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1 Introduction 
Achieving high-order time accuracy in the solution of the incompressible 
Navier-Stokes equations by means of projection methods is a nontrivial 
task. In fact, a basic feature of projection methods is the uncoupling of the 
advection-diffusion mechanism from the incompressibility condition, the con- 
sequence of this uncoupling being the introduction of a time-sp]itting error 
that  is an obstacle to develop high order schemes. In particular, the accu- 
racy of the nonincremental projection method introduced by Chorin (1969) 
and Temam (1968) is limited by an irreducible time-splitting error of O(At) 
Rannacher (1992) that  makes second-order accuracy impossible. This limi- 
tat ion is not present in the incremental version of the projection method,  
also known as "pressure correction method",  originally proposed by Goda  
(1979) in a finite difference context. The finite element counterpart  of this 
scheme based on a first-order Euler time-discretization has been analyzed in 
Guermond (1994) and employed successfully in Guermond and Quartapelle 
(1997), where its time-splitting error has been numerically shown to be of 
O((At)2). This result has been proved in Guermond (1997), where a new 
(At)2-accurate projection scheme based on the three-level Backward Differ- 
ence Formula has been proposed. The aim of this paper is to demonstra te  
the second-order accuracy of the incremental BDF method by means of nu- 
merical tests and to illustrate a finite element implementation of this scheme 
to simulate three dimensional realistic flows. 

2 I n c r e m e n t a l  p r o j e c t i o n  m e t h o d  
Consider the unsteady Navier-Stokes problem: Find the velocity u and the 
pressure p (up to a constant) so that ,  Ult=0 = u0  and 

o u  _ ~ v 2 u  + ( u  . v ) u  + vp = $, 
v.  u = 0, (2.1) 
ulo~ = b, 

where ~ is the viscosity, f is a known body force, b is the velocity prescribed 
on the boundary 0~ ,  and u0 is the divergence-free initial velocity field. The  
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boundary and the data  are assumed to be regular enough and to satisfy all 
the compatibility conditions needed for a smooth solution to exist for all time. 

The incremental version of the fractional-step method consists in a time 
marching technique that  makes explicit the pressure at the viscous step and 
corrects it at the projection step by evaluating a pressure increment to enforce 
the incompressibility condition. Setting u ° = u0 and assuming p0 to be 
known, for k > 0 one has to solve: First, the advection-diffusion step 

{ _ u k + l  -- it ~lk -- v V 2 U  k+l + (U k ' V ) u  k+l + ~(V" U k ) U  k+l -- S k+l V p  k, 
At bk+l; 

Uk+llol~ = 
(2 .2)  

then, perform the projection step in the incremental form: 

{~k+l_iu k+l ~(pk+l 
+ _ pk) = 0, (2 .3)  

~ . ~  k+Ast = O, n . ~ + l j o z  = n . b  k+l. 

An important  feature of this method is the difference, in terms of func- 
tional setting, that  exists between the viscous step and the projection step, 
Guermond and Quartapelle (1998). The first half-step constitutes an elliptic 
boundary value problem for an intermediate velocity u k+l accounting for 
viscosity and convection, whereas the second half-step represents an inviscid 
problem that  determines the end-of-step divergence-free velocity field ~h+l  
together with a suitable approximation of the pressure increment (pk+l _ pk) .  

As a consequence, boundary conditions of a different kind are imposed on 
the velocity fields that  are calculated in the two half-steps. To emphasize 
the occurrence of two different vector spaces for the velocity, we use the 
notation u and ~ .  Similarly, the two operators W. and ~ .  occurring in 
the two steps are distinguished since they act on vector fields belonging to 
spaces which are endowed with very different regularities, namely, H 1 and 
H div (or possibly L2), respectively. We also introduce the injection operator 

• H~0iv L 2 i :  H01 ÷/-/~0 'v and its transpose i t. Indeed, ~ .  : ) is an exten- 
sion of ~7. : H 0  L ) L 2 in the sense that  we have the remarkable property: 
~ -  i = ~7. and i t ~ = V .  This distinction between the two velocity spaces 
plays a key role in the convergence analysis of the fully discrete method as 
well as in its practical implementation. 

