ 0. Assume that 2τ
λnmax

h
µmax

µminϑmin
≤ 1; then mini∈{1:I}

(
1 + 2τ

dnii
mi

)
≥ 0.

Proof. Note first that

‖cij‖`2 ≤
∫
Sij

‖∇ϕj‖`2ϕi dx ≤ h−1
∫
Sij

ϕi dx ≤ h−1µmax|Sij |.

The definition of dii implies that

−dii ≤
λnmax

h
µmax

∑
i 6=j∈I(Si)

|Sij | ≤
λnmax

h

µmax

ϑmin
|Si|.

Then using that µmin|Si| ≤ mi, we infer that −2τ diimi ≤ 2τ
λnmax

h
µmax

µminϑmin
≤ 1, which

concludes the proof.

4.2. Discrete entropy inequality. We now derive a local entropy inequality.

Theorem 4.7. Let B ⊂ A be a convex invariant set for (1.1). Let (η, q) be an
entropy pair for (1.1). Assume that (2.7) holds for any Riemann data (uL,uR) in B
and any n ∈ Sd−1(0, 1). Let n ≥ 0 and i ∈ {1:I}. Assume also that the local CFL

condition 1 + 2τ
dnii
mi
≥ 0 holds: then we have the following local entropy inequality:

mi

τ
(η(Un+1

i )− η(Uni )) +

∫
D

∇·

( ∑
j∈I(Si)

q(Unj )ϕj

)
ϕi dx −

∑
j∈I(Si)

dnijη(Unj ) ≤ 0.

(4.5)
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Proof. Let (η, q) be an entropy pair for the system (1.1). Let i ∈ {1:I}; then
recalling (3.14), the CFL condition and the convexity of η imply that

η(Un+1
i ) ≤

(
1−

∑
i6=j∈I(Si)

2τdnij
mi

)
η(Uni ) +

∑
i 6=j∈I(Si)

2τdnij
mi

η(U
n+1

ij ).

Owing to Lemma 2.2 we have

η(U
n+1

ij ) ≤ 1

2
(η(Uni ) + η(Unj ))− t(q(Unj )·nij − q(Uni )·nij),

with t = ‖cij‖`2/2dnij ; hence,

mi

τ
(η(Un+1

i )− η(Uni )) ≤
∑

i 6=j∈I(Si)

2dnij(η(U
n+1

ij )− η(Uni ))

≤
∑

i 6=j∈I(Si)

dnij(η(Unj )− η(Uni ))− ‖cij‖`2(q(Unj )·nij − q(Uni )·nij).

The conclusion follows from the definitions of nij , cij , and dnij .

Remark 4.8. One recovers (3.9) from (4.5) with η(v) = v. Note also that (4.5)
gives the global entropy inequality

∑
1≤i≤I miη(Un+1

i ) ≤
∑

1≤i≤I miη(Uni ).

Remark 4.9. The meaning of the entropy inequality (2.7) might be somewhat
ambiguous in some cases, especially when u is a measure. Since it is only the in-
equality (2.8) that is really needed in the proof of Theorem 4.7, we could replace
the assumption (2.7) by (2.8). This would avoid having to invoke measure solutions,
since u(t,n,uL,uR) should always be finite for the Riemann problem (2.1) to have a
reasonable (physical) meaning.

4.2.1. Cell-based versus edge-based viscosity. In the formulation (3.9) the
term

∑
j∈I(Si) d

n
ijUj models some edge-based dissipation; i.e., dnij is a dissipation coef-

ficient associated with the pair of degrees of freedom of indices (i, j). This formulation
is related in spirit to that of local extremum diminishing (LED) schemes developed
for scalar conservation equations in Kuzmin and Turek [18, eqs. (32)–(33)]; see also
Jameson [15, section 2.1]. However, it is a bit difficult to understand that we are
modeling some artificial dissipation by just staring at (3.9).

We now propose an alternative point of view using a cell-based viscosity. The
traditional way to introduce dissipation in the finite element world consists of invoking
the weak form of the Laplacian operator −∇·(ν∇ψ). For instance, assuming that the
viscosity field ν is piecewise constant over each mesh cell K ∈ Th, we write

(4.6)

∫
D

−∇·(ν∇ψ)ϕi dx =
∑
K⊂Si

νK

∫
K

∇ψ·∇ϕi dx.

