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1. I n t roduc t ion .  This work is concerned with the numerical solution of the time- 
dependent Navier-Stokes equations in the ~ -¢  representation for problems in multiply 
connected 2D regions. A new variational formulation based on a particular decom- 
position of the stream function space is presented. An uncoupled solution method 
is thereby derived which extends to transient calculations the method proposed by 
Gtowinski and Pironneau for the biharmonic problem [3], [8]. Similarly to the latter, 
the proposed uncoupled method leads to a small linear system of equations for de- 
termining the additional stream function unknowns on the immersed bodies. After a 
suitable time discretization, the equations are discretized spatially by means of a mixed 
finite element method. 

The content of the paper is organized as follows. In section 2 we establish the 
functional setting necessary to formulate the equations for incompressible flows in 2D, 
U.~ing both primitive and nonprimitive variables. We introduce a special decomposition 
of the stream function space for multiply connected domains. Section 3 addresses the 
numerical approximation of the ~-~b equations by means of finite elements. The uncou- 
pled method for enforcing the special conditions induced by the multiple connectedness 
of the domain is described in detail. Section 4 is devoted to the numerical examples. 
The complete analysis of the proposed method is given in [6]. 

2. Pre l iminar ies .  In this article Y2 is an open bounded domain of IR2; Y2 is 
connected but may be multiply connected; its boundary F is smooth, say F is C °'1. 
We denote by Fo the exterior boundary of J2 and by Fi, 1 __< i < p, the other (internal) 
connected components of F, namely, F = c3J2 = I..~i=0 Fi. Let (~, Y) be a unit base of 
]R 2 and (~, .~, 3) a right-handed unit base of IR 3. To have a convenient notation for the 
curl operator, let us define curl¢= ~7¢×Y. and curly = ~ .V'×v.  In the sequel, ~'is 
the oriented unit tangent of F so that (n ,  ~', 3) is a right-handed triad of unit vectors, 
n being the outward normal. 

The analysis of the Navier-Stokes equations, supplemented with Dirichlet bound- 
ary condition, leads to consider the following Hilbert spaces of solenoidal fields: 

J ° (a ) - - -  { y e L l ( n )  I V ' v = 0 ,  n . v ~ r = 0 } ,  

Jol(f2) -= (v e Hi(F2) I V - v  = 0, vlr = 0}. 

To introduce the stream function for representing incompressible flows in possible mul- 
tiply connected domain, we define the following Hilbert spaces: 

= { ~  e Hi(~2) I ~lr0 = 0, ~lr ,  = C , ,  VC~ ~ ~ ,  1 < i < p}, 

= {~b E H2(f2) I Cjr0 = 0, f~r ,  = C,, vC,  ~ ~ ,  1 < i < p, 0¢/0nl r  = 0). 

The relevance of these spaces is brought to light by: 
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LEMMA 2.1. (See e.g. [2]} We have the following isomorphisms 

(i) c u r l :  ~ , Jo°(~); (ii) c u r / :  if"----+ J~(a) .  

Further, we define the vector space 

~0 = {4 e ~ I 4.or=,a = 0} = g ~ ( n ) .  

Finally, we assume to have at hand p functions of ~P: k l , . . . ,  kp, such that kil G = 8ij, 
i = 1 , . . .  ,p, where 6ij is the Kronecker symbol, by means of which we define 

r / ~  = s p a n ( k l , . . . , , ~ p ) .  

The dimension of r K  is p. We are now able to decompose ~P az follows. 
TttEOREM 2.2. We have the decomposition 

~P = ~0 ~9 r K .  

Remark 2.1. Note that this decomposition is quite arbitrary since the functions kl,.  • •, kp 
are arbitrary. Such a decomposition is not orthogonal unless the functions ki are care- 
"felly chosen. A decomposition orthogonal with respect to a suitable scalar product will 
be considered in the following to derive an uncoupled solution method. 13 

3. T h e  Nav i e r -S tokes  p r o b l e m  in u-p and w-¢ formulat ions .  For sake of 
simplicity, no-slip boundary condition on the entire boundary are considered. Let us 
introduce a e £(J~(~)~,  JR) so that a(u,  v) = v (Vu,  Vv) and b e £(J~(i2) 3, IR) so 
that b(u, v, w) = ((u . V ) v ,  w). Consider f in H -1 (f2) (a body force) and Uo in j o ( o ) .  
We hereafter consider the following Navier-Stokes problem: 

