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1. Introduction. The objective of this paper is to investigate the approxima-
tion of the p-system using a finite volume technique based on the so-called Suliciu
relaxation method and explicit time stepping. This technique, initially introduced
in Suliciu [10] to study phase transitions in fluid flows, has been adopted in the nu-
merical community to design approximate Riemann solvers; we refer the reader to
Bouchut [1, §4.7] and Coquel et al. [4] and the references therein for more details on
the method. We restrict ourselves in the present paper to the p-system and show
that the first-order finite volume technique based on Suliciu’s approximate Riemann
solver, while being positive under a standard CFL assumption, violates the invariant
domain properties of the PDE.

One motivation for the present work is the construction of robust schemes. We
say that a scheme is robust if, under reasonable CFL condition and if the data are
admissible, it never fails to produce a solution that satisfies some reasonable (physical)
bounds. Of course, one would want such a scheme to be at least second-order accurate
in space (accuracy in time is easily achieved by using strong stability preserving
Runge Kutta techniques). One possible route to construct such a scheme consists of
computing at each time step a high-order solution and then limiting the high-order
solution is some way if it violates some local physical bounds. The natural question
that follows is what to limit and how to limit it? The strategy proposed in Guermond
et al. [7] consists of using the notion of local convex invariant domain to do the
limiting. We recall that convex invariant domains are convex sets in the phase space
that are invariant by the PDE. This notion is the natural generalization to hyperbolic
systems of the maximum principle which is known to hold for scalar equations. For
instance, positivity of the density, positivity of the internal energy, and the local
minimum principle on the specific entropy are convex invariant properties for the
compressible Euler system. Likewise, the Riemann invariants define convex invariant
domains for the p-system. The technique proposed in Guermond et al. [7] consists of
computing a low-order solution that is guaranteed to be invariant domain preserving
and limiting the high-order solution at each time step by forcing it to be inside some
local invariant domain generated by the low-order solution. This method guarantees
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that the high-order method is as robust as the low-order one. Of course this strategy
works well only if the low-order method is robust. The purpose of the present note is
to show that the first-order finite volume technique based on the Suliciu approximate
Riemann solver is not robust in the sense defined above. More specifically, while the
method is definitely positive, we show that it violates the invariant domain properties
of the p-system.

The paper is organized as follows. We introduce the problem and notation, and
recall key results that are used in the rest of the paper in §2. The definition of Suliciu’s
approximate Riemann solver is recalled in §3. The positivity property of Suliciu’s
approximate solution is also established in this section. The main result of this paper
is reported in §4. It is proved therein that the first-order finite volume technique based
on Suliciu’s approximate Riemann solver violates the invariant domain property of
the p-system. This statement is proved by producing a counterexample. Originality
is claimed only for the material presented in §4.

2. Preliminaries. The objective of this section is to introduce notation and
preliminary results that will be useful in the rest of the paper. We use the notation
and the terminology of Hoff [8, 9] and Chueh et al. [3, §6].

2.1. p-system. The so-called p-system describes the one-dimensional motion of
an isentropic gas in Lagrangian coordinates:

(2.1)

{
∂tτ − ∂xu = 0,

∂tu+ ∂xp(τ) = 0, for (x, t) ∈ R×R+.

The dependent variables are the velocity u and the specific volume τ , i.e., the recip-
rocal of density. The mapping τ 7→ p(τ) is the pressure and is assumed to be of class
C2(R+;R) and to satisfy the following properties:

(2.2) p′ < 0, 0 < p′′,

∫ ∞
1

p(s) ds <∞.

A typical example is the so-called gamma-law, p(τ) = rτ−γ , where r > 0 and γ > 1.
The PDE system (2.1) is supplemented with the initial data

(2.3) τ(x, 0) = τ0(x) > 0, u(x, 0) = u0(x), for x ∈ R.

We further assume that the solution approaches constants states at infinity. We
shall be using these boundary conditions in the rest of the paper without explicitly
mentioning it.

