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Abstract. This work is devoted to the study of a two-dimensional vector Poisson equation with
the normal component of the unknown and the value of the divergence of the unknown prescribed
simultaneously on the entire boundary. These two scalar boundary conditions appear prima facie
alternative in a standard variational framework. An original variational formulation of this boundary
value problem is proposed here. Furthermore, an uncoupled solution algorithm is introduced together
with its finite element approximation. The numerical scheme has been implemented and applied to
solve a simple test problem.
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1. Introduction

The Poisson equation for a vector unknown in a bounded domain in two or three dimensions can be sup-
plemented by different kinds of boundary conditions. Beside the simplest case of a vector Dirichlet condition
leading to the uncoupled solution of independent scalar Dirichlet problems for the Cartesian components of
the unknown, different combinations of Dirichlet and Neumann-like (i.e. derivative) boundary conditions can
be specified on the boundary or on its parts. For instance, one can prescribe the tangential component(s) of
the unknown on the entire boundary simultaneously with the value of the divergence of the vector field (see
e.g. [3,5,9]); alternatively, one can impose the normal component together with the tangential component(s) of
the curl of the vector unknown (see e.g. [9]). In both cases, these mixed (Dirichlet and derivative) boundary
conditions are easily accommodated within the standard variational formulation of the vector elliptic problem
obtained from the integration by parts and one arrives at coupled solution method for an operator endowed
with the symmetry which is inherent to elliptic problems (see e.g. [8, 10–12,14–16]).

There are, however, cases where the set of boundary conditions supplementing the vector Poisson equation
does not fit within the usual variational formulation of the elliptic problem. For instance, in some 2D prob-
lems the normal component of the unknown is prescribed on the boundary simultaneously with the value of
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1 Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur, CNRS, BP 133, 91403 Orsay, France.
e-mail: guermond@limsi.fr
2 Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy.
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the divergence of the unknown and these two boundary conditions seem incompatible when one looks at the
boundary integrals occurring in the variational formulation of the problem.

An even more serious difficulty is encountered in three dimensions when the two aforementioned scalar
boundary conditions are to be satisfied simultaneously with a third scalar condition imposing the normal
component of the curl of the vector unknown, a set of conditions found, for instance, to supplement the vector
potential of the velocity field in incompressible flows [9]. In this case, beside the aforementioned apparent
mutual incompatibility of the boundary conditions for the 2D problem, one has a derivative boundary condition
for which there is no corresponding term at all in the surface integrals that could allow to enforce it as a natural
boundary condition.

The aim of the present paper is to investigate the problem associated with a vector Poisson equation in two
dimensions supplemented with the two boundary conditions imposing the values of the normal component and
of the divergence, a combination of scalar boundary conditions which cannot be imposed according to existing
variational formulations for vector elliptic problems. This investigation is to be considered as a preliminary step
toward the study of the three-dimensional vector Poisson equation under the three scalar boundary conditions
mentioned above.

The content of the paper is organized as follows. In Section 2 we give the preliminary definitions and
introduce the variational formulation of an elliptic problem for a vector unknown subject to the two apparently
mutually exclusive boundary conditions. The question of well-posedness of such a problem is addressed in
Section 3, where the kernel of the linear operator associated with the problem is shown to be nontrivial, but
only one-dimensional. Section 4 provides a similar analysis for the transposed operator. As a consequence
of these results the variational problem we started from is modified and reformulated in a well-posed manner
in Section 5. The interpretation of the modified variational problem as an elliptic boundary value problem is
displayed in Section 6 which gives also the explicit expression of the compatibility condition for the problem
with homogeneous boundary conditions. Section 7 extends the previous analysis to nonzero boundary data and
includes the compatibility condition which the data of the problem must satisfy in the general case. In Section 8
we introduce a splitting method, which leads to an uncoupled numerical algorithm requiring to solve only scalar
Poisson equations and an auxiliary problem for a scalar boundary unknown. The finite element approximation of
the split solution algorithm is discussed in Section 9, while Section 10 details the error analysis of the uncoupled
finite element method. The last section is devoted to a few numerical tests.

2. Preliminaries and problem definition

Throughout this paper, we assume that Ω is an open and simply-connected domain of R2, with a Lipschitz
continuous boundary Γ .

Definition 2.1. Hereafter we set

X(Ω) =
{
v ∈ L2(Ω)

∣∣∣ ∇· v ∈ L2(Ω),∇×v ∈ L2(Ω)
}
, (2.1)

XT (Ω) =
{
v ∈X(Ω)

∣∣∣ n · v = 0 on Γ
}
, (2.2)

XN(Ω) =
{
v ∈X(Ω)

∣∣∣ τ · v = 0 on Γ
}
· (2.3)

We introduce the bilinear form

a(u,v) = (∇×u,∇×v) + (∇·u,∇· v), ∀ u,v ∈X(Ω). (2.4)
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It is clear that a ∈ L(X(Ω) × X(Ω);R) and a is symmetric positive. Furthermore, it can be shown (see
e.g. [6]) that the restriction of a to the Hilbert spaces XT (Ω) and XN(Ω) induces a scalar product and that
the associated norm is equivalent to the natural norm of X(Ω). Hereafter we equip XT (Ω) and XN(Ω) with
the following norm and scalar product:

( · , · )1 = a( · , · ); | · |1 = {a( · , · )}1/2 . (2.5)

The aim of the present paper is to analyze the following problem. Given f ∈ L2(Ω){
Find u ∈XT (Ω) such that
a(u,v) = (f ,v), ∀ v ∈XN(Ω). (2.6)

Remark 2.1. By standard arguments, it can be shown that problem (2.6) is formally equivalent to the following
PDE’s.  −∇

2u = f in Ω
∇·u = 0 on Γ
n ·u = 0 on Γ,

(2.7)

where the two boundary conditions seem a priori to be mutually exclusive.

