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Nonlinear dynamo action in a precessing cylindrical container
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1Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur, CNRS UPR 3251, BP 133, F-91403 Orsay cedex, France,
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It is numerically demonstrated by means of a magnetohydrodynamics code that precession can trigger the
dynamo effect in a cylindrical container. When the Reynolds number, based on the radius of the cylinder and
its angular velocity, increases, the flow, which is initially centrosymmetric, loses its stability and bifurcates to a
quasiperiodic motion. This unsteady and asymmetric flow is shown to be capable of sustaining dynamo action in
the linear and nonlinear regimes. The magnetic field thus generated is unsteady and quadrupolar. These numerical
evidences of dynamo action in a precessing cylindrical container may be useful for an experiment now planned
at the Dresden sodium facility for dynamo and thermohydraulic studies in Germany.
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I. INTRODUCTION

The interest of astronomers and physicists for the dynamo
action finds its origins in the quest for a reasonable explanation
for the source of terrestrial and solar magnetism. Dynamo
action is obtained when the conversion rate of kinetic energy
in magnetic energy in the Earth’s liquid core is larger than
the ohmic dissipation. This phenomenon is turbulent, and
reproducing it either numerically or experimentally constitutes
an enormous challenge.

For a long time the analysis of the dynamo action has been
restricted to kinematic dynamo theories that postulate that the
velocity field is known a priori. For instance, the so-called
mean-field theory consists of assuming that the velocity and
magnetic length scales are well separated and the magnetic
Reynolds number is small. Although the mean-field theory
is widely used, its validity in the range of large magnetic
Reynolds number is questionable [1,2].

Some models, like the so-called alpha-quenching model,
include some sort of nonlinear retroaction of the fluid flow
on the magnetic field through a modeling of the velocity
perturbations as a function of the local magnetic field. These
models do give saturated nonlinear dynamics, but, again, the
theoretical foundations of these approaches are questionable.

One can imagine that, as the number-crunching capacity
of computers is ever growing, some of the shortcomings
of the above phenomenological theories and models can
be overcome by direct numerical simulation (DNS) of the
magnetohydrodynamics (MHD) equations. Although the main
advantage of the direct numerical simulation approach is that
the nonlinear coupling between the Navier-Stokes equations
and the induction equation is represented exactly, some level
of modeling of the boundary conditions and forcing is still
required by DNS. For instance, the question of the nature
of the forcing that needs to be applied to the MHD system
so the resulting dynamo has experimental or astronomical
significance needs to be somewhat modelled. The purpose of
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the remainder of this introduction is to briefly review this issue,
and the objective of this paper is to show that precession is an
efficient forcing that can be used for experimental purposes
and does not require any modeling.

DNS of the dynamo action is very demanding computation-
ally since obtaining statistically stationary solutions requires
very long integration times. Two types of DNS are performed
in practice to address this problem. If one is interested in
the dynamics of length scales that are significantly smaller
than those of the forcing term (i.e.,the source of energy in
the system), one can use periodic conditions together with the
very efficient arsenal of Fourier/spectral techniques. This is
the choice usually made for the study of turbulent dynamos.
If, on the other hand, one is interested in the dynamics of scales
that are close to the characteristic scales of the forcing term,
one must represent the boundary conditions more accurately
and thus use numerical methods that are not yet as efficient
as spectral methods and thus cannot reach very high Reynolds
numbers. This type of choice is made when one wants to
study large-scale dynamos. Forcing by precession, which is
the object of this paper, can be put in this category. Let us now
review the various types of nonlinear dynamos known so far
to better appreciate the qualities of precession forcing.

In the standard framework of homogeneous MHD tur-
bulence, the mechanical power injected in the system is
modelled by a large-scale forcing term that can be either time
independent or random with zero or finite correlation time. The
purpose of the turbulent dynamos thus generated is to study the
dynamics of the energy transfers between scales and between
the velocity and the magnetic fields [3–6]. It is sufficient to
use periodic boundary conditions to achieve this program. Let
us emphasize, though, that this type of simulation is not yet
capable of drawing reasonable conclusions concerning the
terrestrial magnetism, since the magnetic Prandtl numbers
explored so far, Pm, are larger than 0.01, whereas the terrestrial
magnetic Prandtl number is very small, Pm ≈ 10−5.