Find u E L2(0, T; Jo~(12)) ¢q C(0, T; Jg0 (J2)) with Ult=o = Uo such that 
7~0 W E So~(a), 0 ' , ,~)  + a0 , ,~ )  + b0',~',~) = (L~)- 

To derive the w-4 formulation we proceed as follows (see also [4] and [6]). Since 
curl : ~P ----, J01(12) is an isomorphism (lemma 2.1), we can replace the test functions 
of J0~(I2) in 790 by that of curl!P. Furthermore, thanks to the decomposition of 4 
introduced in theorem 2.2, we can separate the action of the test functions of ff'o from 
that of r K  to obtain the following problem: 

Find w E L2(0, T; L2(f2)) N C(0, T; H-I(J2)) and 
4 E L2(0,T;~P)O C(0, T ;~ ) ,  such that 
V¢ E ~, ((V4)lt=o, V¢) = (~×Uo, V¢), and for all t > 0 

- w  - X72¢ = 0, 

( v 4 .  vk;) - .  (~, v~k,) + ( j (~,  4), k,) = (~x L w, ) ,  

in H-2(/'2), 
in L2(12), 
l < i < p ,  

where J(w, 4) denotes the Jacobian determinant. 
PROPOSITION 3.1. Problem 791 is equivalent to 79o provided one sets u = V 4 × ~  

andw = ~ .~ 7 ×u .  
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Remark 3.1. Actually, the advection-diffusion equation for the vorticity (under- 
stood in the distributional sense) can be obtained by "taking the curl" of the momen- 
tum equation; but by doing so (to "get rid of" the pressure) we forget something. The 
decomposition of ~P enables one to recover the missing pieces of information by testing 
the original momentum equation against the curl of the p functions ki. D 

Remark 3.2. If the source term is smooth and the solution (w, ~b) is smooth enough, 
the additional conditions due to the multiple connectedness can be interpreted in the 
classical sense. If f is in H 1 (f2), the vorticity equation u;t - vV2w + J(w, ~b) = ~. W X f 
holds in L2(12). It follows that, after using integration by parts in the weak vorticity 
equation, the p extra conditions above yield: 

fr, Ow fr~ l < i < p ,  ~, ~n  = -  f - r .  

These well-known "strong" relations are frequently used in finite difference codes. D 

4. Numer ica l  app rox ima t ion  of  t he  ~o-%b problem. We now assume that the 
time derivative is approximated by means of some standard finite differencing scheme, 
with the viscous diffusion term taken into account implicitly and the nonlinear term 
explicitly, and restrict the analysis to the corresponding linear semi-discrete problem. 
-Setting 7 = 1~At, the variational problem reads: Find ¢ in H2(/?) such that 

{ v (V:~,V~¢') + ~ ( r e ,  v~ ' )  = r(~'), r e '  e • = O0 ~)rl¢, 
O¢ / Onlr = O, 
elf0 = 0, ¢11-, = ~ ,  1 < i < p, 

Here ~ ,  1 < i < p, represent p constants to be determined jointly with the unknown 
functions w and ~b. The linear form r(¢')  contains the information from the past and 
the source terms of the problem, for details see [6]. 

The semi-discrete problem above is now recast to be approximated by means of 
classical mixed finite element techniques developed for problems in simply connected 
domains. Let 9vh be a regular triangulation of (2. Let Pk be the space of polynomials 
of two variables of degree < k; we introduce the following finite dimensional spaces in 
which we will seek an approximation of ¢ and w, respectively: 

wh = {¢h E c ° ( J )  I ¢~lr E P~, VT E j=h}, 

~Ph={¢hEC°(~ ) ]¢h lTEP~ ,  VTE~'h ,  Chit0 =0 ,  Chlr,=C,, 1 < i < p } .  

A natural approximation of ~P0 consists in kPo.h = (¢~ E kPh I Chluf=~r, ----- 0}. 
Now, setting a -- ~,/~,, we build an approximation of r i ~  by defining the functions 

w~ E Wh and ¢~ E kPh, 1 _< i < p, as follows 

(v.,i ,  v¢~) + ~ (~i, ~h) = 0, v¢~ E ~0.h, 
- ( ~ , . ~ )  + ( v ~ ,  v~-~) = 0, v.h e w~, 
¢~lr, = ~ ,  ~ < J < P" 

We denote by rlC~,~ the finite dimensional linear space span(¢~,. . . ,  t;'~). These prob- 
lems are very classical and can be solved by using the Glowinski-Pironneau method 
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[3], which is valid irrespective of the multiple connectedness of ~; for details on this 
technique, see also [8]. 