The first question we have to answer is: Is problem (2.6) well-posed? An equivalent question consists in
knowing whether the operator A : XT (Ω) −→X ′

N
(Ω) defined by

〈Au,v〉 = a(u,v), ∀ u ∈XT (Ω), ∀ v ∈XN(Ω), (2.8)

is bijective. The answer to this question is rooted in the study of the kernel of A and that of At.

3. Analysis of the kernel of A

Let us set

L2
0(Ω) =

{
q ∈ L2(Ω)

∣∣∣ ∫
Ω

g = 0
}
, and H̃1(Ω) = H1(Ω) ∩ L2

0(Ω).

Lemma 3.1. Let g ∈ L2
0(Ω), then there exists a unique v ∈XN(Ω) such that ∇×v = g in Ω

∇· v = 0 in Ω
τ · v = 0 on Γ.

(3.1)

Proof. We show that the solution to (3.1) is indeed the solution to the following problem:

{
Find v ∈XN(Ω) such that
a(v,w) = (g,∇×w), ∀ w ∈XN(Ω). (3.2)

From the Riesz–Fréchet representation theorem we know that problem (3.2) has a unique solution. Let us prove
now that v is solution to (3.1).

Next, for any h ∈ L2(Ω), let q ∈ H1
0 (Ω) satisfying ∇2q = h in Ω, then w =∇q ∈XN(Ω). By (3.2) we have

(∇· v,∇·w) = 0, i.e., (∇· v,∇·∇q) = 0, namely,

(∇· v, h) = 0, ∀ h ∈ L2(Ω),
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which implies that ∇· v = 0.
Finally, for any φ ∈ L2

0(Ω), let ψ ∈ H̃1(Ω) be the solution of{ ∇2ψ = φ in Ω
∂ψ

∂n
= 0 on Γ,

then w =∇×ψ ∈XN(Ω). By using w to test the equation of problem (3.2), we obtain:

(∇×v,∇×∇×ψ) = (g,∇×∇×ψ),

that is

(∇×v − g, φ) = 0, ∀ φ ∈ L2
0(Ω).

Thus, there exists a constant C such that ∇×v − g = C. Noticing that
∫
Ω
g = 0 and

∫
Ω
∇×v =

∫
Γ
τ · v = 0,

we get ∇×v = g. Finally, note that the solution of (3.1) is unique in XN(Ω).

We are now ready to study the kernel of the operator A.

Lemma 3.2. Let u0 ∈X(Ω) be the solution of ∇×u0 = 1 in Ω
∇·u0 = 0 ∈ Ω
n ·u0 = 0 on G.

(3.3)

Then, we have

KerA = 〈u0〉. (3.4)

Proof. Let u ∈XT (Ω) be in KerA. By definition, u satisfies

a(u,v) = 0, ∀ v ∈XN(Ω). (3.5)

For any g ∈ L2
0(Ω), by Lemma 3.1 we can find a v ∈XN(Ω) such that (3.1) holds. Thus, from (3.5) we have

(∇×u, g) = 0, ∀ g ∈ L2
0(Ω).

This implies that there is a constant Cu such that

∇×u = Cu. (3.6)

Integrating this relation over Ω and using Stokes theorem we obtain

Cu =
1
|Ω|

∫
Γ

τ ·u. (3.7)

On the other hand, for any h ∈ L2(Ω), let q ∈ H1
0 (Ω) satisfying ∇2q = h in Ω. Then, by choosing v = ∇q ∈

XN(Ω) in (3.5), we have (∇·u,∇· (∇q)) = 0, namely,

(∇·u, h) = 0, ∀ h ∈ L2(Ω),
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which implies that

∇·u = 0. (3.8)

Summarizing the analysis above, we obtain that, if u ∈ XT (Ω) is a solution of problem (3.5), then it satisfies
the system {

∇×u = Cu
∇·u = 0. (3.9)

The converse is also true.

4. Analysis of the transposed operator At

We turn now to the study of the transpose of A, At : XN(Ω) −→ (XT (Ω))′, which is defined by

〈Atv,u〉 = a(u,v), ∀ u ∈XT (Ω), ∀ v ∈XN(Ω). (4.1)

Lemma 4.1. Let v0 ∈X(Ω) be the solution of ∇×v0 = 0 in Ω
∇· v0 = 1 ∈ Ω
τ · v0 = 0 on G.