Unfortunately, it has been shown in Guermond and Nazarov [10] that the bilinear
form (ψ,ϕ) −→

∫
K
∇ψ·∇ϕdx is not robust with respect to the shape of the cells.

More specifically, the convex combination argument, which is essential to proving the
maximum principle for scalar conservation equations in arbitrary space dimension
with continuous finite elements, can be made to work only if

∫
Sij
∇ϕi·∇ϕj dx < 0

for all pairs of shape functions, ϕi, ϕj , with common support of nonzero measure.
This is the well-known acute angle condition assumption, which a priori excludes a
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lot of meshes—in particular in three space dimensions. To avoid this difficulty, it is
proposed in [10] to replace (4.6) by

∑
K⊂Si νKbK(ψ,ϕi), where

(4.7) bK(ϕj , ϕi) =


−ϑK |K| if i 6= j, i, j ∈ I(K),

|K| if i = j, i, j ∈ I(K),

0 if i 6∈ I(K) or j 6∈ I(K).

The essential properties of bK can be summarized as follows.

Lemma 4.10. There is c > 0 depending only on the collection {(K̂r, P̂r, Σ̂r)}1≤r≤$
and the shape-regularity such that the following identities hold for all K ∈ Th and all
uh, vh ∈ P (Th):

bK(ϕi, ϕj) = bK(ϕj , ϕi), bK

ϕi, ∑
j∈I(K)

ϕj

 = 0,(4.8)

bK(uh, vh) = ϑK |K|
∑

i∈I(K)

∑
I(K)3j<i

(Ui − Uj)(Vi − Vj),(4.9)

bK(uh, uh) ≥ ch2K‖∇uh‖2L2(K).(4.10)

For instance, when K is a simplex and K̂ is the regular simplex, i.e., all the edges
are of unit length, it can be shown that bK(ϕi, ϕi) = κ

∫
K
JTK(∇ϕj)·JTK(∇ϕi) dx and

bK(ϕj , ϕi) = − κ
1−nsh

∫
K
JTK(∇ϕj)·JTK(∇ϕi) dx for j 6= i, with κ = 1

2 (1+ 1
d ). Note also

that bK(ϕj , ϕi) ∼ h2K
∫
K

(∇ϕj)·(∇ϕi) dx if K is a regular simplex, thereby showing
the connection between bK and the more familiar bilinear form associated with the
Laplacian. One key argument from Guermond and Nazarov [10] is the recognition
that the bilinear form defined in (4.7) has all the good characteristics of the Laplacian-
based diffusion (see Lemma 4.10) and makes the convex combination argument work
independently of the space dimension and the shape-regularity of the mesh family.

Hence, instead of (3.9), we could also compute un+1
h by

(4.11)

mi
Un+1
i −Uni

τ
+

∫
D

∇·

( ∑
j∈I(Si)

f(Unj )ϕj

)
ϕi dx +

∑
K∈Th

νnK
∑

j∈I(K)

Unj bK(ϕj , ϕi) = 0,

where {νnK}K∈Th is a piecewise constant artificial viscosity scalar field.

Theorem 4.11. Let {νnK}K∈Th be defined by

(4.12) νnK := max
i 6=j∈I(K)

λmax(nij ,U
n
i ,U

n
j )‖cij‖`2∑

T⊂Sij −bT (ϕj , ϕi)
.

Then the conclusions of Theorems 4.1 and 4.7 hold under the local CFL condition

1 + 2τ
d̃nii
mi
≥ 0.

Proof. Let us denote d̃nij := −
∑
K∈Sij ν

n
KbK(ϕj , ϕi); then (4.11) can be recast as

mi
Un+1
i −Uni

τ
+

∑
j∈I(Si)

f(Unj )·cij −Unj d̃
n
ij = 0,
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which in turn implies that

Un+1
i = Uni

(
1−

∑
i 6=j∈I(Si)

2τ d̃nij
mi

)
+

∑
i 6=j∈I(Si)

2τ d̃nij
mi

U
n+1

ij ,

where we have introduced the auxiliary quantities

U
n+1

ij :=
1

2
(Unj + Uni )− (nij ·f(Unj )− nij ·f(Uni ))

‖cij‖`2
2d̃nij

.