2.2. Invariant domain. Defining U := (τ, u)T, F (U) := (−u, p(τ))T, we can
re-write the p-system in vector form: ∂tU + ∂xF (U) = 0. The Jacobian matrix

(2.4) DF =

(
0 −1

p′(τ) 0

)
is diagonalizable with eigenpairs

λ1(U) = −
√
−p′(τ), r1(U) = (1,−λ1(U))T,(2.5)

λ2(U) =
√
−p′(τ), r2(U) = (−1, λ2(U))T.(2.6)
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The two eigenvalues are distinct and real, thereby showing that this nonlinear system
is strictly hyperbolic for all τ > 0. Moreover the identitiesDλ1(U)·r1 = Dλ2(U)·r2 =
p′′(τ)

2
√
−p′(τ)

show that the system is genuinely nonlinear under the condition p′′(τ) > 0.

Using the notation dµ :=
√
−p′(s) ds, and recalling that we assumed

∫∞
1

dµ <
∞, the system also has two families of global Riemann invariants:

(2.7) W1(U) := u+

∫ ∞
τ

dµ, and W2(U) := u−
∫ ∞
τ

dµ.

We call A := R+×R the admissible set for (2.1). The reasons for this terminology
are as follows: (i) The Riemann problem with any data in A is uniquely solvable,
see Young [11, 12]; (ii) For any smooth initial data with value in a bounded subset
of A there is short time existence of a smooth solution to (2.1); (iii) Finally, for any
smooth initial data with value in a bounded subset of A, the parabolic regularization
of (2.1) gives a solution that stays in A, see Chueh et al. [3, p. 385].

For any nonempty set A ⊂ A such that supU∈AW1(U) < ∞ and −∞ <
infU∈AW2(U) we define the mappings Wmax

1 ,Wmin
2 : A → R by setting

(2.8) Wmax
1 (A) := sup

U∈A
W1(U), Wmin

2 (A) := inf
U∈A

W2(U).

This then leads us to introduce the following set:

(2.9) C(A) := {U ∈ A |Wmin
2 (A) ≤W2(U), W1(U) ≤Wmax

1 (A)}.

It is known that the function W1 : A → R is convex and W2 : A → R is concave.
These two properties imply that C(A) is convex and A ⊂ C(A) ⊂ A.

In the rest of the paper we abuse the notation and view the initial data U0 :=
(τ0, u0)T as a set in the phase space R+×R, i.e., {U0(x) | x ∈ R}, and using this abuse
of notation we write C(U0) instead of C({U0(x) | x ∈ R}). A remarkable fact is that
C(U0) is invariant for smooth solutions of (2.1), meaning that U(x, t) ∈ C(U0) for
all x ∈ R and all t until smoothness is lost. Also, the invariance property holds
for the parabolic regularization of (2.1) as shown in Chueh et al. [3, p. 385]. A
natural expectation is that any physically relevant solution of (2.1) should satisfy this
invariance property, which we henceforth refer to as invariant domain property. One
now faces the question of constructing numerical approximations that also satisfy the
invariant domain property. For instance, it is known that C(U0) is invariant for a
variety of first-order explicit numerical methods based on finite volumes on uniform
grids, see e.g., Hoff [9, Thm. 4.1,4.2] and Hoff [8, Thm 2.1]; this property holds true
also for the continuous finite element technique introduced in Guermond and Popov
[6]. The purpose of this paper is to show that the first-order finite volume technique
based on the Suliciu’s approximate Riemann solver, while being positive, violates the
invariant domain property of the p-system.

2.3. Riemann problem. Let us consider (2.1) equipped with Riemann data,
i.e., U0(x) = (τL, uL)T =: UL ∈ A if x < 0, U0(x) = (τR, uR)T =: UR ∈ A if x > 0:

(2.10) ∂tu + ∂xF (u) = 0, u(·, 0) = U0.

It is well-known that this problem has a unique entropy satisfying solution; we refer
the reader to Young [11, 12] for the details.