(4.2)

Then,

KerAt = 〈v0〉. (4.3)

Proof. Let v ∈XN(Ω) satisfying

a(u,v) = 0, ∀ u ∈XT (Ω). (4.4)

For any h ∈ L2
0(Ω), let q ∈ H̃1(Ω) be the solution of{ ∇2q = h in Ω

∂q

∂n
= 0 on Γ.

Then, by taking u =∇q ∈XT (Ω) in (4.4), we have (∇· (∇q),∇· v) = 0, that is

(∇· v, h) = 0, ∀ h ∈ L2
0(Ω),

which implies that

∇· v = Cv, (4.5)

where

Cv =
1
|Ω|

∫
Γ

n · v. (4.6)
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On the other hand, for any g ∈ L2(Ω), let φ ∈ H1
0 (Ω) be such that ∇2φ = g in Ω. Thus, u = ∇×φ ∈XT (Ω)

and (4.4) becomes (∇×∇×φ,∇×v) = 0, i.e.,

(∇×v, g) = 0, ∀ g ∈ L2(Ω),

which means that

∇×v = 0. (4.7)

Consequently, we obtain that, if v ∈XN(Ω) is a solution of problem (4.4), then it satisfies the system{
∇×v = 0
∇· v = Cv.

(4.8)

The converse is also true.

5. A well-posed problem

The above analysis has shown that problem (2.6) is not well-posed, for a necessary condition for an operator
to be bijective is that the operator and its transpose are injective. In order to exclude 〈u0〉 and 〈v0〉 from
XT (Ω) and XN(Ω) respectively, we set

Definition 5.1.

X
?

T (Ω) =
{
v ∈XT (Ω)

∣∣∣∣ ∫
Γ

τ · v = 0
}

(5.1)

X
?

N
(Ω) =

{
v ∈XN(Ω)

∣∣∣∣ ∫
Γ

n · v = 0
}
· (5.2)

Instead of problem (2.6), we shall hereafter consider the following one{
Find u ∈X

?

T (Ω) such that
a(u,v) = (f ,v), ∀ v ∈X

?

N
(Ω).

(5.3)

Theorem 5.1. Problem (5.3) is well-posed.

Proof. According to the global theory on linear variational problems (cf. [2]), problem (5.3) is well-posed if and
only if the following two conditions are satisfied:

(i) there exists a constant α > 0 such that

inf
u∈X?T (Ω)\{0}

sup
v∈X?N (Ω)\{0}

a(u,v)
|u|1 |v|1

≥ α, (5.4)

(ii) for any v 6= 0 in X
?

N(Ω)

sup
u∈X?T (Ω)

a(u,v) > 0. (5.5)
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Given u ∈X
?

T (Ω), let us consider the following problem{
Find w ∈X

?

N
(Ω) such that

a(w,v′) = a(u,v′), ∀ v′ ∈X
?

N(Ω).
(5.6)

By the Riesz–Fréchet Theorem, problem (5.6) has a unique solution w ∈X
?

N(Ω), and

|w|1 ≤ |u|1. (5.7)

We are going to show that w satisfies {
∇×w = ∇×u in Ω
∇·w = ∇·u in Ω.

(5.8)

For any h ∈ L2
0(Ω), let q ∈ H̃1(Ω) be the solution of{ ∇2q = h in Ω

∂q

∂n
= 0 on Γ.

Then v′ =∇×q ∈X
?

N
(Ω). By (5.6), we have

(∇×w, h) = (∇×u, h), ∀ h ∈ L2
0(Ω),

which implies that the first relation of (5.8) holds, since w ∈X
?

N(Ω) and u ∈X
?

T (Ω).
Next, for any h ∈ L2

0(Ω), let φ ∈ H1
0 (Ω) satisfying ∇2φ = h in Ω, then v′ = ∇φ ∈ X

?

N
(Ω). From (5.6), we

have

(∇·w, h) = (∇·u, h), ∀ h ∈ L2
0(Ω). (5.9)

Since w ∈X
?

N
(Ω) and u ∈X

?

T (Ω), (5.9) implies that the second relation of (5.8) holds.
Let us now check conditions (5.4) and (5.5). Notice that (5.8), we have

sup
v∈X?N (Ω)\{0}

a(u,v)
|u|1 |v|1

≥ a(u,w)
|u|1 |w|1

= 1 (5.10)

i.e. condition (5.4) is satisfied.
To establish (5.5), let us assume that a given nonzero v ∈X

?

N(Ω) satisfies:

a(u,v) = 0, ∀ u ∈X
?

T (Ω).

Similarly to the arguments used to prove (4.8), we can get{
∇×v = 0 in Ω
∇· v = 0 in Ω.

(5.11)

Thus, v should be zero, which leads to a contradiction. Therefore, condition (5.5) is also satisfied. This
completes the proof.
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Remark 5.1. Theorem 5.1 is equivalent to stating that the operator A
?

: X
?

T (Ω) −→ (X
?

N(Ω))′ defined by

〈A?u,v〉 = a(u,v), ∀ u ∈X
?

T (Ω), ∀ v ∈X
?

N(Ω), (5.12)

is bijective.