The final velocity ~k is made to disappear from the fractional-step algo- 
r i thm by substituting ~ a  = i u a - A t  ~ ( p k  _ p k - 1 )  into the equation of the 
viscous step, since we have 

it ~k = i t [i •k -- At ~(pk _ p k - 1 ) ]  

= i t i u  k -- A t  i t [ ~ ( p  a -- pk-1)] 

= U k -- A t  V ( p  k -- p k - 1 ) ,  

where we used the property i t ~ = ~7. Then, the viscous step becomes: 
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I -- I k k+l uk+1 u~ - uV2u k+~ (uk.V)u k+~ + ~(V.u )u 
A t  "It : f k + l  -- V ( 2 p  k -- p k - 1 ) ,  (2.4)  

uk+l[0 o = b k+l. 

By applying ~ .  to (2.3), we obtain the following Poisson equation: 

{ _Q2(pk+l _ pk) = -(A~)-I V. u h+l, 
O(vk+~ _ pk) (2.5) 

On Ion = O, 

where we have used ~ .  i = V-.  

3 Second-order projection method 
It is shown in Guermond and Quartapelle (1997) and proved in Guermond 
(1997) that the splitting error induced by this fractional step technique is 
of O((At)2); as a result, second order order accuracy in time is possible if 
the time derivative in the momentum equation is replaced by a second order 
finite difference and the projection step is modified accordingly. 

Following Guermond (1997), a three-level BDF is described hereafter, 
where the unconditional stability in the nonlinear regime is maintained by 
evaluating the skew-symmetric advection term semi-implicitly by means of a 
linear extrapolation in time of the advection velocity: u k+x = 2U l' - U k-1. 
The viscous step of the scheme reads 

u k + l  -- 4 i t ~ k  + i t f i k - 1  -- t / V 2 U  k+ l  -k- ( U . k + I " v ) ' U  k + l  
2At 

+ ½(v.  u~.+')u~+ ~ = f + '  - vp  ~, (3.1) 
Uk+X[o ~ = b k+l, 

and the projection step is performed as follows: 

{ 3 ~  k+l - 3i u k+l ~7(pk+I 
2 t -4- - - p k )  = 0 ,  

~r'. ~k+~_- t (3.2) 

~k+~ bk+l. I t  IOt~ : n .  

Once the velocities ~k and ~a-1 are eliminated by using (3.2), the two steps 
take the following form in practice: 

3"U k + l  4 U  k--~ U k - 1  k+ l  k+ l  1 ~7 k + l  , uk+ l  
- -2A t  - - u v 2 u k + I  + ( u *  . V ) U  + ~ (  . U .  ) 

*l = f k + l  _ ½V(7pk _ 5pk_ 1 _t_pk_2) ' 
( ltk+llO ~ = bk+l; 

(3.3) 

O(pk+l -- pk)  (3.4) 
On Ion = O. 
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4 S p a c e  d i s c r e t i z a t i o n  a n d  e r r o r  e s t i m a t e s  
For the spatial approximation of the viscous step, we introduce a finite el- 

ement approximation Xo,h C H~o for the intermediate velocity Uh and 
Nh C H 1 for the pressure Ph. Let the polynomial order of interpolation 
for the velocity be denoted by g (> 1) and that  for the pressure by/~,  with 
m a x ( / -  1, 1) < g' < / .  The two spaces Xo,h and Nh are assumed to satisfy 
the LBB condition (Ladyzhenskaya, Babfiska, and Brezzi). 

The weak formulation of the advection-diffusion step (2.4) reads: For 
k > 0, find Ukh +1 E Xbk+lh such that ,  for all v h E Xo,h, 

(3Ukh+l--4Ukh + U k h - 1 )  ((,,k+l ~,,,k+a Vh~4.1 ) , vh  + u ( V u ~  +~, XZvh) + u = . , h  " -J -~n  , 

1 k + ~ ( v .  ~.,~-.~+1, u~+l .  v~) = ( f  +~ , v~) - ~(V(Tp~ - ~p~-~ + p~-~), v . ) .  

