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We introduce a new discontinuous Galerkin (DG) method with reduced upwind stabiliza-
tion for the linear Boltzmann equation applied to particle transport. The asymptotic anal-
ysis demonstrates that the new formulation does not suffer from the limitations of
standard upwind methods in the thick diffusive regime; in particular, the new method
yields the correct diffusion limit for any approximation order, including piecewise constant
discontinuous finite elements. Numerical tests on well-established benchmark problems
demonstrate the superiority of the new method. The improvement is particularly signifi-
cant when employing piecewise constant DG approximation for which standard upwind-
ing is known to perform poorly in the thick diffusion limit.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Spatial discontinuous Galerkin (DG) finite element techniques applied to discrete-ordinates radiation transport have been
pioneered by Reed and Hill [16] and Lesaint and Raviart [14] in the early 1970s. They use an upwinding procedure to link
mesh cells in order to adequately propagate the flow of information from upwind to downwind cells. Upwinding is viewed
as a stabilization technique in the numerical analysis community. Upon adopting this point of view, we redefine the stabil-
ization term and show that the resulting new DG method behaves properly in the thick diffusion limit. Optically thick and
diffusive regimes occur when the physical medium is many mean free paths thick and the interaction processes are scatter-
ing-dominated (i.e., weak absorption). In the present paper we adopt the terminology of Babuška and Suri [3] ‘‘a numerical
scheme for the approximation of a parameter-dependent problem is said to exhibit locking if the accuracy of the approximations
deteriorates as the parameter tends to a limiting value. A robust numerical scheme for the problem is one that is essentially uni-
formly convergent for all values of the parameter.’’ Larsen pointed out in [10,11] that the so-called ‘‘step scheme’’, a finite vol-
ume scheme (i.e., a piecewise constant DG scheme) with standard upwind, locks in the diffusion limit. A modification of the
‘‘step scheme’’ depending upon the total mean free path was proposed in [10] to correct the locking of the method in the
diffusion limit, but this required modifying the streaming term and abandoning particle balance. Several other variations
of the ‘‘step scheme’’ have been analyzed in [12]: it was shown that the ‘‘Lund–Wilson’’ and the ‘‘Castor’’ variants of the step
scheme yielded cell-edge angular fluxes that lock in the diffusion limit, and that the auxiliary relations linking the outgoing
edge angular flux to the cell-average angular flux employ a multiplicative factor that depends on the mesh cell optical thick-
ness in the direction traveled. Furthermore, the cell-edge fluxes for these schemes can not reproduce the infinite medium
. All rights reserved.
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solution. A ‘‘new’’ scheme was proposed in [12] but was subsequently dismissed due its a poor behavior at the boundaries.
For many years, the diamond-difference scheme was found to be the best performing finite-difference scheme, even though
its cell-edge fluxes lock in the thick diffusion limit. In [13], most of the previous schemes have been set aside in favor of the
linear discontinuous finite element scheme (the piecewise linear DG technique with standard upwinding).

In [1], Adams analyzed multi-dimensional DG approximations and showed that some schemes lock in the diffusion limit
because the upwind method forces the scalar flux, and thus the angular flux, to be continuous across mesh cells. This obser-
vation has been confirmed in [8], where the equivalence of the limit problem to a mixed discretization for the Laplacian was
proved and the nature of the boundary layers was discussed. The asymptotic analysis in [1,8] suggests that the problem
could be alleviated by modifying the upwind numerical flux. As pointed out in [2,7], the upwind numerical flux is only
one particular choice among many for stabilization. By making the amount of stabilization dependent on the scattering cross
section so that the amount of upwinding decreases as the scattering cross section increases, we show in this paper that lock-
ing can indeed be avoided in the thick diffusive limit. The proposed DG scheme converges robustly, i.e., it performs well in all
regimes, from transport-dominated to diffusion-dominated, for finite element spaces of any order, including piecewise con-
stant functions (DG0).