6. Interpretation of the well-posed problem

To interpret the well-posed problem (5.3) in a strong form, we have:

Theorem 6.1. If
∫
Ω
f · v0 = 0 where v0 is defined by (4.2), then the solution u of problem (5.3) satisfies:

−∇2u = f in Ω
∇·u = 0 on Γ
n ·u = 0 on Γ∫

Γ

τ ·u = 0.

(6.1)

Proof. By the definition of v0 and the assumption,

a(u,v0) = 0 = (f ,v0).

Noticing that

XN(Ω) = X
?

N(Ω) ⊕ 〈v0〉, (6.2)

we infer that the solution u of problem (5.3) satisfies

a(u,v) = (f ,v), ∀ v ∈XN(Ω),

which is equivalent to (6.1) by virtue of Remark 2.1.

Remark 6.1. Let κ0 be such that {
∇2κ0 = 1 in Ω
κ0 = 0 on Γ. (6.3)

Then, v0 =∇κ0 and the assumption of Theorem 6.1 can be expressed in the form∫
Ω

f · ∇κ0 = 0 (6.4)

which is the compatibility condition of problem (6.1).

7. Nonhomogeneous boundary conditions

We now consider the case of nonhomogeneous boundary conditions, that is the following boundary value
problem: 

−∇2u = f in Ω
∇·u = d on Γ
n ·u = b on Γ∫

Γ

τ ·u = e

(7.1)
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where f ∈ L2(Ω), d ∈ H1/2(Γ ), b ∈ H−1/2(Γ ) and e ∈ R.
To solve problem (7.1), one has to show how its boundary conditions and its integral constraint can be

homogeneized. To this purpose, let p ∈ H̃1(Ω) be the solution of the Neumann problem


∇2p =

b̄

|Ω| in L2(Ω)

∂p

∂n
= b in H−1/2(Γ ),

(7.2)

where

b̄ =
∫
Γ

b, (7.3)

and H−1/2(Γ ) ⊂ L1(Γ ) guarantees that problem (7.3) is well defined. Then ub =∇p satisfies:

∇·ub ∈ L2(Ω)
∇×ub ∈ L2(Ω)
∇2ub = 0 in Ω

∇·ub =
b̄

|Ω| on Γ

n ·ub = b on Γ∫
Γ

τ ·ub = 0.

(7.4)

On the other hand, we define

ue = − e

|Ω|∇×κ0, (7.5)

where κ0 is defined by (6.3). It is easy to check that



∇·ue ∈ L2(Ω)
∇×ue ∈ L2(Ω)
∇2ue = 0 in Ω
∇·ue = 0 on Γ
n ·ue = 0 on Γ∫

Γ

τ ·ue = e.

(7.6)

Therefore, 

−∇2(u− ub − ue) = f in Ω

∇· (u− ub − ue) = d− b̄

|Ω| on Γ

n · (u− ub − ue) = 0 on Γ∫
Γ

τ · (u− ub − ue) = 0.

(7.7)
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To solve problem (7.7), let us consider the following problem Find φ ∈X
?

T (Ω) such that

a(φ,v) = (f ,v) +
∫
Γ

(
d− b̄

|Ω|

)
(n · v), ∀ v ∈X

?

N
(Ω).

(7.8)

Since ∣∣∣∣∫
Γ

(
d− b̄

|Ω|

)
(n · v)

∣∣∣∣ ≤ ∣∣∣∣d− b̄

|Ω|

∣∣∣∣
1/2,Γ

|n · v|−1/2,Γ

≤
∣∣∣∣d− b̄

|Ω|

∣∣∣∣
1/2,Γ

|v|H(div,Ω)

≤
∣∣∣∣d− b̄

|Ω|

∣∣∣∣
1/2,Γ

|v|1,

the linear form v :−→ (f ,v) +
∫
Γ

(d− b̄
|Ω|)(n · v) is continuous on X

?

N
(Ω). So, problem (7.8) is well-posed.

We assume that

(f ,v0) +
∫
Γ

(
d− b̄

|Ω|

)
(n · v0) = 0,

where v0 =∇κ0. Since
∫
Γ
n · v0 =

∫
Ω
∇2κ0 = |Ω|, the above assumption can be written as

(H1) (f ,∇κ0)− b̄+
∫
Γ

d
∂κ0

∂n
= 0.

Under this hypothesis, the solution φ of problem (7.8) satisfies also

a(φ,v) = (f ,v) +
∫
Γ

(
d− b̄

|Ω|

)
(n · v), ∀ v ∈XN(Ω). (7.9)

If we introduce the space:

Xb,e(Ω) =
{
v ∈X

∣∣∣∣ n · v = b on Γ and
∫
Γ

τ · v = e

}
, (7.10)

then the variational form of problem (7.1) can be written as{
Find u ∈Xb,e(Ω) such that
a(u,v) = (f ,v) + 〈d,n · v〉1/2,Γ , ∀ v ∈XN(Ω). (7.11)

Therefore, we have:

Theorem 7.1. Assume that Ω is C0,1 (i.e. Lipschitzian), f ∈ L2(Ω), d ∈ H1/2(Γ ), b ∈ H−1/2(Γ ) and e ∈ R.
Then, under Hypothesis (H1), the variational problem (7.11) has a unique solution.

