
A Fully Discrete NonLinear Galerkin Method for
the 3D Navier–Stokes Equations
J.-L. Guermond,1,* Serge Prudhomme2

1Department of Mathematics, Texas A&M University 3368 TAMU, College Station,
Texas 77843-3368

2ICES, The University of Texas at Austin, Austin, Texas 78712

Received 1 October 2006; accepted 12 June 2007
Published online 11 September 2007 in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/num.20287

The purpose of this paper is twofold: (i) We show that the Fourier-based Nonlinear Galerkin Method (NLGM)
constructs suitable weak solutions to the periodic Navier–Stokes equations in three space dimensions pro-
vided the large scale/small scale cutoff is appropriately chosen. (ii) If smoothness is assumed, NLGM always
outperforms the Galerkin method by a factor equal to 1 in the convergence order of the H1-norm for the
velocity and the L2-norm for the pressure. This is a purely linear superconvergence effect resulting from
standard elliptic regularity and holds independently of the nature of the boundary conditions (whether peri-
odicity or no-slip BC is enforced). © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 24:
759–775, 2008
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I. INTRODUCTION

A dissipative evolution equation over an Hilbert space H is said to have an Inertial Manifold if the
manifold in question contains the global attractor, is positively invariant under the flow, attracts all
the orbits exponentially, and is given as the graph of a C1 map over a finite-dimensional subspace
of H . This class of object has been proved to exist for many equations, but for the Navier–Stokes
equations, even in dimension two, the question of the existence of an Inertial Manifold is still
open. To fill this gap, the concept of Approximate Inertial Manifold (AIM) has been introduced
[1, 2]. An AIM is a sequence of finite-dimensional manifolds in H , of increasing dimension,
which are constructed so that the global attractor lies in small neighborhoods of these manifolds
and the width of which rapidly shrinks as the dimension of the manifolds goes to infinity.

Approximate Inertial Manifold have been shown to exist for the Navier–Stokes equations in
two space dimensions [1]. The Nonlinear Galerkin Method (NLGM) is an approximation tech-
nique that aims at constructing Approximate Inertial Manifolds (AIM) of nonlinear PDE’s; see
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[1–4]. The main principle sustaining NLGM consists of expanding the solution of the dynami-
cal system in a two-scale fashion (large and small scales) and to simplify the dynamics of the
small scales in such a way that they solve a linear PDE whose source term only depends on
the large scales; in other words the small scales are slaved to the large scales. This technique
sparkled a lot of interest in the 1990’s as the concept, accompanied with substantial mathemat-
ical results, seemed well suited for turbulence modeling. In particular, it has been shown that
NLGM has better approximations properties than the Galerkin method restricted to the large
scales only.

Heywood and Rannacher [5] later argued that when applied to the Navier–Stokes equations
the seemingly improved performance of NLGM over the standard Galerkin method could not be
attributed to turbulence modeling. The authors advanced that the observed improved accuracy
was in part to be attributed to the fact that NLGM has a better ability than the Galerkin method
to handle the Gibbs phenomenon induced by higher-order boundary incompatibilities induced by
the no-slip boundary condition. They further argued that in periodic domain, both NLGM and the
Galerkin method perform identically. The mathematical argumentation in [5] is clear and con-
vincing, and [5] probably rightly watered down some earlier, possibly overblown, claims about
NLGM.

The goal of the present article is to revisit NLGM and to offer an alternative point of view
to that of [5] which, we think, should give some credit back to the method. First we show that,
when using Fourier expansions and passing to the limit, the NLGM approximation converges (up
to subsequences) to a weak solution which is suitable in the sense of Scheffer [6], provided the
large scale/small scale cutoff is appropriately chosen. This is an improvement over the Galerkin
method since this property is not known (yet?) to hold for Fourier-based Galerkin solutions, see
Theorem 5.1. This difference of behavior between NLGM and Galerkin solutions stems from the
particular treatment of the nonlinear terms in NLGM. Second, if arbitrary smoothness is assumed,
NLGM always outperform the Galerkin method by a factor equal to 1 in the convergence order of
the H1-norm for the velocity and the L2-norm for the pressure, see Theorem 6.1. And this result
holds independently of the nature of the boundary conditions (whether periodicity or no-slip BC is
enforced). As suspected in [5], we confirm that this superconvergence property has nothing to do
with turbulence modeling but is instead a very simple consequence of a seemingly not well known
result by Wheeler [7] stating that for parabolic equations, the elliptic projection of the solution
is always superconvergent in the H1-norm by one order. This is a purely linear superconvergence
effect resulting from standard elliptic regularity.

The article is organized as follows. We recall in Section II the notion of suitable weak solutions
of the Navier–Stokes equations. We briefly review Nonlinear Galerkin methods in Section III and
we reinterpret one of its version as a means to construct suitable solutions. The proof of the main
result of the paper, i.e., Theorem 5.1, is done in Sections IV and V. We prove in Section VI that
provided the Navier–Stokes solution is smooth enough, the NLGM approximation is as accu-
rate as that that would be obtained by retaining the time derivative and the nonlinearity in the
momentum equation for the small scales.

II. PRELIMINARIES

A. Navier–Stokes Equations and Suitable Weak Solutions

Let � ⊂ R
3 be an open connected domain with smooth boundary �. Let (0, T ) be a finite time

interval and set QT = � × (0, T ). The time evolution for the velocity u and the pressure p

fields of a fluid occupying � is described by the (nondimensional) time-dependent Navier–Stokes

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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equations: 


∂tu + u·∇u + ∇p − ν∇2u = f in QT ,

∇·u = 0 in QT ,

u|� = 0 or u is periodic,

u|t=0 = u0,

(2.1)

where u0 is a solenoidal vector field, f a source term, and ν is the inverse of the Reynolds number.
To account for the boundary conditions, we consider the space X defined as:

X =
{

H1
0(�) if homogeneous Dirichlet{

v ∈ H1(�), v periodic,
∫

�
v = 0

}
if periodicity

(2.2)

We also introduce the spaces:

V = {v ∈ X, ∇·v = 0}, H = V
L2

. (2.3)

Unless explicitly stated otherwise, the minimal regularity assumed for the data is u0 ∈ H and
f ∈ L2(0, T ; H−1(�)) and in the periodic situation u0 (resp. f(t) for a.e. t in (0, T )) is assumed
to be of zero mean over �.