Let us denote by ALR := {UL,UR} ⊂ A. It is known that the entropy solution
to the Riemann problem stays in the set C(ALR). A schematic representation of
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the set C(ALR) is shown in the right panel of Figure 1. Let λ−1 ≤ λ+
1 < 0 be

the two velocities of the 1-wave, and let λ−2 ≤ λ+
2 < 0 be the two velocities of

the 2-wave. Recall that λ−i = λ+
i if the i-wave is a shock, i ∈ {1, 2}. We denote by

λmax(UL,UR) the maximum wave speed in the problem; that is, let λmax(UL,UR) :=
max(|λ−1 |, |λ

+
2 |). In general one needs to solve exactly the Riemann problem (2.10) to

estimate λmax(UL,UR), but in practice it is often enough to have an upper bound
on λmax(UL,UR) to devise numerical schemes that guarantee that the approximate
solution to (2.10) stays in C(ALR). This can be done without solving the Riemann
problem; for instance, the following result established in Guermond and Popov [6,
Lem. 2.5] gives such an upper bound.
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Fig. 1. Left: Riemann invariants of two states (UL,UR) for the p-system; the state Û is

obtained by solving W1(Û) = Wmax
1 (ALR) and W2(Û) = Wmin

2 (ALR). Right: the shaded region is
the invariant domain C(ALR) for the states UL,UR.

Lemma 2.1. Assume that p(τ) = rτ−γ with γ > 1 and r > 0. Let

τ̂ := (γr)
1

γ−1

(
4

(γ − 1)(Wmax
1 (ALR)−Wmin

2 (ALR))

) 2
(γ−1)

.

then λmax(UL,UR) ≤
√
−p′(τ̂).

In the rest of the paper we denote by λ̂max(UL,UR) any upper bound on the maximum

wave speed λmax(UL,UR); for instance, for the γ-law, p(τ) = rτ−γ , λ̂max(UL,UR) :=√
−p′(τ̂) is such an upper bound as stated in Lemma 2.1. The computation of τ̂ is

illustrated in the left panel of Figure 1; the state Û is obtained by solving W1(Û) =

Wmax
1 (ALR) and W2(Û) = Wmin

2 (ALR).

3. Suliciu’s approximate Riemann solver. We recall in this section impor-
tant properties of the approximate Riemann solver that we are going to use. No
originality is claimed on the material presented in this section.

3.1. The approximate Riemann solution. In this section we produce a con-
sistent approximate Riemann solution to (2.1). To this end we consider the so-
called relaxation/projection approximation to the p-system (2.1) described in Bouchut
[1], Coquel et al. [4]. The relaxation system in question is written as follows:

(3.1)


∂tτ

ε − ∂xuε = 0,

∂tu
ε + ∂xπ = 0,

∂tπ + a2∂xu
ε = 1

ε (p(τ ε)− π),
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where we choose a large enough, and ε > 0 is a small parameter (relaxation time). We
are going to be more precise on how large a should be in the next section. In Carbou
et al. [2] it is proven under the assumption that if infs∈R+

p′(s) > 0, sups∈R+
p′(s) <

∞, and a2 > sups∈R+
p′(s), then for any smooth initial data there exists a time

interval (depending on the data) such that the solution to the system (3.1) converges
to that of (2.1) as ε→ 0.

To construct an approximate solution to the Riemann problem (2.10) with the
data UL = (τL, uL),UR = (τR, uR), we consider the extended initial data

(3.2) ŨL := (τL, uL, p(τL)), ŨR := (τR, uR, p(τR)),

and consider (3.1) with zero right-hand side:

(3.3)


∂tτ̃ − ∂xũ = 0,

∂tũ+ ∂xπ̃ = 0,

∂tπ̃ + a2∂xũ = 0.