8. A split solution method and its variational formulation

We can split problem (7.1) into a sequence of uncoupled simple problems. First, for the given data f ∈ L2(Ω)
and d ∈ H1/2(Γ ), the following Dirichlet problem (to get φ =∇·u){

−∇2φ = ∇·f in Ω
φ = d on Γ (8.1)
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has a unique solution φ ∈ H1(Ω). Notice that, by the definition of κ0 and by Hypothesis (H1), we have

∫
Ω

φ =
∫
Ω

φ∇2κ0

=
∫
Ω

(∇2φ)κ0 +
∫
Γ

d
∂κ0

∂n

= −
∫
Ω

(∇·f)κ0 +
∫
Γ

d
∂κ0

∂n

=
∫
Ω

f ·∇κ0 +
∫
Γ

d
∂κ0

∂n

= b̄

=
∫
Γ

b.

This implies that the following Neumann problem{ ∇2q = φ in Ω
∂q

∂n
= b on Γ,

(8.2)

with b ∈ H−1/2(Γ ) ⊂ L1(Γ ), has a unique solution q ∈ H̃1(Ω).
By the theory developed recently in [14, 15] or by (8.11) (see below), we know that the following problem

(which is the 2D version with homogeneous conditions of the boundary value problem introduced by Quartapelle
and Muzzio [10])  −∇

2ψ = f +∇φ in Ω
∇·ψ = 0 on Γ
τ ·ψ = 0 on Γ

(8.3)

has a unique solution ψ ∈XN(Ω). As a consequence, the following scalar Dirichlet problem with homogeneous
boundary condition {

−∇2w = ∇×ψ in Ω
w = 0 on Γ

(8.4)

has also a unique solution w ∈ H1(Ω). Therefore, we can check that the vector field

∇×
(
w − e

|Ω|κ0

)
+∇q = u ∈X(Ω) (8.5)

is the solution of problem (7.1).

Remark 8.1. The above splitting process provides another proof of Theorem 7.1. In fact, the existence is
obtained by (8.5). For the uniqueness, we just need to consider the following homogeneous problem

∇2v = 0 in Ω
n · v = 0 on Γ
∇· v = 0 on Γ∫

Γ

τ · v = 0.

(8.6)
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This problem is equivalent to  ∇×v = 0 in Ω
∇· v = 0 in Ω
n · v = 0 on Γ.

(8.7)

Obviously, problem (8.7) has a unique solution v = 0, so does problem (8.6).

The solution of problem (7.1) can be determined by solving the sequence of problems form (8.1) to (8.5).
Stated in variational form, all these problems read:

For

H1
d(Ω) =

{
ϕ ∈ H1(Ω)

∣∣∣ ϕ = d on Γ
}
· (8.8)

{
Find φ ∈ H1

d(Ω) such that

(∇φ,∇ϕ) = −(f ,∇ϕ), ∀ ϕ ∈ H1
0 (Ω).

(8.9)

{
Find q ∈ H̃1(Ω) such that

(∇q,∇ϕ) = −(φ, ϕ) + 〈ϕ, b〉1/2,Γ , ∀ ϕ ∈ H̃1(Ω).
(8.10)

{
Find ψ ∈XN(Ω) such that

(ψ,ϕ)1 = (f +∇φ,ϕ), ∀ ϕ ∈XN(Ω).
(8.11)

{
Find w ∈ H1

0 (Ω) such that

(∇w,∇ϕ) = (ψ,∇×ϕ), ∀ ϕ ∈ H1
0 (Ω).

(8.12)

{
Find u ∈ L2(Ω) such that

(u,ϕ) = (∇×w +∇q,ϕ), ∀ ϕ ∈ L2(Ω).
(8.13)

According to the results in [14,15], the solution of the 2D homogeneous Quartapelle–Muzzio problem (8.11) can
be split into

ψ = ψ0 +ψH, (8.14)

where ψ0 ∈H1
0(Ω) and ψH ∈HN(Ω), having introduced the following space of harmonic vector fields:

HN(Ω) =
{
v ∈XN(Ω)

∣∣∣ (v,w)1 = 0, ∀ w ∈H1
0(Ω)

}
· (8.15)

Then, problem (8.11) can be written in the following form:
Find (ψ0,ψH) ∈H1

0(Ω)×HN(Ω) such that

(i) (ψ0,ϕ0)1 = (f +∇φ,ϕ0), ∀ ϕ0 ∈H1
0(Ω),

(ii) (ψH,ϕH)1 = −(ψ0,ϕH)1 + (f +∇φ,ϕH), ∀ ϕH ∈HN(Ω).

(8.16)
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Subproblem (8.16.i) is a classical vector Dirichlet problem and is easily solved as two independent scalar Dirichlet
problems. Subproblem (8.16.ii) is a vector problem whose solution cannot be found, in general, by solving two
uncoupled scalar problems, since the spaceHN(Ω) brings about a coupling between the two vector components
of the unknown ψH.

Summarizing the above results, we have:

Theorem 8.1. Problem (7.1) can be solved by the sequence of variational problems (8.9), (8.10), (8.16),
(8.12) and (8.13).