Here again U
n+1

ij is of the form u(t,nij ,U
n
i ,U

n
j ) as defined in (2.6) with the fake time

t = ‖cij‖`2/2d̃nij , and hence we need to make sure that λmax(nij ,U
n
i ,U

n
j )‖cij‖`2/2d̃nij ≤

1
2 to preserve the invariant domain property. Recalling that dnij has been defined by
dnij := λmax(nij ,U

n
i ,U

n
j )‖cij‖`2 (see (3.10)), the above condition reduces to showing

that dnij ≤ d̃nij . The definitions of νnK and d̃nij imply that

d̃nij = −
∑
K∈Sij

νnKbK(ϕj , ϕi) ≥ −
∑
K∈Sij

dnij∑
T⊂Sij −bT (ϕj , ϕi)

bK(ϕj , ϕi) = dnij ,

whence we get the desired result.

Lemma 4.12 (CFL). Let λnmax := maxi∈{1:I}maxj∈I(Si) λmax(nij ,U
n
i ,U

n
j ) for

n ≥ 0. Assume that 2τ
λnmax

h
µmax

µminϑmin
≤ 1; then mini∈{1:I}

(
1 + 2τ

d̃nii
mi

)
≥ 0.

Proof. From the proof of Lemma 4.6 we have ‖cij‖`2 ≤ h−1µmax|Sij |, and hence

νnK ≤
λnmaxµmax

h
max

k 6=l∈I(K)

|Skl|∑
T⊂Skl −bT (ϕk, ϕl)

,

which in turn implies that

d̃nij ≤
λnmaxµmax

h

∑
K⊂Sij

−bK(ϕi, ϕj) max
k 6=l∈I(K)

|Skl|∑
T⊂Skl −bT (ϕk, ϕl)

.

Recalling the definition of bT (ϕk, ϕl), we have
∑
T⊂Skl −bT (ϕk, ϕl) ≥ ϑmin

∑
T⊂Skl |T |

= ϑmin|Skl|; hence,

d̃nij ≤
λnmaxµmax

ϑminh

∑
K⊂Sij

−bK(ϕi, ϕj) =
λnmaxµmax

ϑminh

∑
K⊂Sij

ϑK |K|.

Finally, we have

−d̃ii :=
∑

i 6=j∈I(Si)

d̃nij ≤
λnmaxµmax

ϑminh

∑
i 6=j∈I(Si)

∑
K⊂Sij

ϑK |K| =
λnmaxµmax

ϑminh
|Si|.

This means that the bound on −d̃ii is the same as that on −dii in the proof of

Lemma 4.12. Then using that µmin|Si| ≤ mi, we infer that−2τ d̃iimi ≤ 2τ
λnmax

h
µmax

µminϑmin
≤

1, which concludes the proof.

5. Numerical illustrations. In this section we illustrate the method described
in the paper, i.e., (3.9)–(3.16), and discuss possible variants.
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5.1. Invariant domain property and convergence issues. In this section
we give a counterexample showing that a method that is formally first-order consistent
and satisfies the invariant domain property may not necessarily be convergent.

To illustrate our point, we focus our attention on scalar conservation equations
and consider an algebraic approach that is sometimes used in the literature; see e.g.,
Kuzmin, Löhner, and Turek [19, p. 163] and Kuzmin and Turek [18, eqs. (32)–(33)].
Instead of constructing a convex combination involving (entropy satisfying) interme-
diate states as in (3.14), we rewrite (3.13) as

(5.1) mi
Un+1
i − Uni

τ
= −

∑
i 6=j∈I(Si)

(f(Unj )− f(Uni ))·cij +
∑

j∈I(Si)

dnijU
n
j

or, equivalently,

(5.2) mi
Un+1
i − Uni

τ
= −

∑
i 6=j∈I(Si)

f(Unj )− f(Uni )

Unj − Uni
·cij(Unj − Uni ) +

∑
j∈I(Si)

dnijU
n
j .

Let us set kij :=
f(Unj )−f(U

n
i )

Unj −Uni
·cij , (with kij := cij ·Duf(Uni ) if Unj = Uni ); then

(5.3) Un+1
i = Uni

(
1− τ

mi

∑
i 6=j∈I(Si)

(−kij + dnij)

)
+

∑
i 6=j∈I(Si)

τ

mi
(−kij + dnij)U

n
j .