The solution to this linear first order PDE consists of four constant states separated by
three contact lines: x

t = −a < x
t = 0 < x

t = a. Denoting by ξ = x
t the self-similarity

variable, the solution to the above problem is described as follows:

(3.4)

ξ ≤ −a −a < ξ ≤ 0 0 < ξ < a a < ξ
τ̃ τL τ∗L τ∗R τR
ũ uL u∗ u∗ uR
π̃ p(τL) π∗ π∗ p(τR)

with the notation

(3.5)


u∗ := u∗(UL,UR) := uL+uR

2 − p(τR)−p(τL)
2a

π∗ := π∗(UL,UR) := p(τL)+p(τR)
2 − a

2 (uR − uL)

τ∗L := τ∗L(UL,UR) := τL + uR−uL
2a + p(τL)−p(τR)

2a2

τ∗R := τ∗R(UL,UR) = τR + uR−uL
2a + p(τR)−p(τL)

2a2 .

We then consider the following expression as an approximation of the flux F (u(0, t)),
where u is the exact solution of the Riemann problem (2.10) with the Riemann data
UL = (τL, uL),UR = (τR, uR):

(3.6) F ∗(UL,UR) := (−u∗(UL,UR), π∗(UL,UR))T.

Notice that denoting by F̃ (ũ(x, t)) the flux of the extended system (3.3), F ∗(UL,UR)

is the vector composed of the first two components of F̃ (ũ(0, t)).

3.2. Positivity. We now want to establish that the solution defined by (3.4) is
positive in the sense that τ̃(x, t) ≥ 0 for all x ∈ R and all t > 0. To do so we have to
establish that τ∗L ≥ 0 and τ∗R ≥ 0. Let us introduce the state U defined by

(3.7) U =
UL + UR

2
− F (UR)− F (UL)

2a
.

It is well-known that if a ≥ λmax(UL,UR), then U belongs to the invariant set
C(ALR), see e.g., [6, Lem. 2.1]. In particular, setting U =: (τ , u)T, we have

inf
(τ,u)∈C(UL,UR)

τ ≤ τ ,(3.8)

Wmin
2 (ALR) = inf

(τ,u)∈C(UL,UR)
u ≤ u ≤ sup

(τ,u)∈C(UL,UR)

u = Wmax
1 (ALR).(3.9)
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Lemma 3.1. UL,UR be two states in the admissible set of the p-system. Let
∆W := Wmax

1 (ALR)−Wmin
2 (ALR). Let a be such that

(3.10) a ≥ max(λmax(UL,UR),
∆W

min(τL, τR)
),

then τ∗L(UL,UR) ≥ 0 and τ∗R(UL,UR) ≥ 0.

Proof. We first notice that

τ∗L = τL +
1

a
(u− uL), τ∗R = τR +

1

a
(uR − u).

As a result, positivity holds if a ≥ max( (uL−u)+
τL

, (u−uR)+
τR

). Notice that if a ≥
λmax(UL,UR) then max(|u − uL|, |uR − u|) ≤ ∆W owing to (3.9). Therefore the
desired result holds true if a ≥ ∆W/min(τL, τR).

Remark 3.2 (Expansion wave). In order to have some intuition on the relative
magnitude of the quantities appearing on the right-hand side of (3.10), let us assume
that UL and UR are located on a 1-wave and τL < τR; i.e., the Riemann solution
is an expansion wave. This case will be used to construct the counterexample in
§4.2. Let us further assume that the equation of state is a γ-law p(τ) = rτ−γ . Then

λmax(UL,UR) =
√
−p′(τL) = (γr)

1
2 τ
− γ+1

2

L . Moreover, ∆W = W1(UL)−W2(UL) =

2
∫∞
τL

√
−p′(s) ds; that is, min(τL, τR)−1∆W = 4

γ−1 (γr)
1
2 τ
− γ+1

2

L . In this case we have

min(τL, τR)−1∆W = 4
γ−1λmax(UL,UR); in particular, for γ ∈ (1, 5), this compu-

tation shows that min(τL, τR)−1∆W > λmax(UL,UR). No claim is made on the
optimality of the bound (3.10). The results reported in §4.2 have been obtained with

a = max(λ̂max(UL,UR), λ̂max(UR,UL)) ≥ max(λmax(UL,UR), λmax(UR,UL)). �

4. The main result. We describe in this section the Godunov-type finite volume
scheme using the approximate Riemann solver defined in §3 to solve (2.1), and we
show that the scheme is positive but violates the invariant domain property.