The projection step has a unique expression only once the functional space 
for the end-of-step velocity is chosen. Many options are possible Guermond 

^ k + l  (1994), Guermond (1997); one of the simplest consists in selecting u h in 
X h  + ~TNh. Given this particular choice, it can be proven that  the operator  
~h, the discrete counterpart  of ~,  coincides exactly with the restriction to Nh 
of the gradient operator; as a result, the projection step takes the following 
form: For k _> 0, find (pkh+l _pk)  E Nh such that ,  for all qh E Na, 

(V(pkh +1 -- p~), Vqh ) = --3/(2At)  (V.  U~ +1 , qh)" (4.2) 

The description of the BDF projection method is concluded by recalling 
the following result established in Guermond (1997). 

T h e o r e m  1 Under convenient regularity assumptions on the data f ,  Uo, b, 
and provided the inf-sup condition is satisfied, the solution to the second order 
BDF projection scheme (4.1)-(4.2) satisfies the error bounds: 

u~ - u(t  k) ~2(L2(.))+ fi~ - u( t  k) ~2(,.2(-)) _< c[u,p](nt  2 + h~+l), (4.3) 

5 N u m e r i c a l  r e s u l t s  a n d  c o n c l u s i o n s  
The present method has been implemented using mixed P1-P2 finite elements. 

The O((At) 2) accuracy of the BDF scheme has been tested with the fol- 
lowing analytical solution in the unit square [0,112: u~ = - cos x sin y sin(2t), 
uy -- sin x cos y sin(2t) and p -- - ¼[cos(2x) + cos(2y)] [sin(2t)] 2, for Reynolds 
number Re = 100, on a mesh of 2 × 402 P1-P2 triangles. Figure 1 shows the 
maximum value in time, over 0 < t < 1.5, of the error in the L 2 norm for the 
pressure and the error in the H 1 and L 2 norms for the velocity. The satura- 
tion of the error as At --+ 0 is due to the spatial discretization error, which is 
of order h 2 for the velocity (resp. pressure) in the H 1 (resp. L ~) norm, while 
it is of order h 3 for the velocity in the L 2 norm. 



395  

0.!  

. . . . . . .  i .... = i!  ¸ : , , i  '̧,__ 
o,oot :: ::::::: 

,._= iiiiiii 

l e . . ~  

u_HI 

u_L2 

0.01 0.1 

Fig. 1. Convergence tests in time for 
the BDF projection method, with 
P~-P~ FE. 2D analytical test problem 
for Re = 100. 
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Fig. 2. 3D driven cavity problem 
with AR=I/1/3,  for Re = 3200. Solu- 
tion at times (left) t = 50 and (right) 
t = 100. Integral curves of the ve- 
locity field projected onto the plane 
y = -O.49. 

The capability of the BDF-(At)  2 projection method to solve large-scale 
3D problems has been assessed on the 3D driven cavity: (Ix[ < 0.5) x ([y[ < 
0.5) x ([z[ _< 1.5), using a nonuniform mesh of 5 x 202 x 29 Pz-P2 te t rahedra for 
the half cavity (87579 P2 nodes). The symmetry  with respect to the plane z = 
0 is assumed. First, the unsteady solution for Re = 1000 at t = 6.25 has been 
compared with its 2D counterpart  in Figure 3. The secondary eddy located in 
the lower half of the downstream wall in the symmetry  plane is found slightly 
weaker in the 3D simulation than in the 2D one as a consequence of the finite 
length of the cavity. This eddy vanishes at 1.25 < z < 1.3. 

In Figures 2 and 4 we show the integral curves of velocity field for Re  = 
3200 in some representative planes at times t = 50 and t = 100. No steady so- 
lution exists, and the number of GSrtler vortices varies in t ime in accordance 
with other numerical solutions reported in Deville et al. (1992). 
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F i g .  3 . 3 D  driven cavity problem with A R = I / 1 / 3 ,  for Re = 1000. Secondary eddy 
on the downstream wall at  t = 6.25 in region: 0.4 < x < 0.5, - 0 . 5  < y < 0. 
Comparison of the 2D streamlines (left) with the integral lines of the 3D velocity 
field projected onto planes z = 0, 1, 1.25, 1.30, and 1.4 (from left to right).  
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Fig .  4 . 3 D  driven cavity problem with A R = I / 1 / 3 ,  for Re = 3200. Solution at  t imes 
(left) t = 50 and (right) t = 100. Integral curves of the velocity field projected onto 
the planes x = 0.13 and x = 0.18. 
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