Contrary to turbulent dynamos, it is critical to impose re-
alistic boundary conditions in large-scale dynamos. Although
natural and experimental dynamos have simple geometries
in general, modeling their forcing for numerical purposes
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is nontrivial. For instance, thermal convection is known to
be a source of stellar dynamos, and it is also suspected to
be one of the possible sources of the geodynamo [7], but
enforcing a realistic boundary condition to control the thermal
convection is a particularly tricky question for the geodynamo.
It is now recognized that various numerical scenarios can be
obtained depending on the nature of the boundary condition
that is imposed at the boundary of the iron core; see, for
instance, Refs. [8–10]. The situation is similar for experimental
dynamos driven either by rotors or pumps [11–13]. In this case
as well, forcing is usually modelled by inserting ad hoc forces
in the momentum equation; see, for instance, Refs. [14–16].

Contrary to the above examples, precession has the rare
quality of generating a flow dynamics free of modeling, since
exact boundary conditions are imposed in this case. The
boundary conditions prescribe the action of the container walls
on the flow and thus create a realistic forcing at the largest scale
available. Simulating numerically precession-driven rotating
flows is useful for experimental fluid dynamos and opens
perspectives for real astrophysical dynamos [17,18]. To the
best of our knowledge, only two precession-driven dynamos
have been successfully simulated so far. Tilgner [19,20] has
first proved the capability of precession to drive the dynamo
effect in a spherical shell. However, due to the symmetry
properties of the sphere, the precessing flow thus obtained
is driven by viscosity, which makes it difficult to be used in
experimental and astrophysical applications at large kinetic
Reynolds numbers. Wu and Roberts [21] have obtained the
dynamo effect in a precessing spheroid using a flow obtained as
a stress free fluctuation of an analytical Poincaré solution. The
objective of the paper is to show that dynamo action can also
be achieved in a precessing cylinder. The precession forcing
in a cylinder is large scale, i.e.,comes from the walls and is
not purely viscous. Although the spheroidal geometry is more
relevant in an astrophysical context, the cylindrical geometry
is more suitable for experimental purposes. A first attempt to
realize an experimental turbulent homogeneous dynamo in a
precessing cylindrical container is reported in Ref. [22]. A
new experiment using a cylindrical vessel is now planned in
the large-scale MHD facility DRESDYN currently being built
at Helmholtz-Zentrum Dresden-Rossendorf in Germany. The
action of precession will be tested there, among other things
(F. Stefani [23]).

The objective of the present article is to report numerical
evidence supporting the idea that precession is indeed a potent
mechanism to drive dynamo action in cylindrical containers.
The paper is organized as follows. The formulation of the
problem is described in Sec. II. We present in Sec. III the hy-
drodynamical regimes that are obtained at different Reynolds
numbers, focusing on the two largest ones. Section IV explores
the dynamo action in linear and nonlinear regimes. The role
of symmetries is also investigated in this section. Section V is
devoted to a discussion of the results.

II. FORMULATION OF THE PROBLEM

The conducting domain considered in this article is a
cylindrical vessel C of radius R and length L. The vessel
contains a conducting fluid and is embedded in vacuum. The
solid walls of the vessel are assumed to be so thin that their

influence is henceforth neglected. The container rotates about
its axis of symmetry with angular velocity �rez and is assumed
to precess about a second axis spanned by the unit vector ep
forming an angle α with ez, (0 < α < π ). The angular velocity
of the precession is �pep. A cylindrical coordinate system
about the axis of the cylinder is defined as follows: the origin
of the coordinate system is the center of mass of the cylinder,
say O; the Oz axis is the line passing through O and parallel
to ez; the origin of the angular coordinate θ (0 � θ � 2π ) is
the half-plane passing through O, spanned by ez and ep, and
containing the vector �pep. The third coordinate, denoted r ,
is the distance to the Oz axis.

We denote byL = R andU = R�r the reference length and
velocity scales, respectively. The fluid density, ρ, is assumed
to be constant and the reference pressure scale is P := ρU2.
The magnetic permeability is uniform throughout the entire
space, μ0, and the electric conductivity of the conducting fluid
is constant, σ0. The quantities μ0 and σ0 are used as reference
magnetic permeability and electric conductivity, respectively.
The reference scale for the magnetic field is chosen so the
reference Alfvén speed is 1, i.e., H := U

√
ρ/μ0. We are

left with five nondimensional parameters: one geometrical
parameter L/R (aspect ratio); two forcing parameters α

(precession angle) and ε = �p/�r (precession rate); and two
fluid parameters, namely the Ekman number E = ν/R2�r

(where ν is the kinematic viscosity) and the magnetic Prandtl
number Pm = νμ0σ0. We finally define the kinetic Reynolds
number Re = 1/E and the magnetic Reynolds number Rm =
PmRe.