Let us finally set

(5.4) dnij := max(0, kij , kji), i 6= j, and dii := −
∑

i 6=j∈I(Si)

dnij .

This choice implies that−kij+dnij ≥ 0 for all i ∈ {1:N}, j ∈ I(Si). As a result, Un+1
i ∈

conv{Unj , j ∈ I(Si)} under the appropriate CFL condition; hence, the solution process

unh 7−→ un+1
h described above in (5.3)–(5.4) satisfies the maximum principle. Although

this technique looks reasonable a priori, it turns out that it is not diffusive enough
to handle general fluxes as discussed in Guermond and Popov [12, section 3.3]. The
convergence result established in [12] requires an estimation of the wave speed that is

more accurate than just the average speed nij ·
f(Unj )−f(U

n
i )

Unj −Uni
, which is invoked in the

above definition. This definition of the wave speed is correct in shocks, i.e., if the
Riemann problem with data (Uni ,U

n
j ) is a simple shock, but it may not be sufficient if

the Riemann solution is an expansion or a composite wave, which is likely to be the
case if f is not convex.

We now illustrate numerically the observation made above. We consider the
so-called KPP problem proposed in Kurganov, Petrova, and Popov [17]. It is a two-
dimensional scalar conservation equation with a nonconvex flux,

(5.5) ∂tu+∇ · f(u) = 0, u(x, 0) = u0(x) =

{
14π
4 if

√
x2 + y2 ≤ 1,

π
4 otherwise,

where f(u) = (sinu, cosu). This is a challenging test case for many high-order numer-
ical schemes because the solution has a two-dimensional composite wave structure.
For example, it has been shown in [17] that some central-upwind schemes based on
WENO5, Minmod 2, and SuperBee reconstructions converge to nonentropic solutions.
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Fig. 1. KPP solution with continuous P1 elements (29871 nodes, 59100 triangles). Left: entropy
violating solution using (3.9) and (5.4); Right: entropy satisfying solution using (3.9) and (3.16).

The computational domain [−2, 2]×[−2.5, 1.5] is triangulated using nonuniform
meshes, and the solution is approximated up to t = 1 using continuous P1 finite
elements (29871 nodes, 59100 triangles). The time stepping is done with SSP RK3.
The solution shown in the left panel of Figure 1 is obtained using (5.4) for the definition
of dnij . The numerical solution produces very sharp, nonoscillating, entropy violating
shocks—the reason being that the artificial viscosity is not large enough. Note that
the solution is maximum principle satisfying (the local maximum principle is satisfied
at every grid point and every time step) and no spurious oscillations are visible.
The numerical process converges to a nice-looking (wrong) piecewise smooth weak
solution. The numerical solution shown in the right panel of Figure 1 is obtained by
using our definition of dnij , (3.16) (note that the results obtained with (4.11)–(4.12)
together with (3.16) are indistinguishable from this solution). The expected helicoidal
composite wave is clearly visible; this is the unique entropy satisfying solution.

In conclusion, the above counterexample shows that satisfying the invariant do-
main property/maximum principle does not imply convergence, even for a first-order
method. It is also essential that the method satisfy local entropy inequalities to be
convergent; this is the case of our method (3.9)–(3.16) (see Theorem 4.7), but it is
not the case of the algebraic method (5.3)–(5.4).

Remark 5.1. The reader should be aware that we are citing Kuzmin, Löhner, and
Turek [19, p. 163] and Kuzmin and Turek [18, eqs. (32)–(33)] a little bit out of context.
The scheme as originally presented in these references was only meant to solve the
linear transport equation, and as such it is a perfectly good method. Problems arise
with (5.4) only when one extends the methodology to nonlinear fluxes, as we did in
(5.2).