We now recall the notion of suitable weak solutions of the Navier–Stokes equations as
introduced by Scheffer [6].

Definition 2.1. A weak solution to the Navier–Stokes equations (u, p) is suitable if u ∈
L2(0, T ; X) ∩ L∞(0, T ; H), p ∈ L3/2((0, T ); L3/2(�)) and the local energy balance

∂t

(
1
2 u2

) + ∇· (( 1
2 u2 + p

)
u
) − ν∇2

(
1
2 u2

) + ν(∇u)2 − f ·u ≤ 0 (2.4)

is satisfied in the distributional sense.

By analogy with nonlinear conservation laws, (2.4) can be viewed as an entropy-like condition
which may (hopefully?) selects the physical solutions of (2.1). An explicit form of the distribution
D(u) that is missing in the left-hand side of (2.4) to reach equality has been given by Duchon and
Robert [8]. For a smooth flow, the distribution D(u) is zero; but for nonregular flow, D(u) may
be nontrivial. Suitable solutions are those which satisfy D(u) ≥ 0, i.e., if singularities appear,
only those that dissipate energy pointwise are admissible. It is expected that suitable solutions
are more regular than weak solutions. In this respect, the so-called Caffarelli–Kohn–Nirenberg
(CKN) Theorem states that the one-dimensional Hausdorff measure of singular points of suitable
solutions is zero. Whether these solutions are indeed classical is still far from being clear.

The techniques that are commonly used to construct suitable weak solutions mainly consist of
regularizing the Navier–Stokes equations by adding hyperviscosity [9] or regularizing the nonlin-
ear term [8,10,11]. It is remarkable that the weak solutions constructed by Leray [12] are actually
suitable. It has been shown recently that Galerkin approximations of (2.1) also converge to suitable
solutions if the approximation spaces have local interpolation properties. This has been shown for
periodic boundary conditions in [13] and for Dirichlet boundary conditions in [14]. Finite Ele-
ments and wavelet spaces have the interpolation properties in question but approximation spaces
constructed with trigonometric polynomials and more generally spectral approximation spaces
do not have this property. As a result, at the present time, it is not known whether Fourier-based
Galerkin approximations converge to suitable weak solutions. It is with this open question in mind
that Theorem 5.1 is of interest.
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B. Notations and Conventions

For the sake of simplicity, we limit ourselves in the rest of the article to periodic boundary con-
ditions and Fourier approximations techniques. The domain � is henceforth assumed to be the
three-dimensional torus (0, 2π)3.

We use the convention that R
3-valued variables are represented by boldfaced characters or

symbols. For all z ∈ C
3, we denote by z the conjugate of z, by |z| the Euclidean norm, and by

|z|∞ the maximum norm.
The Sobolev spaces Hs(�), s ≥ 0 is defined in terms of Fourier series as follows

Hs(�) = {
u(x) = ∑

k∈Z3 uke
ik·x, uk = u−k,

∑
k∈Z3 (1 + |k|2)s |uk|2 < +∞}

.

In other words, the set of trigonometric polynomials exp(ik ·x), k ∈ Z
3, is complete and orthogo-

nal in Hs(�) for all s ∈ R. The scalar product in L2(�) is denoted by (u, v) = (2π)−3
∫

�
uv. The

dual of Hs(�) is identified with H−s(�). We introduce the closed subspace Ḣ s(�) ⊂ Hs(�)

composed of those functions in Hs(�) that are of zero mean value.
Let N be a positive integer. For approximating the velocity and the pressure fields we will

consider the set of trigonometric polynomials of partial degree less than or equal to N :

PN = {
p(x) = ∑

|k|∞≤N cke
ik·x, ck = c−k

}
.

Since the mean value of the velocity and that of the pressure are irrelevant in the torus, we introduce
ṖN the subspace of PN composed of the trigonometric polynomials of zero mean value.

Upon introducing the notation

h = 1

N
. (2.5)

we define the truncation operator Ph : Hs(�) −→ PN so that

v =
∑
k∈Z3

vke
ik·x 	−→ Phv =

∑
|k|∞≤N

vke
ik·x.

Let us recall that

Lemma 2.1. Ph satisfies the following properties:

(i) Ph is the restriction on Hs(�) of the L2-projection onto PN .

(ii) ∀s ≥ 0, ‖Ph‖L(Hs (�);Hs(�)) = 1.

(iii) Ph commutes with differentiation operators.

(iv) ∃c > 0, ∀v ∈ Hs(�), ∀µ, 0 ≤ µ ≤ s, ‖v − Phv‖Hµ ≤ c Nµ−s‖v‖Hs .

(v) ∃c > 0, ∀v ∈ PN , ∀µ, s, s ≤ µ, ‖Phv‖Hµ ≤ c Nµ−s‖v‖Hs .

The symbol c is henceforth represents a generic constant that may depend on the data f , u0,
ν, T , or �, and which value may change from one occurrence to an other.

In the rest of the paper T is a fixed (possibly arbitrarily large) time. Being given a Banach space
E, the notation Lr(E) is short for the space Lr((0, T ); E) which is composed of the functions
mapping (0, T ) to E and whose norm in E is Bochner Lr -integrable.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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III. THE NONLINEAR GALERKIN METHOD

The goal of this section is to recall the NonLinear Galerkin Method as originally introduced in
the literature and to discuss some of its features. We also introduce a variant of the method that
we think handles the nonlinear energy cascade a little better than the original one.