The nondimensional set of equations that we consider is
written as follows in the precessing frame of reference:

∂tu + (u · ∇)u + 2εep × u + ∇p = 1

Re

�u + f,

∇ · u = 0,

∂th − ∇ × (u × h) = 1

Rm

�h,

∇ · h = 0,

where u, p, and h are the velocity field, the pressure, and
the magnetic field, respectively. In the following we consider
three different settings to solve these equations: (i) The
incompressible Navier-Stokes setting; (ii) the Maxwell or
kinematic dynamo setting; and (iii) the nonlinear MHD setting.
In the Navier-Stokes setting the source term f is set to zero and
h is not computed. In the Maxwell setting, only the induction
equation is solved, assuming that the velocity field u is given.
In the MHD setting the full set of equations is solved and
the source term f is the Lorentz force per unit mass, f :=
(∇ × h) × h. The no-slip boundary condition on the velocity
field is written as follows in the precessing frame of reference:
u = eθ at r = 1 and u = reθ at z = ±1. The magnetic field
is represented as the gradient of a scalar potential, ∇φ, in
the vacuum. The magnetic boundary transmission conditions
enforce that the magnetic field is continuous across the walls
of the vessel, say �, i.e.,h|� = ∇φ|� .

The above equations are solved numerically by means
of a code that is specialized to axisymmetric domains and
has been presented in detail in Refs. [24,25]. The code is
called spectral/finite elements for Maxwell and Navier-Stokes
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equations (SFEMaNS). It is a hybrid algorithm that uses
finite element representations in the meridian section of
the axisymmetric domain and Fourier representations in the
azimuthal direction. The magnetic field is represented as a
vector field in the conducting region and as the gradient of
a scalar potential in the insulating region. SFEMaNS can
account for discontinuous distributions of electric conductivity
and magnetic permeability, and all the required continuity
conditions across the interfaces are enforced using an interior
penalty technique. The solution technique is parallel and
parallelization is done with respect to the Fourier modes.

The typical spatial resolution in the meridional plane of the
conducting domain is x = 1/160. The grid is nonuniform in
the vacuum with x = 1/160 close to the cylindrical vessel
and x = 1 at the outer boundary of the numerical domain,
which is a sphere of a radius 10 times larger than that of the
cylinder. We take 24 or 32 Fourier modes (m = 0, . . . ,23 or
m = 0, . . . ,31) for Navier-Stokes runs and 64 Fourier modes
(m = 0, . . . ,63) for MHD runs. The typical time step is t =
0.001. A typical MHD run requires about 1000 cumulated CPU
hours per rotation (t = 2π ) on 64 processors on an IBM-SP6.

III. HYDRODYNAMICAL REGIME

Let us now briefly recall what is observed in a typical
precessing fluid experiment starting with the fluid at rest
(see, e.g., Refs [26–28]). The vessel is first set in rotation
without precession. The fluid motion is then governed by
the formation of a viscous Ekman boundary layer during the
acceleration ramp. The resulting flow is a stable solid rotation
independently of the strength of the acceleration phase. Once
precession is applied, the Coriolis force generates an axial
motion of the flow driven by the Fourier mode m = 1. When
Re is large enough, the flow undergoes a transition from
laminar to turbulent even for small precession rates and small
angles [27]. The range ε ∈ [0.1,0.15] was shown in Ref. [26]
to maximize the axial energy in a cylinder of aspect ratio
2 in the range Re ∈ [500,5000] when α = π/2. Although a
parametric study varying the aspect ratio, the precession angle
and the precession rate is interesting per se, due to limited
numerical resource we are going to reduce the dimensionality
of the parametric space to one aspect ratio, L/R = 2, one
precession angle, α = π/2, one precession rate, ε = 0.15, four
values of Rm ∈ {600,800,1200,2400}, and a larger range of
Re ∈ [400,1200].