Now, we introduce the discrete counterpart of the Laplace operator Ah • /:(Wh) 
as follows. For Ch • Wh, AhCh is the unique element of Wh which satisfies 

wh • wh, (Ah~,  ~h) = (VCh, Vv~). 

Now we define the scalar product (( -, • ))h in Wh 

((¢h, ¢~,))h = (Ah~h, Ah@~) + a (VCh, V¢~). 

PROPOSITION 4.1. We have the decomposition, orthogonal with respect to ((., • ))~, 

¢'~ = ¢~o,~ + r ~.~,~. 

According to this decomposition, it is natural to set at each time level: 

P P 

j = l  j = l  

Thanks to the orthogonality of the decomposition with respect to ((-, - ))h, the functions 
w~ E Wh and ¢o E ~O,h are solution to the following linear (uncoupled) problem 

_(~0 , ,~ )  + (re?,,  v , h )  = 0, w h  • w~. 

The set of equations controlling the constants ~ ,  1 < i _< p, are obtained by 
testing the momentum equation against the curl of functions rK:~,h, which yields the 
following p × p linear system 

B.~ = g, 

where the coefficients of matrix B and vector g are given by 

j i B,j = ~ ( V ~ ,  v¢~,) + ~ (~ ,  ¢~), 

g, = - ~  ( W ~ ,  V ~ , )  - ~ (~ ,  ~ )  + s(+~). 

From the practical viewpoint, we have 
PROPOSITION 4.2. B is symmetric definite positive and 

B,~ = ~ ( 4 ,  ~ )  + ~ ( v ~ ,  v ~ ) .  

Remark 4.1. In practice, the matrix B is calculated and inverted once and for all 
at the preprocessing stage. The calculation of the right-hand side g can be greatly 
accelerated by setting ¢~ = ¢i0,h + #h,i where .~,h is zero on F~ and #~, is zero on the 
degrees of freedom which do not belong to F,. Thanks to this decomposition, we obtain: 

0 i g, = - ~  ( v ~  °, v ~ )  - -t (~'h, ~ )  + s(~,) .  

As a result, only the functions #~ need to be stored for the calculation of gi. [3 



570 

5. N u m e r i c a l  e x a m p l e s .  The validity of the proposed formulation is demon- 
strated by presenting some numerical results for unsteady flow past airfoils at moderate 
Reynold numbers R. The variables vorticity and stream function are approximated by 
means of a piecewise linear interpolation over a Delaunay triangular mesh, generated 
by the method of Rebay [9]. The large sparse symmetric systems of linear equations 
are solved by Choleski's method after an internal reordering of the unknowns by means 
of Sparspack [1]. For example, results for the unsteady flow past a NACA 0012 airfoil 
at an angle of incidence of 34 ° for R = 1000 (At = 0.02) are reported in Figure 1. In 
this figure, the streamlines obtained from the present method at t = 3.6 are compared 
with those calculated at the same t ime by means of a new fractional-step projection 
method [5]. The contour lines of pressure at t = 1.6 provided by the w-~b uncoupled 
method are compared in Figure 2 with those of the solution calculated by means of the 
fractional-step projection method [5]. 

Another example is the flow past a multiple-body profile with high-lift devices, con- 
sisting of a slat, the main airfoil and a flap [7], with angle of incidence of 25 °. In Figure 
3 the streamlines of the solutions at t ime 3.6 for R = 500 (A~ = 0.001) obtained by 
the two methods are compared. The comparisons show that the nonprimitive variable 
method is capable of predicting the dynamics of the flow field in multiply connected 
domains quite correctly, even in the presence of sharp geometrical singularities of the 
boundary, like those at the trailing edges of the considered airfoils. 
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F I G .  1. NACA 0012 airfoil at a = 34* and R = 1000.  Comparison of streamlines of the w-q) 
( l ep )  and u.p  (right) solutio.s  at t = 3.8. 
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F I G .  2.  NACA 0012 airfoil at a = 34  ° and R = 1000.  Comparison of pressure fields of the w-q) 
(left) and u-p (right) solutions at t = 1.6.  
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F I G .  3. Multibody airfoil at c~ = 25 ° and/~ = 500.  Streamlines for the solution of vorticity/stream 
function equations at t = 2.8 (left} and the solution of the pro3ection method at the same time (right}. 