4.1. Finite volume discretization. Let Th := {xi+ 1
2
}i∈Z be a sequence of

distinct points in R. We denote Ii := [xi− 1
2
, xi+ 1

2
], hi := xi+ 1

2
− xi− 1

2
. We are going

to solve (2.1) with a Godunov-type finite volume technique using the approximation
space P 0(Th) := {vh ∈ L∞(R;R2) | vh|Ii ∈ P0×P0, ∀i ∈ Z}, where P0 denotes the
real vector space composed of the constant univariate polynomials. The interface flux
will be computed by using the approximate flux (3.6).

Given cell average {Un
i }i∈Z at time tn, n ∈ N, we define the update {Un+1

i }i∈Z
by setting

(4.1) hi(U
n+1
i −Un

i ) + ∆t(F ∗(Un
i ,U

n
i+1)− F ∗(Un

i−1,U
n
i )) = 0,

where we recall that the interface flux is given by (3.6):

(4.2) F ∗(Un
i ,U

n
i+1) := (−u∗(uni , uni+1), π∗(uni , u

n
i+1))T,

where the speed a in (3.3) and (3.5) is replaced by an
i+ 1

2

, i ∈ Z. This quantity is

chosen by the user and should be large enough; for instance, based on Lemma 3.1 one
could take

(4.3) ani+ 1
2

= max(λmax(Un
i ,U

n
i+1),

∆Wn
i+ 1

2

min(τni , τ
n
i+1)

),

with ∆Wn
i+ 1

2

:= max(W1(Un
i ),W1(Un

i+1))−min(W2(Un
i ),W2(Un

i+1)).
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Lemma 4.1 (Positivity). Given admissible states Un
i−1,U

n
i ,U

n
i+1, assume that

the condition (4.3) on an
i− 1

2

and an
i+ 1

2

holds for the pairs (Un
i−1,U

n
i ) and (Un

i ,U
n
i+1).

Assume also that (an
i− 1

2

+ an
i+ 1

2

)∆t < hi, then the scheme is positive, i.e., τn+1
i > 0.

Proof. Recall that the numerical flux F ∗ has been defined so that F ∗(Un
i−1,U

n
i ) is

equal to the first two components of F̃ (ũ(xi− 1
2
, t)) for any t ∈ [tn, tn+1] where ũ is the

solution to the Riemann problem (3.3) with extended Riemann data (Ũ
n

i−1, Ũ
n

i ) (see

(3.2)). Similarly F ∗(Un
i ,U

n
i+1) is equal to the first two components of F̃ (ũ(xi+ 1

2
, t))

for any t ∈ [tn, tn+1] where ũ is the solution to the Riemann problem (3.3) with

extended Riemann data (Ũ
n

i , Ũ
n

i+1) (see (3.2)). This implies that the update Un+1
i

defined in (4.1) satisfies the identity hiU
n+1
i =

∫ x
i+1

2
x
i− 1

2

ũ(x, tn+1) dx. Since (an
i− 1

2

+

an
i+ 1

2

)∆t < hi, there is no wave interaction between the two Riemann problems, and

we then infer from (3.5) that

(4.4) Un+1
i =

ani− 1
2
∆t

hi
U∗,R
i− 1

2

+
ani+ 1

2
∆t

hi
U∗,L
i+ 1

2

+
(

1−
ani− 1

2
∆t

hi
−
ani+ 1

2
∆t

hi

)
Un
i ,

where

U∗,R
i− 1

2

:= (τ∗R(Un
i−1,U

n
i ), u∗(Un

i−1,U
n
i ))T,

U∗,L
i+ 1

2

:= (τ∗L(Un
i ,U

n
i+1), u∗(Un

i ,U
n
i+1))T,

and the functions τ∗L, τ∗R, and u∗ are defined in (3.4) and (3.5). We have established
in Lemma 3.1 that τ∗R(Un