The paper is organized as follows. Section 2 introduces notation and recalls the SN transport equation. Section 3 describes
the discrete formulation which is obtained when applying a discontinuous Galerkin technique to the SN equations. A new DG
numerical flux is introduced therein. The asymptotic analysis of the resulting discrete formulation is done in Section 4. The
main result of this section is the demonstration that, in the diffusion limit, the new DG method is a consistent and conver-
gent DG discretization of the diffusion equation written in mixed form. Numerical results illustrating the performance of the
new DG numerical flux are presented in Section 5. An Appendix detailing the asymptotic analysis in one space dimension for
DG0 completes the paper.

2. The SN transport equation
2.1. The continuous problem

The linear transport equation describes the processes by which particles (photons, neutrons, . . .) interact with a back-
ground medium. Such processes play a crucial role in stellar atmospheres, nuclear reactor analysis, and shielding applica-
tions. To keep the discussion simple, we limit the analysis to the one-group discrete-ordinates equations; these equations
model one-group neutron transport and grey radiative transfer.

Before recalling the transport equation, we provide some notations for the spatial and angular domains. Let D be the spa-
tial domain in Rd (with d = 1,2,3), @D be the boundary of D; n be the outward unit normal vector on @D, and S2 be the unit
sphere in R3. The set of directions S is defined as S2 for d = 3 and as the projection of S2 onto Rd when d = 1,2. For instance S is
the unit disk if d = 2 and S is the unit segment [�1,+1] if d = 1. This is a common practice in the radiation transport commu-
nity and it means that radiation is accounted for as a three-dimensional effect even in lower dimensional geometries. The
transport of particles is modeled by the linear Boltzmann equation:
X � rWðX;xÞ þ rtðxÞWðX;xÞ � rsðxÞWðxÞ ¼ qðxÞ; 8ðX;xÞ 2 S � D; ð1aÞ
where W ¼ 1
4p

R
S WðX;xÞdX is the the scalar flux, and the boundary conditions are
WðX; xÞ ¼ WincðX;xÞ; 8ðX; xÞ 2 S � @D; X � nðxÞ < 0: ð1bÞ
For simplicity, we have assumed that the scattering and the extraneous sources are isotropic; this assumption does not affect
the conclusions of the analysis. The dependent variable is the angular flux W(X,x), and the independent variables (X,x) span
S � D. The given data are the extraneous source term q(x), the incoming boundary radiation Winc(X,x), the scattering cross
section rs(x), and the absorption cross section ra(x) (with the usual definition rt = rs + ra).

2.2. The SN problem

The SN, or discrete-ordinates, version of Eq. (1a) is obtained by solving the transport equation along discrete directions (or
ordinates) and by replacing the integrals over the unit sphere S by quadratures. We choose a quadrature rule
{(Xj,xj), j = 1, . . . ,nX} with the normalization
X

j

xj ¼ 1; so that
1

4p

Z
S

f ðX; xÞdX �
XnX

j¼1

xjf ðXj; xÞ: ð2Þ
Next, we recall some quadrature properties that will be employed later, during the asymptotic analysis:

(i) Symmetry: For any discrete ordinate Xj in the quadrature set, its opposite Xj0 ¼ �Xj is also in the set and their weights
are equal ðxj0 ¼ xjÞ. This implies in particular that
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XnX

j¼1

xjXj ¼ 0: ð3Þ
(ii) For any two vectors a and b in Rd, the angular quadrature satisfies
XnX

j¼1

xjðXj � aÞðXj � bÞ ¼
1
3

a � b: ð4Þ
(iii) There is c0 > 0 so that the following holds for all nX
0 < c0 6 cn :¼
X

Xj �n<0

xjjXj � nj: ð5Þ
Although it is a standard result that for any unit vector n, the half-range integral satisfies 1
4p

R
X�n<0 jX � njdX ¼ 1

4, this equality
may not exactly hold for any numerical quadrature at hand. However, reasonable sets of quadrature rules are such that this
limit value is approached as the number of directions in the quadrature is increased limnX!1cn ¼ 1

4

� �
.