5.2. Special meshes. The construction of the intermediate states in (3.13) is
not unique. For instance, we can extend a construction used by Hoff [13, Cor. 1] in
one space dimension for the p-system. Let us assume that i ∈ {1, . . . , N} is such
that for every j ∈ I(Si) \ {i}, there is a unique σi(j) ∈ I(Si) \ {i, j} such that
cij :=

∫
Si
ϕi∇ϕj dx = −

∫
Si
ϕi∇ϕσi(j) dx =: −ciσi(j). This property holds if the

mesh and the reference finite elements have symmetry properties and if ϕi is an
interior shape function. For instance, this property holds for P1 Lagrange elements if
the mesh is centrosymmetric, i.e., the support of ϕi is symmetric with respect to the
Lagrange node ai associated with ϕi, for any i ∈ {1, . . . , N}. Then we can rewrite
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(3.9) as

(5.6) mi
Un+1
i −Uni

τ
= diiU

n
i +

∑
j∈J (Si)

−(f(Unj )−f(Unσi(j)))·cij +dnijU
n
j +dniσi(j)U

n
σi(j),

where the set J (Si) ⊂ I(Si) is such that σi : J (Si) −→ σi(J (Si)) is bijective and
J (Si) ∪ σi(J (Si)) = I(Si) \ {i}. Then upon recalling that dii := −

∑
j∈J (Si)

(dnij +

dniσi(j)), we have

(5.7) Un+1
i = Uni

(
1−

∑
j∈J (Si)

τ

mi
(dnij + dniσi(j))

)
+

∑
j∈J (Si)

τ(dnij + dniσi(j))

mi
U
n+1

ij ,

where we have defined the intermediate state U
n+1

ij by

(5.8) U
n+1

ij =
dniσi(j)

dnij + diσi(j)
Unσi(j)+

dnij
dnij + dniσi(j)

Unj−(f(Unj )−f(Unσi(j)))·
cij

dnij + dniσi(j)
.

The state U
n+1

ij is of the form u(t,nij ,U
n
σi(j),U

n
j ) :=

∫ αR
αL

u(nij ,U
n
σi(j),U

n
j )(x, t) dx,

where αL = − dniσi(j)
dnij+d

n
iσi(j)

, αR =
dnij

dnij+d
n
iσi(j)

, and t :=
‖cij‖`2

dnij+d
n
iσi(j)

, provided

dniσi(j) ≥ (λ−1 )−(nij ,U
n
σi(j),U

n
j )‖cij‖`2 ∀j ∈ J (Si),(5.9)

dnij ≥ (λ+m)+(nij ,U
n
σi(j),U

n
j )‖cij‖`2 ∀j ∈ J (Si),(5.10)

where we defined x+ = max(x, 0) and x− = −min(x, 0). A sufficient condition that
implies both of the above inequalities and is independent of the choice of the set Ji(Si)
is

(5.11) min(dnij , d
n
iσi(j)

) ≥ λmax(nij ,U
n
σi(j),U

n
j )‖cij‖`2 , j ∈ J (Si).

Note that the above argument holds only if ϕi is an interior shape function sat-
isfying the symmetry property cij = −ciσi(j). If this is not the case, then we can
always use the lower bound dnij ≥ λmax(nij ,U

n
i ,U

n
j )‖cij‖`2 .

In conclusion, the diffusion matrix (dnij)1≤i,j≤N can be constructed as follows:
(1) For every shape function ϕi satisfying the symmetry property cij = −ciσi(j)

for every j ∈ J (Si), we define d̃nij = d̃niσi(j) = λmax(nij ,U
n
σi(j),U

n
j )‖cij‖`2 .

(2) For every other shape function not satisfying the symmetry property men-

tioned above, we define d̃ij = λmax(nij ,U
n
i ,U

n
j )‖cij‖`2 .

(3) We construct the diffusion matrix by setting dnij := max(d̃ij , d̃ji) for j 6= i and
dii := −

∑
i 6=j∈I(Si) d

n
ij . This construction guarantees conservation, i.e.,

∑
i∈I(Sj) d

n
ij =

0, and first-order consistency, i.e.,
∑
j∈I(Si) d

n
ij = 0.

Remark 5.2. Quite surprisingly, in the case of scalar linear transport, the above
construction and the construction done in section 3.3 (see definition (3.16)) give the
same scheme (i.e., the same CFL).

5.3. Invariant domain property versus monotonicity. We show in this
section that the invariance property and what is usually understood in the literature
as monotonicity are two different concepts, and just looking at monotonicity may be
misleading.
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Fig. 2. Left: v-profile for the p-system at t = 0.75, with 105 grid points. Right: close-up view of
the v-profile for various grids composed of 103, 2×103, 4×103, 104, 2×104, 4×104, 105 grid points.