i−1,U
n
i ) ≥ 0 and τ∗L(Un

i ,U
n
i+1) ≥ 0 under the condition

(4.3) for the pairs (Un
i−1,U

n
i ) and (Un

i ,U
n
i+1). Then τn+1

i is a convex combination
of the three values τ∗R(Un

i−1,U
n
i ) ≥ 0, τni > 0, and τ∗L(Un

i ,U
n
i+1) ≥ 0 under the CFL

condition (an
i− 1

2

+ an
i+ 1

2

)∆t < hi, which proves the result.

4.2. Violation of the invariant domain property. We show in this section
that it is possible to find initial data such that the scheme defined in (4.1)-(4.2) violates
the invariant domain property of the p-system. The counterexample in question is
built by considering an expansion wave.

Let uL, uR ∈ R, and τL, τR ∈ R+. We set the initial data to (2.1) to be

(4.5) u0h|Ii =: U0
i :=

{
(τL, uL)T if i < 1,

(τR, uR)T if 1 ≤ i.

Then, the following result demonstrates that the (4.1)-(4.2) is not invariant domain
preserving.

Theorem 4.2. Assume that τL < τR and W1(UL) = W1(UR). Assume that a0
1
2

satisfies (4.3) and
a01

2
∆t

h0
≤ 1. Then we have Wmax

1 (ALR) < W1(U1
0), i.e., the scheme

(4.1)-(4.2) violates the invariant domain property of the p-system at the first time
step.

Proof. After observing that U∗,R− 1
2

= UL and U0
0 = UL, we infer form (4.4) that

U1
0 =

a0
1
2
∆t

h0
U∗,L1

2

+
(
1−

a0
1
2
∆t

h0

)
U0

0.
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Denoting α :=
a01

2
∆t

h0
, a := a0

1
2

, and using (3.5), we can write the components of U1
0 as

follows:

τ1
0 = τL +

α(uR − uL)

2a
+
α(p(τL)− p(τR))

2a2
,

u1
0 = uL +

α(uR − uL)

2
+
α(p(τL)− p(τR)

2a
.

We have uR − uL =
∫ τR
τL

dµ because we assumed that the states U0
0 := UL and

U0
1 := UR are on a left expansion wave. Then Wmax

1 (ALR) = W1(U0
0) = W1(U0

1).
Let us denote ∆W := W1(U1

0)−Wmax
1 (ALR) = W1(U1

0)−W1(UL). We have that

∆W =
α(uR − uL)

2
+
α(p(τL)− p(τR))

2a
−
∫ τ1

0

τL

dµ.

Observing that τL < τR implies that uR > uL and p(τL) > p(τR), which in turns
means that τ1

0 > τL. Using that dµ :=
√
−p′(s) ds and

√
−p′(s) is a strictly decreas-

ing function we have

∆W >
α(uR − uL)

2
+
α(p(τL)− p(τR))

2a
−
√
−p′(τL)(τ1

0 − τL).

Recalling that τ1
0 − τL = α(uR−uL)

2a + α(p(τL)−p(τR))
2a2 , we conclude that

∆W >
(α(uR − uL)

2
+
α(p(τL)− p(τR))

2a

)(
1−

√
−p′(τL)

a

)
.

Notice that α(uR−uL)
2 +α(p(τL)−p(τR))

2a is positive. Recalling that a is an upper bound on

the maximum speed of propagation in the Riemann problem, we have
√
−p′(τL) ≤ a

(recall that a is assumed to satisfy (4.3)). Hence, ∆W > 0 for any
√
−p′(τL) ≤ a and

therefore U1
0 is not in the local invariant domain of the states U0

0 and U0
1. Notice in

passing that we actually have established an upper bound and a lower bound on ∆W

(4.6) 1 >
∆W

α(uR−uL)
2 + α(p(τL)−p(τR))

2a

>
(
1−

√
−p′(τL)

a

)
,

and these two bounds are independent on the mesh size. This completes the proof.