A. Axial and total kinetic energies

We start our investigations with a Navier-Stokes run at
Re = 1000. The initial velocity field is the solid rotation
in the precessing frame: u0 = ez×r. The onset of the axial
circulation induced by precession is monitored by recording
the time evolution of the normalized total kinetic energy
K(t) = 1

2

∫
C u2(r,t)dr/K0 and normalized axial kinetic en-

ergy Kz(t) = 1
2

∫
C u2

z(r,t)dr/K0, where K0 = 1
2

∫
C u2

0dr is the
kinetic energy of the initial motion. The time evolution of
K(t) and Kz(t) for t ∈ [0,297] is reported in Fig. 1. The time
t = 297 corresponds to 47.3 rotation periods. After a transient
that lasts five rotation periods and peaks at two rotation periods,
the axial kinetic energy oscillates around a plateau value

FIG. 1. (Color online) Time evolution of the total kinetic energy
K and axial kinetic energy Kz at Re = 1000 and zoom of K .

Kz ≈ 0.1. Meanwhile, the total kinetic energy decreases and
oscillates around a plateau value K ≈ 0.418 also after five
rotation periods. These values are in very good agreement
with those reported in Fig. 1 of [26]. The time evolution of the
total kinetic energy shown in Fig. 1(b) presents doubly periodic
oscillations with one long period of about nine rotation periods
and one small period of about one rotation period.

To enrich the dynamics of the system we have restarted
the computation at t = 72 (i.e.,11.5 rotation periods) and
increased the Reynolds number to Re = 1200. The time
evolution of K(t) and Kz(t) at Re = 1200 for t ∈ [72,342]
and at Re = 1000 for t ∈ [0,275] is reported in Fig. 2. At
saturation, the time evolution of the total kinetic energy
exhibits doubly periodic oscillations as can be seen in Fig. 2(c)
for Re = 1200. The short period oscillations correspond to
energy exchanges between the north and south halves of the
container, with a period of about two rotation periods. The
energy exchange mechanism is visible in Fig. 2(d) where
we have reported the time evolution of the kinetic energy of
the north and south halves of the cylinder for t ∈ [312,342].
Similar oscillations between north and south hemispheres have
been reported to occur in a spheroidal cavity in Ref. [21].

FIG. 2. (Color online) Time evolution of the total kinetic energy
K , axial kinetic energy Kz, and total north and south kinetic energies
as indicated.
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FIG. 3. (Color online) Time averaged spectra of the three com-
ponents of the velocity field as a function of the azimuthal mode
m = 0, . . . ,23 at Re = 1200.

More can be learned by examining spectra instead
of integrated quantities like the total kinetic energy K .
We show, for instance, in Fig. 3 the time-averaged az-
imuthal spectra of the three velocity components at Re =
1200. More precisely, the quantities shown are Ki(m) :=
1
T

∫ T

0 [
∫

1
2 |ûi(r,m,z,t)|2drdz]dt , where ûi(r,m,z,t) is the mth

Fourier component of the velocity component ui(r,θ,z,t),
i ∈ {r,θ,z}. The maximum at m = 0 of the azimuthal energy
spectrum Kθ (m) corresponds to the large-scale forcing induced
by the rotating walls. The maximum at m = 1 of Kz(m)
corresponds to the Coriolis acceleration. The radial energy
spectrum Kr (m) presents also a maximum at m = 1. The
three velocity components show parallel spectra at large wave
numbers as a consequence of nonlinear coupling and transfer
toward the dissipation scale.

In the MHD runs reported below, we have used Re = 1200
since the corresponding hydrodynamical regime has broken
the centrosymmetry and thus seems favourable for dynamo
action.

B. Transition at low kinetic Reynolds numbers

Before investigating the dynamo regime we want to explore
the dynamics of the centro-symmetry breaking in the Navier-
Stokes regime as the Reynolds number increases.

Figure 4 displays the total kinetic energy in the range Re ∈
[400,1200]. Note that K is a decreasing function of Re in
this range (see the discussion in Sec. V). At low Reynolds

FIG. 4. (Color online) Time evolution of the total kinetic energy
K for different Reynolds numbers Re ∈ [400,1200].

FIG. 5. (Color online) Time evolution of the asymmetry ratio ra

for different Reynolds numbers Re ∈ [700,1200].

numbers, e.g., at Re = 700, the velocity field is steady and
centrosymmetric, meaning that u(r,t) = u(r) = −u(−r).