5.3.1. p-system. We consider the p-system and solve the Riemann problem

corresponding to the initial data (vL, uL) = (1, 0), (vR, uR) = (2
2

γ−1 , 1
γ−1 ). The

computational domain is the segment [0, 1], and the separation between the left and
right states is set at x0 = 0.75. The solution is a single rarefaction wave from the first
family (i.e., w1(vL, uL) = w1(vR, uR)):

(5.12) v(x, t) =


1 if x−x0

t ≤ −1,

(x0−x
t )

−2
γ+1 if −1 ≤ x−x0

t ≤ −2−
γ+1
γ−1 ,

2
2

γ−1 otherwise,

(5.13) u(x, t) =


0 if x−x0

t ≤ −1,
2

γ−1

(
1− (x0−x

t )
γ−1
γ+1

)
if −1 ≤ x−x0

t ≤ −2−
γ+1
γ−1 ,

1
γ−1 otherwise.

This case is such that (v∗, u∗) = (vR, uR), and hence the second wave corresponding to
the eigenvalues λ±2 is not present. We use continuous piecewise linear finite elements
with the algorithm (3.9)–(3.16). The time stepping is done with the SSP RK3 tech-
nique. We show the profile of v at t = 0.75 in Figure 2 for meshes composed of 103,
2×103, 4×103, 104, 2×104, 4×104, 105, and 2×105 cells. We observe that the profile
is not monotone. There is an overshoot to the right of the foot of the (left-moving)
wave. Actually, this overshoot does not violate the invariant domain property; we
have verified numerically that at every time step and for every grid point in each
mesh, the numerical solution is in the smallest invariant domain of type (2.13) that
contains the piecewise linear approximation of the initial data. This result seems a
bit surprising, but it is perfectly compatible with Theorem 4.1. Since the numerical
solution cannot stay on the exact rarefaction wave (green line connecting UL and UL
in Figure 3), the second wave reappears in the form of an overshoot at the end of the
rarefaction wave (see right panel of Figure 2).

Let (UL, . . . ,UL,UR, . . . ,UR) be the initial sequence of degrees of freedom. Af-
ter one time step, two additional points appear in the phase space, denoted in
Figure 3 by U1

1 and U1
2. Because of the invariant domain property, these points

are under the rarefaction wave. Then the sequence of degrees of freedom at time
t = τ is (UL, . . . ,UL,U

1
1,U

1
2,UR, . . . ,UR). Four additional points U2

1, . . . ,U
2
4 ap-

pear after two time steps, and the sequence of degrees of freedom at time t = 2τ is
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2486 JEAN-LUC GUERMOND AND BOJAN POPOV

Fig. 3. The overshooting mechanism for a single rarefaction wave in the phase space for the
p-system. Initial data are shown in black; additional points after one time step are shown in red and
after two time steps are shown in blue. Observe the position of U2

4. (See online version for color.)

Table 1
Convergence rates on the L1-norm for the p-system.

1/h v Rate u Rate

103 1.8632(–2) - 7.2261(–3)

2×103 1.0350(–2) 0.85 3.9239(–3) 0.88

4×103 5.6769(–3) 0.87 2.1173(–3) 0.89

104 2.5318(–3) 0.88 9.2888(–4) 0.90

2×104 1.3644(–3) 0.89 4.9541(–4) 0.91

4×104 7.3151(–4) 0.90 2.6319(–4) 0.91

1×105 2.9695(–4) 0.98 1.1352(–4) 0.92

2×105 1.5838(–4) 0.91 5.9869(–5) 0.92

(UL, . . . ,UL,U
2
1, . . . ,U

2
4,UR, . . . ,UR). The point U2

4 is the one whose v-component
may overshoot because the exact solution of the Riemann problem with the left state
U1

2 and the right state UR is composed of two rarefaction waves, and the maximum
value of v on these rarefactions is necessarily larger than vR (see red line in Figure 3).
Note that this is not a Gibbs phenomenon at all; in particular the amplitude of the
overshoot decreases as the mesh is refined, as shown in the close-up view in the right
panel of Figure 2. This phenomenon is actually very common in numerical simulations
of hyperbolic systems but is rarely discussed; it is sometimes called“start up error” in
the literature; see, for example, the comments on page 592 in Kurganov and Tadmor
[16] and the comments at the bottom of page 1005 in Liska and Wendroff [23]. The
(relative) L1-norm of the error on both v and u at t = 0.75 is shown in Table 1. The
method converges with an order close to 0.9.