4.3. Numerical illustrations. To illustrate the result stated in Theorem 4.2,
we compare the scheme (4.1)-(4.2) with the so-called GMS-GV1 scheme described
in Guermond and Popov [6], which is known to be invariant domain preserving (see
[6, Thm. 4.1]). (GMS stands for Guaranteed Maximum Speed and GV1 stands for
first-order graph viscosity.) In the present context, the GMS-GV1 scheme can be
rewritten as follows:

(4.7) hi(U
n+1
i −Un

i ) + ∆t(FGMS(Un
i ,U

n
i+1)− FGMS(Un

i−1,U
n
i )) = 0,

where

FGMS(U ,V ) :=
1

2
(F (U) + F (V )) +

1

2
λ̂max(U ,V )(U − V ).

The initial data that we use is similar to that invoked in the proof of Theorem 4.2: the
states UL, UR are parts of an expansion (1-wave). We take τL := 0.01 and uL := 0.
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The following ratios τR/τL ∈ {1.1, 2, 8, 32} are tested, and the quantity uR is given by
uR := uL +

∫ τR
τL

dµ. We use the equation of state p(τ) := 1/(γτγ) with γ := 1.4. The

speed an
i+ 1

2

is computed by setting an
i+ 1

2

:= λ̂(Un
i ,U

n
i+1) using the estimate of λ̂(U ,V )

given in Lemma 2.1. The time step is defined by ∆t := CFLhi/
√
−p′(τL) where we

set CFL := 0.9. The results shown in Figure 2 compare in the phase space (u(x, t)
vs. τ(x, t)) the GMS-GV1 solution and the solution given by the scheme (4.1)-(4.2).
The comparison is done after 3 time steps. Notice that the GMS-GV1 solution is
invariant domain preserving. The scheme (4.1)-(4.2) clearly steps out of the invariant
domain; that is, there are states U j such that W1(U j) > Wmax

1 (ALR), on the plots
these states sit above the blue curve, which is the graph of the exact solution in the
phase space and is also the upper boundary of the invariant domain. Let us emphasize
that the results shown in Figure 2 are independent of the number of grid points; More
precisely, the amount of violation only depends on the CFL number and the number
of time step, as established in (4.6).
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Fig. 2. Illustration of Theorem 4.2 with τR
τL
∈ {1.1, 2, 8, 32}. Comparison in the phase space

(τ, u) of the GMS-GV1 solution and the solution given by the scheme (4.1)-(4.2) after 3 time steps:
τL = 0.01; uL = 0; uR := uL +

∫ τR
τL

dµ; p(τ) = 1/(γτγ); γ = 1.4; an
i+ 1

2

computed by setting

an
i+ 1

2

= λ̂(Un
i ,U

n
i+1); ∆t = 0.9hi/

√
−p′(τL).

We finish this section by comparing again the scheme (4.1)-(4.2) with GMS-GV1
using the following data: τL := 0.01 and uL := 0. The quantity uR is again given
by uR := uL +

∫ τR
τL

dµ and we test the following ratios τR/τL ∈ {0.1, 0.025, 0.00615,

0.003125}. Notice that we are no longer in the situation described in Theorem 4.2:
the exact solution is now composed of a 1-shock and a 2-rarefaction. The time step
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is defined by ∆t := CFLhi/λ̂max(UL,UR) where we set CFL := 0.5. (Using CFL :=
0.9, the scheme (4.1)-(4.2) produces negative values for τ , whereas GMS-GV1 is still
invariant domain preserving.) The results are shown in Figure 3. We observe in this
case also that the scheme (4.1)-(4.2) steps out of the invariant domain whereas GMS-
GV1 does not. Notice that the scheme (4.1)-(4.2) produces very large oscillations on
the u component, for instance u ∈ [−60, 5] for τR/τL = 0.003125. Notice finally that
for τR = 0.1τL and τR = 0.025τL, the scheme (4.1)-(4.2) produces values of τ that are
very close to 0.
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Fig. 3. Illustration of Theorem 4.2 with τR
τL
∈ {0.1, 0.025, 0.0625, 0.003125}. Comparison in the

phase space (τ, u) of the GMS-GV1 solution and the solution given by the scheme (4.1)-(4.2) after
3 time steps: τL = 0.01; uL = 0; uR := uL +