At larger Reynolds numbers, the loss of centrosymmetry
of the velocity field can be monitored by inspecting its sym-
metric and antisymmetric components: us(r,t) = 1

2 [u(r,t) −
u(−r,t)] and ua(r,t) = 1

2 [u(r,t) + u(−r,t)]. In the Navier-
Stokes simulations reported below, we monitor the loss
of centrosymmetry by tracking the time evolution of the
asymmetric kinetic energy Ka(t) = 1

2

∫
C u2

a(r,t)dr/K0 and
the asymmetry ratio ra(t) = Ka(t)/K(t). These computations
have been done on centrosymmetric grids, but centrosymmetry
has not been otherwise enforced. Figure 5 shows that the
asymmetric ratio decreases as time grows at Re = 750 [see
also the enlarged view in Fig. 6(a)] and is always below
10−6 at Re = 700 and 730. At Re = 800, the velocity field is
unsteady and asymmetric; the asymmetry ratio ra(t) oscillates
around the asymptotic value 0.0022 as shown in Fig. 6(b). At
Re = 900 and above, the flow is clearly asymmetric and the
time evolution of the total kinetic energy is quasiperiodic with
a short period of about one rotation period and a long period
of about nine rotation periods; see Fig. 4.

IV. DYNAMO ACTION

A. Linear regime

We now solve the full MHD system using as initial
velocity field the velocity computed at t = 192 during the
Navier-Stokes run at Re = 1200. The initial magnetic field
and the boundary conditions on the scalar potential are
defined as follows in order to trigger efficiently the dynamo
instability. The zero Dirichlet boundary condition that was

FIG. 6. (Color online) Time evolution of the asymmetry ratio ra

at Re = 750 and Re = 800 to show the short period of oscillations.
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imposed on the scalar potential φ on the outer sphere is
replaced by φ̂0 = 0.05zf (t) for m = 0 and φ̂1 = 0.05rf (t)

for m = 1, where f (t) = τ 3
a

1+τ 3
a

(1 − τ 4
e

1+τ 4
e

) with τa = t
0.4 and

τe = t
2 , and the amplitude of each Fourier mode of the initial

magnetic field components is set to 10−5 for m � 2. It has
been verified in Ref. [29] that imposing vanishing Dirichlet
boundary conditions on φ on a sphere of radius 10 times larger
than the typical scale of the conducting region gives results
that are very close to those obtained by imposing Neumann or
Robin boundary conditions.

Various MHD runs are done at Re = 1200 for different
values of the magnetic Prandtl number. The onset of dy-
namo action is monitored by recording the time evolution
of the magnetic energy in the conducting fluid, M(t) =
1
2

∫
C h2(r,t)dr/K0. Linear dynamo action occurs when M(t)

is an increasing function of time for large times. The time
evolution of M for Pm ∈ {2,1, 2

3 , 1
2 } is shown in Fig. 7(a).

The runs at Pm ∈ {1, 2
3 , 1

2 } are done by using the velocity and
magnetic fields obtained from the run Pm = 2 at t = 211 as
initial velocity and magnetic fields. The flow is observed to
be above the dynamo threshold at Pm = 1 and Pm = 2

3 but
is subcritical at Pm = 1

2 . Linear interpolation of the growth
rates gives the critical magnetic Prandtl number P ∗

m ≈ 0.625
corresponding to the critical magnetic Reynolds number
R∗

m ≈ 750.

FIG. 7. (Color online) Time evolution of the magnetic energy
M in the conducting fluid (a) in the linear regime from t = 192 at
Re = 1200 and various Rm as indicated (in lin-log scale) and (b) in
the nonlinear regime from t = 192 to t = 287.5 (Re = 1200, Rm =
2400), from t = 241 to t = 346 (Re = 1200, Rm = 1200), and from
t = 271 to t = 307 (Re = 1200, Rm = 600).