9. Finite element approximation

Throughout this section, Ω is assumed to be a polygonal domain. Let T h be a triangulation of Ω̄ such that
n is a constant vector along s ∈ Σh, where Σh is the set of segments contained in Γ , which are edges of an
element of T h. Let k ≥ 1 be an integer number. We introduce some finite element spaces:

Sh,k =
{
ϕh ∈ C0(Ω̄)

∣∣∣ ϕh|κ ∈ Pk, ∀ κ ∈ T h} , (9.1)

Sh,k0 = Sh,k ∩H1
0 (Ω), (9.2)

Sh,kd =
{
ϕh ∈ Sh,k

∣∣∣ ϕh|s = Ikd, ∀ s ∈ Σh
}
, (9.3)

Sh,kn =
{
ϕh ∈ Sh,k

∣∣∣∣ ∫
Ω

ϕh = 0
}
, (9.4)

where Pk denotes the space of all polynomials defined in R2, of degree less than or equal to k ≥ 1, Ik denotes
the standard Lagrange Pk–interpolation operator over s.

To approximate HN(Ω), as in [14–16], we introduce a space of discrete harmonic vector fields, defined by

Hh,k
N =

{
ϕh ∈ Sh,kN

∣∣∣ (ϕh,vh)1 = 0, ∀ vh ∈ [Sh,k0 ]2
}
, (9.5)

where

Sh,kN =
{
ϕh ∈ [Sh,k]2

∣∣∣ τ ·ϕh|s = 0, ∀ s ∈ Σh
}
· (9.6)

According to the assumption on the triangulation T h, it is easy to see that each vector function of space Sh,k
N

,
and therefore also of Hh,k

N , can be written into two scalar functions of Sh,k.
Then, finite element approximations to the sequence of problems (8.9, 8.10, 8.16, 8.12) and (8.13) can be

proposed as follows: for j = k or k + 1,{
Find φh ∈ Sh,kd such that

(∇φh,∇ϕh) = −(f ,∇ϕh), ∀ ϕh ∈ Sh,k0 ,
(9.7)

{
Find qh ∈ Sh,jn such that

(∇qh,∇ϕh) = −(φh, ϕh) + 〈ϕh, b〉1/2,Γ , ∀ ϕh ∈ Sh,jn ,
(9.8)


Find (ψh0 ,ψ

h
H) ∈ [Sh,j0 ]2 ×Hh,j

N
such that

(i) (ψh0 ,ϕ
h
0 )1 = (f +∇φh,ϕh0 ), ∀ ϕh0 ∈ [Sh,j0 ]2

(ii) (ψhH,ϕhH)1 = −(ψh0 ,ϕhH)1 + (f +∇φh,ϕhH), ∀ ϕhH ∈Hh,j
N ,

(9.9)
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{
Find wh ∈ Sh,j0 such that

(∇wh,∇ϕh) = (ψh0 +ψhH,∇×ϕh), ∀ ϕh ∈ Sh,j0 ,
(9.10)

{
Find uh ∈ [Sh,k]2 such that

(uh,ϕh) = (∇×wh +∇qh,ϕh), ∀ ϕh ∈ [Sh,k]2.
(9.11)

Subproblems (9.7, 9.8, 9.9.i, 9.10) and (9.11) can be easily solved in an uncoupled way. The coupled subproblem
(9.9.ii) can be solved either by the direct decomposition method of Glowinski and Pironneau (see e.g. [1,15,16])
or by one of its iterative variants, such as, for instance, the conjugate gradient method (see [7, 10]).

Remark 9.1. In the particular case of Ω rectangular domain, the Quartapelle–Muzzio problem (8.3) can be
written naturally as a system of two independent scalar Poisson equations each supplemented with mixed
Dirichlet–Neumann conditions. In this case an uncoupled solution of problem (7.1) is obtained directly.

10. Convergence analysis

Let the triangulation T h belong to a quasi-uniform family (see e.g. [4]) and denote below by ‖ · ‖s and | · |s
the standard norm and seminorm of the Sobolev space Hs(Ω), s > 0. We denote by C a generic constant
independent of h.

Estimating φ− φh. Since φh is a conforming Pk finite element approximation of φ, this estimates is classical.
If φ ∈ Hk+1(Ω), we then have (cf. [4] or [13]):

‖φ− φh‖0 + h|φ− φh|1 ≤ Chk+1|φ|k+1. (10.1)

Estimating q − qh. From (8.10) and (9.8), we can get

(∇(q − qh),∇ϕh) = −(φ− φh, ϕh), ∀ ϕh ∈ Sh,jn ,

thus,

‖∇(qh − ϕh)‖20 = (∇(q − ϕh),∇(qh − ϕh))− (∇(q − qh),∇(qh − ϕh))
= (∇(q − ϕh),∇(qh − ϕh)) + (φ− φh, qh − ϕh)
≤ C

{
‖∇(q − ϕh)‖0 + ‖φ− φh‖0

}
‖∇(qh − ϕh)‖0, ∀ ϕh ∈ Sh,j0 ,

if q ∈ Hj+1(Ω) and φ ∈ Hk+1(Ω). Hence, by the classical interpolation results and the estimate (10.1), we
have, for j = k or k + 1

‖∇(q − qh)‖0 ≤ inf
ϕh∈Sh,j0

{
‖∇(q − ϕh)‖0 + ‖∇(qh − ϕh)‖0

}
≤ C

{
inf

ϕh∈Sh,j0

‖∇(q − ϕh)‖0 + ‖φ− φh‖0

}
≤ Chj {|q|j+1 + |φ|k+1} .