A. The Semi-Discretized NLGM

We introduce in this section the Nonlinear Galerkin Method in an infinite-dimensional setting.
Let ε be a positive number that from now on we mentally associate with the smallest scale of

the flow down to which we really want to represent well the nonlinear interactions (i.e., the large
eddy scale). Without loss of generality we assume that ε is the inverse of an integer. Then we
introduce the integer Nε so that

ε = 1

Nε

. (3.1)

We now introduce the following finite-dimensional vector spaces:

Xε = ṖPPNε , and Mε = ṖNε . (3.2)

where the dot above PPP and P means that we restrict ourselves to trigonometric polynomials of
zero mean over �. We are going to use Xε to represent the large scales of the velocity and
Mε to represent the large scales of the pressure. We abuse notation by using Pε to denote the
L2-projection onto Xε. (A more cumbersome but correct notation would be Ṗε.) We define the
projection Qε = I − Pε, where I is the identity. From this definition it is clear that any field in
L̇2(�), say v, can be decomposed as follows: v = Pεv + Qεv. The component Pεv living in Xε

is referred to as the large scale component of v and the remainder Qεv is called the small scale
component.

The nonlinear Galerkin method as introduced in [1,2,4] can be recast into the following form:
Seek uε and pε in the Leray class such that for all v ∈ Ḣ1(�), q ∈ L̇2(�),




(∂tPεuε, v) + ν(∇uε, ∇v) + NL(uε, uε, v) − (pε, ∇·v) = (f , v),

(∇·uε, q) = 0,

(uε, v)|t=0 = (u0, v).

(3.3)

where the nonlinear term is decomposed as follows:

NL(w, w, v) = (Pεw·∇(Pεw), v) + (Pεw·∇(Qεw), Pεv) + (Qεw·∇(Pεw), Pεv). (3.4)

This approximation of the nonlinear advection is deduced from the usual trilinear form (w·∇w, v)

by substituting w and v by their two-scale decomposition and by removing the terms that are for-
mally of second- and third-order, i.e., those involving Qεw or Qεv two or three times (there are
three second-order terms and one third-order term).

For reasons that we do not fully understand yet (see also Section V. B), this form of the non-
linear term does not seem to lend itself easily to analysis. In particular we have not been able to
show that the sequence (uε, pε)ε>0 solving (3.3) using (3.4) converges (up to subsequences) to a
weak solution that is suitable.
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But as hinted in [3, 4] many other admissible forms of the nonlinear term are possible, and
instead of (3.4) we propose to use

NL(uε, uε, v) = (Pεuε·∇uε, v). (3.5)

Then, the semi-discrete NLGM that we henceforth consider is the following:


(∂tPεuε, v) + ν(∇uε, ∇v) + (Pεuε·∇uε, v) − (pε, ∇·v) = (f , v),

(∇·uε, q) = 0,

(uε, v)|t=0 = (u0, v).

(3.6)

It is then possible to prove that (3.6) has a unique solution and that this solution converges up to
subsequences to a suitable weak solution of the Navier–Stokes equations as ε → 0. We omit the
details since the essential arguments will be repeated in the analysis of the fully discrete problem
in Sections IV and V. Considering that the nonlinearity is inactive at wavenumbers larger than
Nε (i.e., scales smaller than ε), we also conjecture that (3.6) has an Inertial Manifold.

Note that (3.6) bears some resemblance to the regularization originally proposed by Leray [12]
and which consists of solving


(∂tuε, v) + ν(∇uε, ∇v) + (φε∗ uε·∇uε, v) − (pε, ∇·v) = (f , v),

(∇·uε, q) = 0,

(uε, v)|t=0 = (u0, v),

(3.7)

where φε(x) = ε−3φ( x

ε
) is a mollifying sequence. In (3.6) the nonlinearities at scales smaller

than ε are deactivated by cutting off the Fourier tail of the velocity whereas in (3.7) this is done
by mollification. The major difference between the two formulations is that the time derivative of
the small scales is deactivated in (3.6) whereas it remains active in (3.7). This feature allows for
the elimination (static condensation) of the small scale modes in the spirit of the AIM theory.

Following [1,2,4] we now show that we are indeed on our way to construct an AIM. To remove
the incompressibility constraint and the pressure from the above formulation, we set Zε = Pε(V)

and Y = Qε(V). Clearly V = Zε ⊕ Y and the decomposition is orthogonal with respect to the
L2- and the H1-scalar product. Let u = zε + y be the corresponding two-scale decomposition of
u(t) in V. To simplify the argumentation, we assume (in this section only) that the spectrum of f
is restricted to low wavenumbers, i.e., there exists ε0 so that for all ε ≤ ε0, Qεf = 0. Then (3.6)
reduces to 


zε|t=0 = Pεu0

(∂tzε, φ) + ν(∇zε, ∇φ) + (zε·∇(zε + y), φ) = (f , φ), ∀φ ∈ Zε

ν(∇yε, ∇ψ) + (zε·∇(zε + y), ψ) = 0, ∀ψ ∈ Y.

(3.8)

Let � : Zε −→ Y be the map so that

ν(∇�(zε), ∇ψ) + (zε·∇�(zε), ψ) = −(zε·∇zε, ψ), ∀ψ ∈ Y.

Then, clearly

u(t) = zε(t) + �(zε(t)), a.e. t in (0, T ). (3.9)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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In other words Zε ⊕ �(Zε) is a good candidate to be an AIM. We conjecture that we have indeed
constructed an AIM for the 2D Navier–Stokes, but we leave the matter at this point since it is the
3D situation which is of interest to us in this article.