B. Nonlinear saturation

We now want to observe the nonlinear saturation and
evaluate the impact of the magnetic Prandtl number on the
nonlinear regime. To reach nonlinear saturation in reasonable
CPU time, we have used as initial data for the velocity and
magnetic fields the velocity and magnetic fields from the MHD
run at t = 217 with Pm = 2. The velocity field has been kept
unchanged but we have multiplied by 300 the amplitude of the
Fourier modes m = 0, . . . ,5 of the magnetic field. The time
evolution of the magnetic energy of this nonlinear run in the
time interval t ∈ [192,287.5] is shown in Fig. 7(b). We observe
that M grows smoothly in one turnover time (i.e.,until t ≈ 222)
and begins to oscillate thereafter. The ratio M/K is observed to
be of order 6 × 10−2 during the nonlinear oscillating regime.
After restarting the MHD run at t = 241 with Pm = 1 and
running it until t = 346, we observe that the dynamo is still
active. After restarting the MHD run at t = 271 with Pm = 1

2
and running it until t = 307, we observe that the dynamo dies
in a short time, suggesting that the dynamo bifurcation is not
subcritical for this set of control parameters. These nonlinear
results indicate that P ∗

m lies in the interval [ 1
2 ,1]. Recall that

the threshold determined in the linear regime is P ∗
m ≈ 0.625.

A snapshot of the vorticity and magnetic lines at Re =
1200, Rm = 2400 is shown in Fig. 8. We observe a central
S-shaped vortex that is deformed by the precession and
reconnects at the walls through viscous boundary layers [see
Fig. 8(a)]. The magnetic field lines exhibit a quadrupolar
shape that is best seen in the vacuum from the top of the
cylinder [see Fig. 8(b)]. These lines connect mainly to the
lateral wall where the current is concentrated. The magnetic
energy in the cylinder is dominated by the azimuthal modes
m = 1, 2, 3.

C. Role of the flow symmetries

Tilgner [19] has observed that unsteadiness and breaking
of the centrosymmetry of the flow facilitate dynamo action. A
similar observation has been made in Ref. [21], and dynamo
action is reported therein to occur when cyclic oscillations of
the kinetic energy between the north and south halves of the
spheroidal cavity occur. Although the loss of centrosymmetry

FIG. 8. (Color online) Snapshot at t = 241 for Re = 1200, Rm =
2400 showing vorticity field lines (red) and magnetic field lines
colored by the axial component [(gray (black) for positive (negative)
Hz component).
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FIG. 9. (Color online) Time evolution of the asymmetry ratio ra

at Re = 1200 for t ∈ [72,407] in the Navier-Stokes setting and Re =
1200, Rm = 2400 for t = [192,287.5], Re = 1200, Rm = 1200 for
t = [241,346], and Re = 1200, Rm = 600 for t = [271,307] in the
MHD setting. The curves at Re = 1200, Rm = 1200 and Re =
1200, Rm = 600 have been shifted for easy reading.

is not a necessary condition for dynamo action, we now want
to test this idea in the present cylindrical setting.

The time evolution of the asymmetry ratio ra for the Navier-
Stokes run at Re = 1200 is shown in Fig. 9 in the time range
t ∈ [72,407] (dotted line). The ratio ra varies between 0.004
and 0.01 when the nonlinear regime is well established, i.e.,
t � 220.

In order to evaluate the impact of the dynamo on the
centrosymmetry of the flow, we have started the MHD run
at t = 192 with Pm = 2 (i.e.,Rm = 2400). The time evolution
of ra in this MHD run is shown in solid line in Fig. 9. Note that
the solid and dotted lines coincide since the dynamo regime is
linear in the time interval t ∈ [192,217] and the magnetic field
is too weak to have an impact on the kinetic energy ratio ra . We
have restarted the MHD run at t = 217 after multiplying the
amplitude of the magnetic field by 300 as already mentioned.
The ratio ra (solid line) clearly departs from its Navier-Stokes
value thereafter as seen in the figure. At saturation, ra oscillates
between 0.008 and 0.012; these values are slightly larger than
those reported in Ref. [19] for a precessing sphere. We have
restarted the MHD run again at t = 241 after reducing the
value of Pm to 1, thereby reducing the magnetic Reynolds
number to Rm = 1200. The asymmetry factor (dotted blue
line) also departs from its Navier-Stokes value, as seen on the
figure. We have finally restarted the MHD run at t = 271 after
reducing the value of the magnetic Prandtl number to 1

2 . As
expected, the dynamo dies and ra decreases to 0.003 close to
the hydrodynamical level. These computations show that the
dynamo action reinforces the loss of centrosymmetry of the
flow.