(10.2)



A 2D VECTOR POISSON PROBLEM WITH NONSTANDARD CONDITIONS 197

Estimating ψ0 −ψh0 . By (8.16.i) and (9.9.ii), we have

|ψh0 −ϕh0 |21 = (ψ0 −ϕh0 ,ψh0 −ϕh0 )1 − (ψ0 −ψh0 ,ψh0 −ϕh0 )1

= (ψ0 −ϕh0 ,ψh0 −ϕh0 )1 − (∇(φ− φh),ψh0 −ϕh0 )
= (ψ0 −ϕh0 ,ψh0 −ϕh0 )1 + (φ− φh,∇· (ψh0 −ϕh0 ))
≤ C

{
|ψ0 −ϕh0 |1 + ‖φ− φh‖0

}
|ψh0 −ϕh0 |1, ∀ ϕh0 ∈ [Sh,j0 ]2.

Similarly to the above deduction, one can get

|ψ0 −ψh0 |1 ≤ Chj {|ψ0|j+1 + |φ|k+1} , (10.3)

if ψ0 ∈Hj+1(Ω) and φ ∈ Hk+1(Ω).

Estimating ψH −ψhH. This is a little harder. First, according to Strang’s Lemma (cf. [4]), we have:

|ψH −ψhH|1 ≤ C
{

inf
ϕhH∈H

h,j
N

|ψH −ϕhH|1 + sup
ϕhH∈H

h,j
N \{0}

|(ψH,ϕhH)1 − Lh(ϕhH)|
|ϕhH|1

}
(10.4)

where

Lh(ϕhH) = −(ψh0 ,ϕ
h
H)1 + (f +∇φh,ϕhH). (10.5)

To estimate the right-hand side of (10.4), we have

Lemma 10.1. If ψH ∈ HN(Ω)
⋂
Hj+1(Ω)(j = k or k + 1), then there exists a constant C independent of h

such that

inf
ϕhH∈H

h,j
N

{
‖ψH −ϕhH‖0 + h|ψH −ϕhH|1

}
≤ Chj+1|ψH|j+1. (10.6)

Proof. Let us take the standard elliptic projection of ψH into the finite element space [Sh,j]2 denoted by P1ψH,
which is defined by: {

(P1ψH −ψH,ϕh)1 = 0, ∀ ϕh ∈ [Sh,j0 ]2,
P1ψH |Γ = IjψH |Γ .

(10.7)

By classical results (see [4]), we have

‖ψH −P1ψH‖0 + h|ψH −P1ψH|1 ≤ Chj+1|ψH|j+1. (10.8)

On the other hand, since ψH ∈HN(Ω), by the definition of P1ψH, it is easy to show that P1ψH ∈ Sh,jN and

(P1ψH,ϕ
h)1 = (ψH,ϕ

h)1 = −(∇2ψH,ϕ
h) = 0, ∀ ϕh ∈ [Sh,j0 ]2.

This means that P1ψH ∈Hh,j
N

. Then, let ϕhH = P1ψH to complete the proof.

Lemma 10.2. If ψ0 ∈Hj+1(Ω) and φ ∈ Hk+1(Ω), then, for j = k or k + 1

sup
ϕhH∈H

h,j
N \{0}

|(ψH,ϕhH)1 − Lh(ϕhH)|
|ϕhH|1

≤ Chj {|ψ0|j+1 + |φ|k+1} . (10.9)
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Proof. Since ϕhH ∈Hh,j
N
⊂XN(Ω), owing to (8.11) and (8.14) we have

(ψH,ϕ
h
H)1 = −(ψ0,ϕ

h
H)1 + (f +∇φ,ϕhH), ∀ ϕhH ∈Hh,j

N
.

Thus, for any ϕhH ∈Hh,j
N , we have

|(ψH,ϕhH)1 − Lh(ϕhH)| ≤ |(ψ0 −ψh0 ,ϕhH)1|+ |(∇(φ− φh),ϕhH)|

≤ |(ψ0 −ψh0 ,ϕhH)1|+ |(φ− φh,∇·ϕhH)|

≤
{
|ψ0 −ψh0 |1 + ‖φ− φh‖0

}
|ϕhH|1.

Therefore, by (10.1) and (10.3), we know that the estimate (10.9) holds.
By (10.4), (10.6) and (10.9), we obtain

|ψH −ψhH|1 ≤ Chj {|ψ0|j+1 + |ψH|j+1 + |φ|k+1} , (10.10)

j = k or k + 1.