The SN method consists of replacing the angular flux W(X,x) by a discrete angular flux wðxÞ ¼ ðw1ðxÞ;w2ðxÞ; . . . ;wnX
ðxÞÞ,

and to convert the integro-differential Eq. (1) over S � D into a system of nX coupled partial differential equations over
D, which reads as follows for all directions j:
Xj � rwjðxÞ þ rtðxÞwjðxÞ � rsðxÞ�wðxÞ ¼ qðxÞ; in D; ð6aÞ
with the inflow boundary condition
wjðxÞ ¼ winc
j ðxÞ; 8x 2 @D with Xj � nðxÞ < 0: ð6bÞ
The discrete scalar flux is defined by:
�wðxÞ ¼
XnX

j¼1

xjwjðxÞ: ð7Þ
The discrete angular flux w is said to be isotropic when wj ¼ �w, for all j 2 [1,nX]. In order to simplify the notation in subse-
quent parts, we introduce the discrete current vector J(w), also known as the first angular moment of w, as follows:
JðwÞ ¼
XnX

j¼1

xjwjðxÞXj: ð8Þ
Note that J(w) = 0 whenever w is isotropic.

3. DG Discretization

We now proceed with the spatial discretization of the SN transport equation using DG finite elements. We introduce a
discrete mesh on D in Section 3.1, the polynomial spaces and DG notation in Section 3.2, and the weak formulation in Section
3.3. In Section 3.2, we also generalize the definition for upwind and downwind values at cell interfaces.

3.1. The mesh

A mesh Th is a subdivision ofD into disjoint cells K (the h subscript is common in the finite element literature and denotes
the typical mesh size of the mesh). The mesh can be unstructured since the method is independent of the space dimension
and the choice of grid. We denote by Fi

h the set of interior faces (also called interfaces); each face F 2 Fi
h is the intersection of

the boundaries of two mesh cells. For each face F 2 Fi
h we assign a normal vector n. While the choice of the normal vector is

arbitrary for interior faces, all formulations below are independent of this choice and thus well-defined. We denote by Fb
h the

set of faces on the domain boundary, @D for which we denote by n the outward unit normal vector. Finally, we gather all
faces into Fh ¼ Fi

h [ Fb
h.

3.2. The discontinuous Galerkin (DG) setting

We define the approximation spaces based on the mesh Th, such that functions are polynomials of degree at most k on
each mesh cell; the maximum degree k can be chosen arbitrarily and determines the order of the method. In particular,
piecewise constant approximation (DG0) is permitted. This already defines the space Vh for the scalar flux, since we do
not require any continuity between cells. The discrete space for the angular flux, Wh, simply consists of copies of Vh for each
of the discrete ordinates:
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Vh ¼ v 2 L2ðDÞj8K 2 Th; vjK 2 PK ;
n o

; Wh ¼ ðVhÞnX : ð9Þ
The set of functions over each cell K 2 Th that can be mapped to polynomials of degree at most k over the reference element is
denoted PK. We also introduce the spaces with zero boundary conditions
V0;h ¼ v 2 Vhjv j@D ¼ 0
� �

; W0;h ¼ ðV0;hÞnX : ð10Þ
The purpose of these spaces is for notational conciseness in the asymptotic derivation. Due to the discontinuous nature of the
spatial approximation, functions v 2 Vh are double-valued on interior faces. Consider an interior face F 2 Fi

h separating two
mesh cells, K1 and K2. Denote by n1, n2 the unit normal vector on F pointing towards K2, K1, respectively. The mean value and
jump of a function v 2 Vh are defined as follows:
ffvgg ¼ 1
2
ðv1 þ v2Þ; svt ¼ v1 � v2; ð11Þ
where v1 :¼ v jK1
and v2 :¼ vjK2

are the restrictions of v on the mesh cells K1 and K2, respectively. Obviously, {{v}} does not
depend on the choice (numbering) of the cells K1 and K2. On the other hand, the jump does (there is a sign change when
exchanging the cells K1 and K2) but since the weak form (defined further below) contains the product of two jumps, the ori-
entation of the unit normal vector does not matter. Note that the mean value of quantities containing a normal vector is
actually a jump:
ffvngg ¼ 1
2
ðv1n1 þ v2n2Þ ¼

1
2
ðv1 � v2Þn1 ¼

1
2
ðv2 � v1Þn2:
The jump and mean value can be used to rewrite the standard upwind numerical flux3 [14,16] found in DG methods approx-
imating the transport equation. For any v in Vh and any interior face F 2 Fi

h, we introduce the so-called upwind and downwind
values of v at x 2 F, v"(x) and v;(x), respectively, as follows:
v"ðxÞ ¼
v1ðxÞ; if X � n1ðxÞP 0
v2ðxÞ; if X � n1ðxÞ < 0:

�
v#ðxÞ ¼

v2ðxÞ if X � n1ðxÞP 0
v1ðxÞ if X � n1ðxÞ < 0:

�
ð12Þ
Observing that, for any positive number (c P 0), we have
X � n1ffvgg þ
1
2
cjX � n1jsvt ¼ X � n1 v"ðxÞ þ 1

2
ðc� 1Þðv"ðxÞ � v#ðxÞÞ

� �
; ð13Þ
we note that the left-hand-side of Eq. (13) reduces to two particular cases when c = 1 and c = 0:
X � n1ffvgg þ
c
2
jX � n1jsvt ¼

X � n1v"ðxÞ if c ¼ 1;
X � n1ffvgg if c ¼ 0:

�
ð14Þ
That is, the standard upwind DG numerical flux on a face is obtained with the expression of Eq. (13) by using c = 1 and the
centered numerical flux is obtained by using c = 0. Thus, the above representation introduces a way to construct an approx-
imation of the solution to Eq. (6) by modifying the coefficient c. Reduced upwinding has been discussed and applied success-
fully in the context of advection–diffusion problems in [2,4].

3.3. The new DG formulation

Now we propose a new formulation for the DG numerical flux based on Eq. (13). For this purpose we define the stabil-
ization parameters
cðxÞ ¼ c0

maxðc0;rsðxÞdiamDÞ ; dðxÞ ¼ d0
1� cðxÞ

cðxÞ ; ð15Þ
with coefficients c0 > 0, d0 > 0. The rationale for these is as follows: in the thick diffusive limit, c tends to 0, whereas in the
thin diffusive limit, c is 1.

Consider an interior face F 2 Fi
h. We use the following definition for the angular DG numerical flux across the interface F

from K1 to K2:
bFjðxÞ � n1 ¼ Xj � n1ffwjgg þ
cðxÞ

2
jXj � n1jswjtþ

dðxÞ
2
ffJðwÞ � nggXj � n1: ð16Þ
term ‘‘flux’’ is used in two different contexts. In the radiation transport context, we use the terms ‘‘angular flux’’ and ‘‘scalar flux’’. In the DG context, we
notion of ‘‘numerical flux’’. These two notions are unfortunately unrelated but commonly employed in the radiation transport and DG literature,

ively. To avoid confusion, we always use the proper adjective in this paper.
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The purpose of the numerical flux bFjðxÞ � n is to approximate the quantity Xj � nwj at the mesh interfaces since this quantity
is double-valued due to the discontinuous nature of the approximation. For any boundary face F 2 Fb

h, we use the standard
upwind definition of the DG numerical flux across F:
bFjðxÞ � n ¼
Xj � nwinc

j if Xj � nðxÞ < 0;
Xj � nwj otherwise:

(
ð17Þ
Note that the definition of c(x) is such that, on the one hand, c ? 0 when the ratio of the scattering mean free path to the
diameter of the domain is small (i.e., rsðxÞD is large); on the other hand, c is bounded away from zero when the mean free
path is a non-negligible fraction of the diameter of the domain (the c0 constant assures that c(x) ? 1 when rsðxÞD is small).
The parameter d is designed so that it goes to zero when c ? 1 and behaves like 1/c when c ? 0. This behavior is dictated
from the forthcoming asymptotic analysis. The intuitive motivations for the first and second terms in Eq. (16) are the expres-
sions (13) and (14). The standard upwind numerical flux is obtained by setting c = 1, which also implies d = 0. The eventual
justification for the third term {{J(w) � n}}Xj � n1 will come from the asymptotic analysis; this term will turn out to be nec-
essary for the limit problem (the discretized diffusion problem derived from asymptotics) to be well-posed.

The local DG formulation of the problem Eq. (6) consists of seeking wh 2Wh so that the following holds for all cells K 2 Th,
for all test functions vj 2 Vh supported on K, and for all direction j 2 [1,nX]:
Z

K
�wjXj � rv j þ ðrs þ raÞwjv j � rs

�wv j
� �

dxþ
Z
@K

bFjðxÞ � nv jdx ¼
Z

K
qv jdx: ð18Þ
where the numerical flux bFj is defined in (16) with c and d defined in (15). Eq. (18) was obtained by (i) multiplying the SN

equations for direction j with test function vj, (ii) integrating the results by parts, and (iii) applying the numerical fluxes on
the element’s boundary @K. With the standard expressions for bFj (recovered for c = 1, i.e., employ the angular from within the
cell on outflow faces and use the angular flux from the upwind cells on inflow faces), Eq. (18) is the standard set of equations
solved element-by-element in various DG-based transport codes; see also, for instance, Eqs. (3a)–(3f) in [18] or Eq. (6) in
[19].

Summing over all cells, integrating by parts a second time, and separating volume and interface terms, we obtain a global
formulation which is more suitable for the asymptotic analysis. Upon introducing the bilinear form
Lðw; vÞ ¼
X
K2Th

XnX

j¼1

xj

Z
K

Xj � rwjv j þ rs þ rað Þwjv j � rs
�wv j

� �
dxþ

X
F2Fb

h

X
Xj �n60

xj

Z
F
jXj � njwjv jdxþ

X
F2Fi

h

Z
F

dðxÞ

� ffJðwÞ � nggffJðvÞ � nggdxþ
X
F2Fi

h

XnX

j¼1

xj

Z
F
jXj � nj

cðxÞ
2

swjtsv jt� 2Xj � ffwjnggffv jgg
� �

dx ð19Þ
and the linear form
‘ðvÞ ¼
Z
D

XnX

j¼1

xjqv jdxþ
X
F2Fb

h

X
Xj �n60

xj

Z
F
jXj � njwinc

j v jdx; ð20Þ
the global version of Eq. (18) reads: seek w :¼ ðw1; . . . ;wnX
Þ 2Wh so that the following holds:
Lðw; vÞ ¼ ‘ðvÞ; 8v :¼ ðv1; . . . ;vnX Þ 2Wh: ð21Þ
The bilinear form Eq. (19) differs from the standard upwind DG method [1,15,16] only in the choice of the parameters c and
d. It has been pointed out in [4,7] that the upwind numerical flux is nothing more than a stabilized numerical flux, where the
stabilization parameter has been arbitrarily chosen to be c = 1 (and thus d = 0); therefore, we are not introducing a new
parameter into the method, but rather we acknowledge that it has always been there in a specialized form. Also note that
the proposed formulation reverts to the standard upwind form for small values of rs, since for rs < c0=diamD, Eq. (15) yields
c = 1 and d = 0. Thus, the proposed method reduces the amount of upwind stabilization when the standard (upwind) stabil-
ization is too strong.