B. The Fully Discrete NLGM

We now want to construct a finite-dimensional approximation of the solution to (3.6). To this end
we introduce an integer N that we suppose to be larger than Nε. We set

h = 1

N
(3.10)

and we define

Xh = ṖPPN , and Mh = ṖN . (3.11)

Xh will be used to approximate the velocity and Mε to approximate the pressure. We abuse nota-
tion again by using Ph to denote the L2-projection onto Xh. (A more cumbersome but correct
notation would be Ṗh.)

To be able to control the separation between the large eddy scale ε and the discretization scale
h, we introduce a parameter θ ∈ (0, 1) and we assume that ε and h are related by the following
identity

ε = hθ . (3.12)

This can be equivalently rewritten as: Nε = Nθ .
Then, (3.6) is approximated as follows: Seek uh ∈ C0([0, T ]; Xh), and ph ∈ L2(0, T ; Mh) such

that ∀t ∈ (0, T ]), ∀v ∈ Xh, and ∀q ∈ Mh


(∂tPεuh, v) + ν(∇uh, ∇v) + (Pεuh·∇uh, v) − (ph, ∇·v) = (f , v),

(∇·uh, q) = 0,

uh|t=0 = Pεu0.

(3.13)

We show next that the discrete problem (3.13) yields a suitable weak solution at the limit
h → 0, up to subsequences, provided the ratio between ε and h, i.e., the parameter θ , is well
chosen.

IV. A PRIORI ESTIMATES AND CONVERGENCE TO A WEAK SOLUTION

We start with standard a priori estimates, then we prove that the solution to (3.13) converges, up
to subsequences, to a weak solution of (2.1).

Lemma 4.1. Let f ∈ L2(0, T ; H−1(�)) and u0 ∈ H, then the solution to (3.13) satisfies

max
0≤t≤T

‖Pεuh(t)‖2
L2 + ν

∫ T

0
‖∇Pεuh‖2

L2 + ‖∇Qεuh‖2
L2 ≤ c. (4.1)

Proof. These are the basic energy estimates.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Corollary 4.1. Under the assumptions of Lemma 4.1

‖Pεuh‖Lr (H2/r ) + ‖Pεuh‖Lr (Lq ) ≤ c, with 3
q

+ 2
r

= 3
2 , 2 ≤ r , 2 ≤ q ≤ 6.

Proof. This result is standard and is a consequence of the interpolation inequality ‖v‖H2/r �
‖v‖1−2/r

L2 ‖v‖2/r

H1 , when 2 ≤ r , and the embedding H2/r (�) ⊂ Lq(�) for 1/q = 1/2 − 2/(3r), (see
e.g. 15 p. 208]),

Lemma 4.2. Under the assumptions of Lemma 4.1, the approximate pressure and the
approximate time derivative of the velocity from (3.13) satisfy

‖ph‖L4/3(L2) ≤ c (4.2)

‖∂tPεuh‖L4/3(H−1) ≤ c. (4.3)

Proof. (1) We first prove the pressure estimate (4.2). We observe that ∇2 : Mh −→ Mh is
bijective, and we denote by ∇−2 the inverse operator. Then, observing that ∇∇−2ph ∈ Xh, we
multiply the momentum equation in (3.13) by ∇∇−2ph. By using several integrations by parts,
we obtain

‖ph‖2
L2 = −(∇ph, ∇∇−2ph)

= (∂tPεuh − ν∇2uh + Pεuh·∇uh − f , ∇∇−2ph)

= (Pεuh·∇uh − f , ∇∇−2ph), since uh and Pεuh are solenoidal

= (∇·(Pεuh⊗uh) − f , ∇∇−2ph)

= (Pεuh⊗uh, ∇∇∇−2ph) − (f , ∇∇−2ph)

≤ c(‖Pεuh‖L3‖uh‖L6 + ‖f‖H−1)‖ph‖L2 .

This yields ‖ph‖4/3

L2 ≤ c(‖Pεuh‖4/3

L3 ‖uh‖4/3

L6 + ‖f‖4/3

H−1). We proceed further by noticing that

‖ph‖4/3

L4/3(L2)
≤ c

(‖Pεuh‖4/3

L4(L3)
‖uh‖4/3

L2(H1)
+ ‖f‖4/3

L2(H−1)

)
.

The conclusion is a consequence of Lemma 4.1 together with Corollary 4.1 with q = 3 and
r = 4.
(2) We now prove the estimate on the time derivative of Pεuh. Using the H1-stability of Ph (see
Lemma 2.1(ii)), we infer

‖∂tPεuh‖H−1 = sup
v∈H1

(∂tPεuh, v)

‖v‖H1
= sup

v∈H1

(∂tPεuh, Phv)

‖v‖H1

≤ c sup
v∈H1

(∂tPεuh, Phv)

‖Phv‖H1
≤ c sup

v∈Xh

(∂tPεuh, vh)

‖vh‖H1

≤ c(ν‖uh‖H1 + ‖Pεuh‖L3‖uh‖H1 + ‖ph‖L2 + ‖f‖H−1).

We conclude by proceeding as in step 1.

We are now in position to prove

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Theorem 4.1. Under the assumptions of Lemma 4.1, Pεuh converges up to subsequences to a
weak solution to (2.1) in L2(0, T ; H1) weak and in any Lr(0, T ; Lq) strong (1 ≤ q < 6r

3r−4 ,
2 ≤ r < ∞); each subsequence of Pεuh and uh have the same limit; ph converge up to

subsequences in L
4
3 (0, T ; L2) weak.