Estimating w − wh. Similarly to estimate q − qh, by (8.12) and (9.10), we can get

|w − wh|1 ≤ C

{
inf

ϕh∈Sh,j0

|w − ϕh|1 + ‖ψ0 −ψh0‖0 + ‖ψH −ψhH‖0

}
≤ Chj {|w|j+1 + |ψ0|j+1 + |ψH|j+1 + |φ|k+1} ,

(10.11)

if w ∈ Hj+1(Ω), ψ0, ψH ∈Hj+1(Ω) and φ ∈ Hk+1(Ω), j = k or k + 1.

Estimating u− uh. By (8.13) and (9.11), notice that (10.2) and (10.11), we have

‖u− uh‖0 ≤ C
{

inf
ϕh∈[Sh,k0 ]2

‖u−ϕh‖0 + ‖∇(q − qh)‖0 + |w − wh|1

}
(10.12)

≤ Chj {|q|j+1 + |w|j+1 + |ψ0|j+1 + |ψH|j+1 + |u|k+1 + |φ|k+1} ,

if q, w ∈ Hj+1(Ω), ψ0, ψH ∈Hj+1(Ω), u ∈Hk+1(Ω) and φ ∈ Hk+1(Ω), j = k or k + 1.

Summarizing the analysis above, we obtain:

Theorem 10.1. Assume that φ, q, ψ0, ψH, w and u, the solutions of problems (8.9), (8.10), (8.16.i),
(8.16.ii), (8.12) and (8.13), belong to Hk+1(Ω), Hj+1(Ω), Hj+1(Ω), Hj+1(Ω), Hj+1(Ω) and Hk+1(Ω), for
j = k or k + 1, respectively. φh, qh, ψh0 , ψhH, wh and uh are the finite element solutions of (9.7), (9.8),
(9.9.i), (9.9.ii), (9.10) and (9.11), respectively. Then there exists a constant C independent of h such that
the following error estimates hold:

‖φ− φh‖0 + h|φ− φh|1 ≤ Chk+1|φ|k+1, (10.13)
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|q − qh|1 ≤ Chj {|q|j+1 + |φ|k+1} , (10.14)

|ψ0 −ψh0 |1 ≤ Chj {|ψ0|j+1 + |φ|k+1} , (10.15)

|ψH −ψhH|1 ≤ Chj {|ψ0|j+1 + |ψH|j+1 + |φ|k+1} , (10.16)

|w − wh|1 ≤ Chj {|w|j+1 + |ψ0|j+1 + |ψH|j+1 + |φ|k+1} , (10.17)

‖u− uh‖0 ≤ Chj {|q|j+1 + |w|j+1 + |ψ0|j+1 + |ψH|j+1 + |u|k+1 + |φ|k+1} . (10.18)

Remark 10.1. By Theorem 10.1, if j = k+ 1, then we get an optimal convergence result for approximating u
with order of O(hk+1). If we choose j = k, then the convergence result only can reach O(hk). In the special
case k = 1, the linear finite elements can be applied to all of approximations.

11. Numerical results

The uncoupled solution method described in the previous sections has been implemented by considering a
finite element approximation by linear interpolation of the unknownu as well as of all the intermediate variables.
The numerical error of the computed solutions has been characterized by the relative error in the L2 norm,
namely

‖vex − vc‖0/‖vex‖0,

where vex is the interpolate of the exact analytical solution of a scalar problem and vc the computed solution.
Similarly, the relative H1 error is defined as follows:

‖vex − vc‖1/‖vex‖1,

where ‖ · ‖1 =
{
‖ · ‖20 + ‖∇ · ‖20

}1/2

We have considered a test problem on the square [−1, 1]2 with an exact solution u =∇×w +∇q generated
from the functions w = (1− x2)(1− y2)y and q = xey. This problem has been solved on a sequence of uniform
meshes of 2× 102, 2× 202, 2× 402 and 2× 802 equal triangles. Notice that the values of the datum b for the
derivative condition has been evaluated from the analytical solution at the Gaussian quadrature points of the
surface elements, instead of being computed from the linear interpolate constructed with the values of b at the
surface nodes. The relative L2 and H1 errors and the ratios between the errors on two successively finer grids
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are reported in the Tables 1 and 2, respectively.

Table 1. Relative L2 error and error ratios.

N = 10 N = 20 N = 40 N = 80

r.e. r.e. e.r. r.e. e.r. r.e. e.r.

φ 0.0014194 0.0003885 3.60 0.0000991 3.92 0.0000249 3.98
q 0.0113205 0.0027763 4.08 0.0006890 4.02 0.0001718 4.01
w 0.0446008 0.0114740 3.89 0.0028878 3.97 0.0007230 3.99
u 0.0586064 0.0196050 2.99 0.0065578 2.99 0.0022280 2.94

Table 2. Relative H1 error and error ratios.

N = 10 N = 20 N = 40 N = 80

r.e. r.e. e.r. r.e. e.r. r.e. e.r.

φ 0.0021799 0.0006809 3.20 0.0001917 3.55 0.0000507 3.78
q 0.0212837 0.0059481 3.57 0.0016242 3.66 0.0004372 3.71
w 0.0454291 0.0116969 3.88 0.0029452 3.97 0.0007375 3.99
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