5.3.2. Euler in one dimension (Leblanc shocktube). We consider now the
compressible Euler equations. We solve the Riemann problem, also known in the
literature as the Leblanc shocktube. The data are as follows: γ = 5

3 and

ρL = 1.000, uL = 0.0, pL = 0.1/3,

ρR = 0.001, uR = 0.0, pR = 10−10/3.

The structure of the solution is standard; it consists of a rarefaction wave moving to
the left, a contact discontinuity in the middle, and a shock moving to the right. The
density profile is monotone. We solve this problem with the algorithm (3.9)–(3.16)
using piecewise linear finite elements. The density profile computed with 50,000,
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Fig. 4. Left: density profile for the Leblanc shocktube at t = 0.1. Right: close-up of the density
profile at the foot of the rarefaction wave.

100,000, 200,000, 400,000 and 800,000 grid points is shown in the left panel of Figure 4.
The right panel shows a close-up view of the region at the foot of the expansion wave.
Of course, the scheme does not have any problem with the positivity of the density and
the internal energy, but we observe that the numerical profile is not monotone; there
is a small dip at the foot of the expansion. There is nothing wrong here, since, for
each mesh, the numerical solution is guaranteed by Theorem 4.1 to be in the smallest
convex invariant set that contains the Riemann data. This phenomenon is similar to
what has been observed for the p-system in the previous section. This example shows
again that the invariant domain property is a different concept from monotonicity, and
just looking at monotonicity or local extrema diminishing properties is not enough to
understand hyperbolic systems.

When taking a closer look at the shock region in Figure 4, one observes that the
shock moves as the mesh is refined. The reader may then wonder whether the method
is conservative, since it is known that nonconservative methods produce weak solutions
that are nonentropic, and this usually shows up as bad shock location. This is not the
case here since, as stated in Remark 3.1, the method is indeed conservative; actually,
the method can be proved to converge to the entropy solution with a convergence rate
at least better than h

1
4 in the L∞t (L1

x)-norm for scalar conservation equations and for
initial data with bounded variations; see Guermond and Popov [12]. We illustrate the
converge properties of the method in Table 2, where we show the convergence rate on
the density in the L1-norm in space at t = 0.1 for various meshes. The asymptotic
rate is between 0.73 and 0.74.

Table 2
Convergence rates on the L1-norm of the density for the Leblanc shocktube.

1/h ρ Rate
8,000 7.5213(–4) -
16,000 4.779(–4) 0.65
32,000 2.9379(–4) 0.70
64,000 1.7709(–4) 0.73
128,000 1.0608(–4) 0.74
256,000 6.3500(–5) 0.74
512,000 3.8237(–5) 0.73

Sometimes in the literature, authors look at the velocity and the internal energy
to demonstrate some of the phenomena described above. We refrain from doing this
here, since these two quantities are not convex functions of the conservative variables;
therefore, one cannot prove that they satisfy a local invariance property.
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6. Concluding remarks. We have proposed a numerical method for solving
hyperbolic systems using continuous finite elements and forward Euler time stepping.
The properties of the method are based on the introduction of an artificial dissipation
that is defined so that any convex invariant set is an invariant domain for the method.
The main results of the paper are Theorems 4.1 and 4.7. The method is formally first-
order accurate with respect to space and can be made higher-order with respect to the
time step by using any explicit strong stability preserving time stepping technique.
Although the argumentation of the proof of Theorem 4.1 relies on the notion of
Riemann problems, the algorithm does not require solving any Riemann problem.
The only information needed is an upper bound on the local maximum speed. Our
next objective is to work on a generalization of the FCT technique (see Kuzmin,
Löhner, and Turek [19]) to make the method at least formally second-order accurate
in space while it is still domain invariant.

Finally, let us mention that all of the proofs in the paper are based on the discrete
representation (3.9). Since this representation is not particular to continuous finite
elements, our argumentation can be used to analyze other schemes that can be put
into the form (3.9).
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