Proof. We only outline the main steps of the proof for the arguments are quite standard.
Since Pεuh is uniformly bounded in L2(0, T ; H1) ∩ L∞(0, T ; L2), and ∂tPεuh is uni-

formly bounded in L4/3(0, T ; H−1(�)), the Aubin-Lions compactness lemma (see Lions [15,
p.57]) implies that there exists a subsequence (uhl

) such that Pεl
uhl

converges weakly in
L2(0, T ; H1) and strongly in any Lr(0, T ; Lq), such that 1 ≤ q < 6r

3r−4 , 2 ≤ r < ∞,
and that ∂t (Pεl

uhl
) converges weakly in L4/3(0, T ; H−1). Moreover, since ph is bounded uni-

formly in L4/3(0, T ; L2), there exists a subsequence (phl
) converging weakly in L4/3(0, T ; L2).

Let u and p denote these limits, and let us show that the pair (u, p) is a weak solution
to (2.1).

Observing that ‖Pεl
uhl

− uhl
‖L2 ≤ c εl‖uhl

‖H1 it is clear that the subsequences
(Pεl

uhl
) and (uhl

) have the same limit in L2(L2). Note that this also implies that
(Pεl

uhl
) and (uhl

) have the same limit in L2(H1) weak; in other words Qεl
uhl

⇀ 0 is
L2(H1).

Let s > 4 be a real number and let s∗ be such that 1
s
+ 1

s∗ = 1
2 . Let v be an arbitrary function

in Ls(0, T ; H1) and let (vhl
)hl

be a sequence of functions in Ls(0, T ; Xhl
) strongly converging to

v in Ls(0, T ; H1) ⊂ L4(0, T ; H1).

(1)
∫

QT
∂t (Pεl

uhl
) · vhl

→ ∫
QT

∂tu · v, since ∂t (Pεl
uhl

) ⇀ ∂tu in L4/3(H−1).

(2)
∫

QT
∇uhl

:∇vhl
→ ∫

QT
∇u:∇v, since ∇uhl

⇀ ∇u in L2(L2) ⊂ L4/3(L2).

(3)
∫

QT
phl

∇·vhl
→ ∫

QT
p∇·v, since ph ⇀ p in L4/3(L2).

(4) Since Pεl
uhl

→ u in Ls∗(L3) and vhl
→ v ∈ Ls(H1) ⊂ Ls(L6), we infer

that vhl
⊗(Pεl

uhl
) → v⊗u in L2(L2⊗L2). As a result,

∫
QT

[vhl
⊗(Pεl

uhl
)]:∇uhl

→∫
QT

[v⊗u]:∇u since ∇uhl
⇀ ∇u in L2(L2⊗L2).

(5) Since ∇·uhl
= 0 and uhl

⇀ u in L2(H1), ∇·u = 0 in L2(H1).

(6) Clearly
∫ T

0 < f , vhl
>→ ∫ T

0 < f , v > since vhl
→ v in Ls(H1) ⊂ L2(H1) and

f ∈ L2(H−1).
(7) Finally since the subsequence (Pεl

uhl
) converges in C0(0, T ; L2

w) (space of the func-
tions that are continuous over [0, T ] with value in L2 equipped with the weak topology)
we have u0 ← Pεl

u0 = Pεl
uhl

(0) ⇀ u(0) in L2; hence, u(0) = u0. The theorem is
proved.

V. CONVERGENCE TO A SUITABLE SOLUTION

In this section we analyze NLGM with the two variants (3.4) and (3.5) of the nonlinear terms.
We show that (3.5) yields a suitable solution at the limit whereas we are not able to conclude
with (3.4).

A. Analysis with Formulation (3.5)

The main contribution in this section is Theorem 5.1 which establishes that the solution to (3.13)
converges to a suitable weak solution of the Navier–Stokes equations.
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Theorem 5.1. Let f ∈ L2(0, T ; H−1(�)) and u0 ∈ H. Let N = 1
h

> 0 and ε = hθ . Provided

0 < θ < 2
3 , (5.1)

the limit solution(s) of (3.13) is (are) suitable.

Proof. Let φ be a smooth nonnegative function, periodic with respect to space, and com-
pactly supported with respect to time in (0, T ). Taking Ph(uhφ) to test the momentum equation
in (3.13) and integrating in time, we obtain

∫ T

0
(∂tPεuh, Ph(uhφ)) + ν(∇uh, ∇Ph(uhφ)) − (ph, ∇·Ph(uhφ))

+ (Pεuh·∇uh, Ph(uhφ)) =
∫ T

0
(f , Ph(uhφ)).

Using the fact that Pε and Ph commute with differentiation operators and after integrating by parts
in time and space, we obtain

∫ T

0
− 1

2 ((|Pεuh|2, ∂tφ) + ν(|∇uh|2, φ) − 1
2ν(|uh|2, ∇2φ) − (ph, ∇·(uhφ))

+ (Pεuh·∇uh, Ph(uhφ)) =
∫ T

0
(f , Ph(uhφ)).

We now pass to the limit in each term of the above equation separately, and to avoid cumbersome
notations we still denote by (uh), (ph) the subsequences that are extracted instead of (uhl), (phl).

(1)
∫ T

0 − 1
2 ((|Pεuh|2, ∂tφ) → ∫ T

0 − 1
2 ((|u|2, ∂tφ) since |Pεuh|2 → |u|2 in Lr(L1) for any

1 ≤ r < ∞.
(2) For the term ν

∫ T

0 (|∇uh|2, φ) we proceed as follows:

∫ T

0
(|∇uh|2, φ) =

∫ T

0
(|∇(uh − u)|2 + 2∇(uh − u):∇u + |∇u|2, φ).

The second term in the right-hand side goes to zero since uh ⇀ u in L2(H1). As a
result

lim inf
N→+∞

∫ T

0
(|∇uh|2, φ) ≥

∫ T

0
(|∇u|2, φ).