In order to assess the impact of the centrosymmetry and
of the unsteadiness of the flow on the dynamo action, we
have performed two Maxwell runs at Rm = 1200 with the
following characteristics: (i) the velocity field at Re = 1200 is
frozen at t = 211 and (ii) the velocity field at Re = 1200 is
frozen at t = 211 but only its symmetric component is retained
so the resulting velocity field is centrosymmetric. The time
evolution of the magnetic energy of the MHD run and the two
Maxwell runs (i) and (ii) are shown in Fig. 10. It is remarkable
that, in the two considered kinematic runs, the dynamo keeps
growing with a rate similar to that of the MHD run. These

FIG. 10. (Color online) Time evolution of the magnetic energy M

at Re = 1200 and Rm = 1200 for t ∈ [211,229] in the MHD setting
(MHD), in the Maxwell setting with the velocity frozen at t = 211
(MAXWELL), and in the Maxwell setting with the symmetrized
velocity frozen at t = 211 (MAXWELL SYM).

computations show that neither the temporal oscillations nor
the flow asymmetry play a crucial role on the dynamo action
in the precessing cylinder at Rm = 1200.

V. DISCUSSION

Although the range of Reynolds numbers that we have
explored in our Navier-Stokes simulations is modest, it is
wide enough to suggest a scaling law for the average kinetic
energy, K , as a function of the Reynolds number, Re, for the
precession rate, ε = 0.15. To substantiate this claim we show
in Fig. 11(b) the average K as a function of Re. The run at
Re = 2000 has not been discussed in this paper and the points
at Re = 2500,4000,5000 have been extracted from Lallemand
et al. [26]. The log-log representation of the data suggests that
in range Re ∈ [400 : 5000] the energy scales like K � R−0.4

e

[see Fig. 11(b)], which in turn suggests the following scaling
law for the velocity u � R

−1/5
e = E1/5. This scaling predicts

that the average flow vanishes at large Re. This property is not
paradoxical since, in an axisymmetric container with a rotation
axis parallel to its symmetry axis, the azimuthal flow is driven
only by viscous forces at the wall. Since in the limit of zero
viscosity the rotation does not force the flow, one expects to get
at the inviscid limit a static fluid in the precessing frame and
a solid body motion around the precession axis in the inertial
frame.

FIG. 11. (Color online) Total (time averaged) kinetic energy K

in the precessing frame as a function of the Reynolds number Re:
(a) the points denoted PL are from Ref. [26] and (b) log-log scale
with the fit R−2/5

e .
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The above scaling for the velocity reminds of the
Stewartson-Roberts analysis [30] of the critical layer in a
precessing sphere. Note that the range of Reynolds numbers
explored here spans one decade only and the values are not
large enough to reach an asymptotic regime. We mention this
scaling as a possible venue for future theoretical investigations.

Forty years after the promising experiments with liquid
sodium by Gans [22], we have numerically demonstrated
that dynamo action can occur in a precessing cylindrical
tank. The bifurcations through symmetry breaking and cyclic
time dependence are similar to those already observed in
dynamo flows in spherical or spheroidal precession-driven
cavities. There is, however, a large gap between the con-
trol parameters used in the present simulations and those
achieved in experimental setups and planetary dynamos, where
E = 1/Re and Pm are many orders of magnitude smaller.
Following this evidence for dynamo action, it seems that the
following two directions need to be thoroughly investigated:
(i) the study of parity breaking and unsteadiness through
variations of the forcing parameters (precession angle and
rate) and (ii) the search for a scaling law for the critical
magnetic Reynolds number as a function of the hydrodynamic
Reynolds number. Such a relation has been proposed by
Tilgner in a precessing sphere [19], who argues that it is
the asymmetric part of the flow that plays a key role in the
dynamo. The research program (ii) will be time-consuming
as it will necessitate large-scale computations to explore a

wide range of Reynolds numbers. It will also require the
development of nonlinear stabilization techniques to simulate
small scale viscous dissipation. We are currently working
on a second level of parallelization of the code: In addition
to the parallelization with respect to the azimuthal modes
that is already implemented, we are implementing a domain
decomposition technique based on PETSc [31] to solve the
two-dimensional problems in the meridional domains. This
will hopefully speed up the code and will permit us to per-
form higher-Reynolds-number computations. The empirical
scaling K � R−0.4

e that we have observed so far needs to be
confirmed on smaller Ekman numbers before being considered
seriously.

A major step in the understanding of precession dynamo
will hopefully be achieved in the near future with the
construction of the large-scale MHD facility DRESDYN
at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The
cooperation between simulations and experiments will lead
to a better understanding of natural dynamos, including the
geodynamo.
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