∫ τR
τL

dµ; p(τ) = 1/(γτγ); γ = 1.4; an
i+ 1

2

computed by

setting an
i+ 1

2

= λ̂(Un
i ,U

n
i+1); ∆t = 0.5hi/

√
−p′(τL).

4.4. Artificial viscosity interpretation. In this section we reinterpret the
scheme (4.1)-(4.2) in term of artificial viscosity and put the scheme in perspective
with the parabolic regularization theory of Chueh et al. [3].

We start by mentioning a result that will help us understand why the scheme (4.1)-
(4.2) is not invariant domain preserving.

Lemma 4.3 (Parabolic regularization). The following parabolic regularization of
the system (2.1) ∂tu

ε,µ + ∂xF (uε,µ) = (ε∂xxτ
ε,µ, µ∂xxu

ε,µ)T with ε, µ > 0 preserves
the invariant domains of (2.1) if and only if ε = µ.

This results is proved in Chueh et al. [3, p. 385]. A somewhat similar result has been
proved in Guermond and Popov [5, Thm. 4.1] for the Euler equations.



Robustness of the Suliciu approximate Riemann solver 11

Let us now rewrite the flux F ∗(Un
i ,U

n
i+1) introduced in (4.2) as the sum of the

centered flux plus a “viscous” perturbation:

F ∗(Un
i ,U

n
i+1) =

 −u
n
i +uni+1

2 +
p(τni+1)−p(τni )

2an
i+1

2

p(τni )+p(τni+1)

2 −
an
i+1

2

2 (uni+1 − uni )


=

1

2
(F (Un

i ) + F (Un
i+1)) +

1

2
ani+ 1

2

(
p(τni+1)−p(τni )

(an
i+1

2

)2

uni − uni+1

)
.

This expression shows that using the approximate flux F ∗(Un
i ,U

n
i+1) is strictly equiv-

alent to using the centered flux augmented with the heterogenous viscous flux

1

2
ani+ 1

2

(
− p(τni+1)−p(τni )

(an
i+1

2

)2(τni+1−τni ) (τni − τni+1)

uni − uni+1

)
.

This argument shows in turn that the scheme (4.1)-(4.2) is a discrete realization of
the following perturbed PDE:

∂tu
ε + ∂xF (uε) =

(
∂x

(
1
2aε
|p′(τε)|
a2 ∂xτ

ε
)

∂x
(

1
2aε∂xu

ε
) )

,

where the quantity ε plays the role of the meshsize. In the light of Lemma 4.3,
we now understand that to make the scheme (4.1)-(4.2) invariant domain preserving

one should set (ani+ 1
2
)2 = −p(τ

n
i+1)−p(τni )

τni+1−τni
. But this choice is not good enough. In

particular if Un
i and Un

i+1 sit on a 1-rarefaction wave with τni < τni+1, we have
λ2

max(Un
i ,U

n
i+1) = −p′(τni ). Since one should also have ani+ 1

2
≥ λmax(Un

i ,U
n
i+1) owing

to [5, Thm. 4.1] for the scheme to be invariant domain preserving, we conclude that

the following inequality should hold: −p(τ
n
i+1)−p(τni )

τni+1−τni
≥ −p′(τni ), which is impossible

since p is a strictly convex. Hence the requirements (ani+ 1
2
)2 = −p(τ

n
i+1)−p(τni )

τni+1−τni
and

(ani+ 1
2
)2 ≥ λmax(Un

i ,U
n
i+1) cannot be achieved at the same time. In conclusion, we

conjecture that the scheme (4.1)-(4.2) cannot be made invariant domain preserving
for any choice of ani+ 1

2
.
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