(3) 1
2ν

∫ T

0 (|uh|2, ∇2φ) → 1
2ν

∫ T

0 (|u|2, ∇2φ) since |uh|2 → |u|2 in L2(L1). To be con-

vinced of this result observe that
∫ T

0 ‖uh − u‖2
L2 ≤ ∫ T

0 2‖Pεuh − u‖2
L2 + 2‖Qεuh‖2

L2 .

Then using ‖Qεuh‖L2 ≤ c ε‖uh‖H1 together with the fact that
∫ T

0 2‖Pεuh−u‖2
L2 → 0,

we conclude uh → u in L2(L2).
(4) Since uh is solenoidal, the pressure term simplifies as follows

∫ T

0 (ph, ∇·(uhφ)) =∫ T

0 (phuh, ∇φ). As a result,
∫ T

0 (ph, ∇·(uhφ)) → ∫ T

0 (pu, ∇φ) since ph ⇀ p in
L4/3(L2) and uh·∇φ → u·∇φ in L4(L2).
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(5) We treat the trouble-making nonlinear term as follows

(Pεuh·∇uh, Ph(uhφ)) = (Pεuh·∇uh, uhφ) + R1

= −( 1
2 |uh|2Pεuh, ∇φ) + R1,

= −( 1
2 |Pεuh|2Pεuh, ∇φ) + R1 + R2,

where we have set

R1 = (Pεuh·∇uh, Ph(uhφ) − uhφ),

R2 = − 1
2 ((Pεuh + uh) · QεuhPεuh, ∇φ).

Using the approximation property of Ph (see Lemma 2.1(iv)) and the fact that
‖uhφ‖H1 ≤ c‖uh‖H1‖φ‖W1,∞ , we can bound the first residual as follows:

|R1| ≤ ‖Pεuh‖L∞‖∇uh‖L2‖Ph(uhφ) − uhφ‖L2 ,

≤ c ε− 3
2 N−1‖Pεuh‖L2‖∇uh‖L2‖uhφ‖H1 ,

≤ c N
3
2 θ−1‖Pεuh‖L2‖uh‖2

H1‖φ‖W1,∞ .

Then, it is clear that
∫ T

0 |R1| → 0 as N → ∞ owing to (5.1). For the second residual,
we use the embedding H 1(�) ⊂ L6(�), to show that:

|R2| ≤ c ‖Qεuh‖L2‖Pεuh‖L3‖Pεuh + uh‖L6‖φ‖W1,∞

≤ c ε‖uh‖H1ε
− 1

2 ‖Pεuh‖L2‖Pεuh + uh‖H1‖φ‖W1,∞

≤ c N− 1
2 θ‖Pεuh‖L2‖uh‖2

H1‖φ‖W1,∞ .

Then, for θ > 0,
∫ T

0 |R2| → 0 as N → ∞. In conclusion
∫ T

0 (Pεuh·∇uh, Ph(uhφ)) →
−( 1

2 |u|2u, ∇φ) since |Pεuh|2Pεuh → |u|2u in Ls(L1), s ∈ [1, 4
3 ).

(6) Passing to the limit in the source term does not pose any difficulty. Observe first that
Phf → f in L2(H−1) strong. As a result

∫ T

0
< f , Ph(φuh) >=

∫ T

0
< φPhf , uh >→

∫ T

0
< φf , u >,

since φPhf → φf in L2(H−1) strong and uh ⇀ u in L2(H1) weak.

Remark 5.1. The above theorem shows that the size of the large eddy scales and the mesh size
must be such that ε � h2/3 to ascertain that the sequence (uh, ph)h>0 converges to a suitable
solution (up to subsequences).

Remark 5.2. We emphasize again that Theorem 5.1 is not a priori evident. It is both the form
of the nonlinear term (3.5) and the condition ε � h2/3 that allows us to conclude. Whether the
result still holds for θ ∈ ( 2

3 , 1] is an open question to the best of our knowledge. Recall that the
case θ = 1, i.e., h = ε, is the Galerkin approximation. The source of the difficulty is that we are
using Fourier expansions
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B. Analysis with Formulation (3.4)

We now briefly outline the difficulties that we encounter when working with the NLGM solution
obtained by using (3.4).

Let us denote by NL1 the trilinear form defined in (3.4) and by NL2 the trilinear form defined
in (3.5). These two forms are related by

NL1(w, w, v) − NL2(w, w, v) = (Qεw·∇Pεw, Pεv) − (Pεw·∇Qεw, Qεv).

Since we have proven in the previous section that
∫ T

0 NL2(uh, uh, Ph(φuh)) converges to

− 1
2

∫ T

0 (|u|2u, ∇φ), expecting
∫ T

0 NL1(uh, uh, Ph(φuh)) to behave similarly would require the
right-hand side in the above equation to go to zero with h. Heuristically that would not be a
surprise since one term is formally a first-order residual and the other is formally a second-order
residual. However, so far, we have not been able to prove that.

To better understand the problem we face, we now show where our attempts fail. Since we do
not see any cancellation occurring between these two residuals, we treat them separately. Using
Pε(φuh) as test function, we rewrite the first term as follows:

(Qεuh·∇Pεuh, Pε(φuh)) = (Qεuh·∇Pεuh, φPεuh) + (Qεuh·∇Pεuh, Pε(φuh) − φPεuh)

= − 1
2 (|Pεuh|2Qεuh, ∇φ) + R1 := R2 + R1.

Clearly limh→0

∫ T

0 |R2| = 0. However, for R1, the best we can see doing is the following:

∫ T

0
|R1| ≤

∫ T

0
‖Qεuh‖L3‖∇Pεuh‖L2‖Pε(φuh) − φPεuh‖L6

≤ ‖Qεuh‖L∞(L3)‖uh‖L2(H1)‖Pε(φuh) − φPεuh‖L2(H1).

That would converge to zero if ‖Qεuh‖L∞(L3) were uniformly bounded. Unfortunately, this infor-
mation is unavailable to us, although formally one would even expect this term to converge to
zero since it is a first-order residual. A possible way out could be to seek a control on the com-
mutator [φ, Pε]. For finite elements and wavelets it can be shown that ‖[φ, Pε]‖L(H1,H1) ≤ c ε,
where c depends on φ. This estimate would be enough to conclude positively since we have the
obvious bound ‖Qεuh‖L∞(L3) ≤ c ε− 1

2 . Unfortunately, the above bound on ‖[φ, Pε]‖L(H1,H1) is
not true for trigonometric polynomials. Actually ‖[φ, Pε]‖L(H1,H1) does not even converge to zero.
To see this, consider φ = ei(x1+x2+x2) and let v = (1, 0, 0)eiNε(x1+x2+x2). Then [φ, Pε]v = φv and
there is obviously c > 0 so that ‖φv‖H1 ≥ c ‖v‖H1 ; as a result we obtain the defeating lower
bound ‖[φ, Pε]‖L(H1,H1) ≥ c, and we cannot see why

∫ T

0 |R1| should go to zero without invoking
additional unavailable regularity.

In conclusion, we cannot establish that the Fourier version of (3.4) (as originally introduced
in the literature) yields a suitable approximation at the limit whereas (3.5) does. As shown in the
above argument, the main source of difficulty is that we are working with a spectral basis. In other
words (3.5) beats the Gibbs phenomenon, whereas it is unclear whether (3.4) does.

VI. CONVERGENCE ANALYSIS ASSUMING REGULARITY

We (re)prove in this section that provided the solution to (2.1) is smooth enough, the velocity
field from (3.13) is more accurate in the H1-norm than the Galerkin solution on Xε×Mε. This
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feature is a well-known characteristics of nonlinear Galerkin methods; though, some doubts have
been raised in [5] as to whether this property holds in the periodic case. We prove here that this
super-convergence result is independent of the type of boundary conditions.

However, as noted in [5] the presence or absence of nonlinearities has nothing to do with
this remarkable property. The single key argument at stake here is that the elliptic projection is
super-convergent in the H1-norm. It seems to us that this property, found by Wheeler in [7], has
not been emphasized enough in the literature dedicated to NLGM. The goal of this section is
make this point clearer. The main result of this section is Theorem 6.1.

Unless stated otherwise, � is the 3D torus, i.e., periodic boundary conditions are assumed
(although most of the results below can easily be extended to homogeneous Dirichlet boundary
conditions).

A. Super-Convergence of the Elliptic Projection

Let us denote by (Rh(u(t)), Sh(p(t))) ∈ Xh×Mh the elliptic projection of the pair (u(t), p(t)),
i.e., let Rh(u(t)) and Sh(p(t)) solve the following problem: For a.e. t ∈ [0, T ], for all vh ∈ Xh,
and for all qh ∈ Mh{

(∇Rh(u(t)), ∇vh) − (Sh(p(t)), ∇·vh) = (u(t), ∇vh) − (p(t), ∇·vh)

(qh, ∇·Rh(u(t))) = 0.
(6.1)

In the rest of this section, we assume that f and u0 are smooth (or small) enough so that there
exist σ > 0 and s > 3

2 such that the following quantities are bounded: K1 := ‖ut‖L2(Hσ+1),
K2 := ‖u‖L∞(Hs ), K3 := ‖u‖L2(Hσ+1), and K4 := ‖u0‖Hσ+1 . Let us set K = K1 + . . . + K4.

Lemma 6.1. The following uniform bounds hold provided the quantity K is bounded,

‖u − Rh(u)‖L2(L2) + ‖ut − Rh(ut )‖L2(L2) ≤ c(K1, K2)h
σ+1, (6.2)

‖Rh(u)‖L∞(L∞) ≤ c(K2), (6.3)

‖u0 − Rh(u0)‖L2 ≤ c(K4)h
σ+1, (6.4)

‖u − Rh(u)‖L2(H1) + ‖p − Sh(p)‖L2(L2) ≤ c(K1, K2)h
σ . (6.5)

Then, the following Lemma clarifies what we meant above when stating that the elliptic
projection is super-convergent in the H1-norm.

Lemma 6.2. Under the regularity assumptions of Lemma 6.1, the velocity and pressure fields
from (3.13) satisfy the following error estimate

‖uh − Rh(u)‖L2(H1) ≤ c(ν, T , K)εσ+1. (6.6)

‖ph − Sh(p)‖L2(L2) ≤ c(ν, T , K)εσ+1. (6.7)

Proof. (1) Let us set eh = Rh(u) − uh and δh = Sh(p) − ph. Then the system of equations
controlling these two quantities is


(∂tPεeh, v) + ν(∇eh, ∇v) − (δh, ∇·v) = (F(uh, u), v) + (G(uh, u), v),

(∇·eh, q) = 0,

eh|t=0 = Pε(Rh(u0) − u0)
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where we have set F(uh, u) = (Pεuh)·∇uh − u·∇u and G(uh, u) = PεRh(ut ) − ut , and the test
functions v and q span Xh and Mh respectively.

(2) The error estimate (6.6) is obtained by using eh as a test function in the above equation and
by integrating over the time interval (0, T ). Owing to the assumed regularity for u we have

‖G(uh, u)‖L2(L2) ≤ ‖Pε(Rh(ut ) − ut )‖L2(L2) + ‖Pεut − ut‖L2(L2)

≤ c εσ+1‖ut‖L2(Hσ+1).

This immediately yields

∫ T

0 |(G(uh, u), eh)| ≤ γ ‖∇eh‖2
L2(L2)

+ c(γ , K1) ε2(σ+1),

where γ > 0 is a positive real that can be chosen as small as needed.
To control the nonlinear term we set

F(uh, u) = Pεuh·∇(uh − Rh(u)) + Pε(uh − Rh(u))·∇Rh(u)

+ (PεRh(u) − u)·∇Rh(u) + u·∇(Rh(u) − u).

Let R1 to R4 be the four residuals in the right-hand side above. Clearly

∫ T

0 (R1, eh) = 0.

Then, integration by parts yields

|(R2, eh)| ≤ ‖Pεeh‖L2‖∇eh‖L2‖Rh(u)‖L∞ ≤ c(K2) ‖Pεeh‖L2‖∇eh‖L2 .

Hence ∫ T

0 |(R2, eh)| ≤ γ ‖∇eh‖2
L2 + c(K2)‖Pεeh‖2

L2 .

Proceeding similarly, for the third residual we have

|(R3, eh)| ≤ ‖PεRh(u) − u‖L2‖∇eh‖L2‖Rh(u)‖L∞

≤ c(K2) εσ+1‖u‖Hσ+1‖∇eh‖L2 .

This yields ∫ T

0 |(R3, eh)| ≤ γ ‖∇eh‖2
L2 + c(γ , K2, K3) ε2(σ+1).

Integrating by parts again for the last residual we obtain

|(R4, eh)| ≤ ‖Rh(u) − u‖L2‖∇eh‖L2‖u‖L∞

≤ c(K2) εσ+1‖u‖Hσ+1‖∇eh‖L2 ,

from which we derive ∫ T

0 |(R4, eh)| ≤ γ ‖∇eh‖2
L2 + c(γ , K2, K3) ε2(σ+1).

We obtain the desired estimate on ‖eh‖L2(H1) by setting γ = ν/8 and using the Gronwall Lemma.
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(3) The technique for proving the pressure estimate (6.7) is the same as that for proving the
estimate (4.2) repeating the above arguments to control the nonlinear terms. Clearly we have

‖δh‖2
L2 = −(∇δh, ∇−2δh)

= −(F(uh, u) + G(uh, u) + ν∇2eh − ∂tPεeh, ∇−2δh)

= −(F(uh, u), ∇−2δh)

= (Pεuh ⊗ (uh − Rh(u)) + Pε(uh − Rh(u)) ⊗ Rh(u)

+ (PεRh(u) − u) ⊗ Rh(u) + u ⊗ (Rh(u) − u), ∇∇−2δh)

≤ c((‖Pεuh‖L3 + ‖Rh(u)‖L3)‖eh‖H1

+ ‖PεRh(u) − u‖L2‖Rh(u)‖L∞ + ‖u‖L∞‖Rh(u) − u‖L2)‖δh‖L2 .

Then the conclusion follows readily.

Remark 6.1. The observation that the H 1-distance between the elliptic projection and the
Galerkin approximation of a nonlinear parabolic PDE is super-convergent is due to Wheeler
[7]. The heuristic principle that follows from this observation is that, when approximating a non-
linear parabolic PDE, if ones treats correctly the diffusion terms down to the finest scale available,
say h, but ones slashes/botches terms in the time derivative or the nonlinear term at scale ε, then
the H 1-distance between the elliptic projection and the Galerkin approximation is nevertheless of
order εσ+1 instead of being of order εσ as intuition would suggest. (The slashing must not be too
severe though; it must be such that the consistency error measured in the H−1-norm is of order
εσ+1.) It is this principle which is at work in NLGM. It is also this same principle which is at work
in the so-called post-processing Galerkin method [17] and in the numerous two-grid solution
methods for the Navier-Stokes equations that have been published lately (although, Wheeler’s
super-convergence mechanism [7] is rarely cited).

Remark 6.2. The statement of Lemma 6.2 is independent of the type of boundary condition. Mod-
ulo minor modifications to the proof, the reader can verify that the super-convergence argument
carries through with Dirichlet boundary conditions.

B. The Super-Convergence Result

We can now conclude.

Theorem 6.1. Under the regularity assumptions of Lemma 6.1, the velocity field and the pressure
field from (3.13) satisfies the following error estimate

‖u − uh‖L2(H1) + ‖p − ph‖L2(L2) ≤ c(ν, T , K)(hσ + hθ(σ+1)). (6.8)

Proof. This is a simple consequence of the triangle inequalities

‖u − uh‖L2(H1) ≤ ‖u − Rh(u)‖L2(H1) + ‖Rh(u) − uh‖L2(H1)

‖p − ph‖L2(L2) ≤ ‖p − Sh(p)‖L2(L2) + ‖Sh(p) − ph‖L2(L2).

together with Lemma 6.1, Lemma 6.2, and the definition of ε.
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Remark 6.3. Contrary to what is hinted at in [5], the estimate (6.8) shows that, for any given
regularity index σ , NLGM is more accurate than the Galerkin method defined on the discrete
(large eddy) spaces (Xε, Mε), i.e., we obtain (O(εσ+1)) estimates instead of (O(εσ )) estimate.
In other words, accounting for the quasi-steady linearized dynamics of the small scales (third
equation in (3.8)) is just what is needed to recover near optimality in the H1×L2-norm all the way
down to scale h.

Remark 6.4. As an immediate consequence of the above Theorem, one deduces that the pair
(uh, ph) is as accurate as the Galerkin solution on (Xh, Mh) in the H1×L2-norm (i.e., that obtained
using θ = 1) provided the expected regularity index σ and the real θ are such that

θ ≥ σ

σ + 1
. (6.9)

Just to remind us finally that there is no free lunch though, observe that NLGM yields a (O(hθ(σ+1))

error estimate in the L2-norm of the velocity, which is always (O(h(1−θ)(σ+1)) suboptimal, unless
θ = 1.
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