4. Asymptotic analysis

4.1. The rescaled problem

In order to understand the behavior of solutions to Eq. (21) in the thick diffusive limit, we rescale the equation under the
assumption that the ratio between the mean free path between two scattering events and the characteristic size (diameter)
of the domain goes to zero. A measure of this ratio is given by
e ¼ 1
rsdiamðDÞ : ð22Þ
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This parameter is well known to characterize the diffusivity of the problem, see for instance [12,6, Chapter XXI]. We assume
throughout this section that rs is constant over the domain to simplify the analysis. Then, we assume the following behaviors
rs ¼ e�1 ~rs; ra ¼ e~ra; q ¼ e~q; ð23Þ
where the tilde quantities are independent of e (note in particular that ~rs ¼ 1=diamðDÞ). As e goes to zero, the scattering and
total cross sections take large values and the absorption cross section becomes small, rendering the configuration optically
thick and diffusive.

Using Eq. (23), the scaled version of the transport Eq. (1) becomes
X � rWðX;xÞ þ
~rs

e
þ e~ra

� �
WðX;xÞ �

~rs

e
WðxÞ ¼ e~qðxÞ: ð24Þ
It is now well understood (see e.g., [5,12,6, Chapter XXI]) that
lim
e!0

WðX;xÞ ¼ lim
e!0

WðxÞ ¼ uðxÞ;
where the scalar flux u satisfies the diffusion problem
�r � 1
3~rs
ru

� �
þ ~rau ¼ ~q; ð25Þ
with a Dirichlet boundary condition whose exact form can be found in [5, p. 109]. We point out, that under the assumptions
made for the angular quadrature, the diffusion limit of the solution to the semi-discrete problem Eq. (6) (discrete-ordinate
transport equation) has the same limit properties
lim
e!0

wjðxÞ ¼ lim
e!0

�wðxÞ ¼ uðxÞ; 8j 2 ½1;nX�:
The purpose of the next section is to analyze the limit of the discrete problem Eq. (21) (spatially discretized discrete-ordinate
transport equation) as e goes to zero, with the mesh size h held constant. In particular, we want to investigate whether the
DG approximation Eq. (21) reduces to a consistent and convergent approximation of the diffusion equation, Eq. (25), as
e ? 0.

4.2. The limit problem as e ? 0

Using Eq. (22) in the definition of c and d, see Eq. (15), and considering the limit as e goes to zero (i.e., e < c0), we obtain
c ¼ c0e; d ¼ d0
1

c0e
� 1

� �
: ð26Þ
Then, accounting for the scaling defined in Eq. (23), the scaled DG-formulation consists of seeking w 2Wh so that the follow-
ing holds for all v 2Wh:
X

K2Th

Z
K

XnX

j¼1

xj Xj � rwjv j þ
~rs

e
þ e~ra

� �
wjv j �

~rs

e
�wv j

� �
dxþ

X
F2Fb

h

X
Xj �n60

xj

Z
F
jXj � njwjv jdxþ d0

1
c0e
� 1

� �

�
X
F2Fi

h

Z
F
ffJðwÞ � nggffJðvÞ � nggdxþ

X
F2Fi

h

Z
F

XnX

j¼1

xj jXj � nj
c0e
2

swjtsv jt� 2Xj � ffwjnggffv jgg
	 


dx

¼
Z
D
e~qvdxþ

X
F2Fb

h

X
Xj �n60

xj

Z
F
jXj � njwinc

j v jdx: ð27Þ
In the rest of the asymptotic analysis we only consider winc = 0 and we refer the reader to [8] for the handling of inhomo-
geneous Dirichlet boundary conditions. The main result of our asymptotic analysis is the following:

Proposition 1. Let w 2Wh be the solution to the scaled SN-DG problem Eq. (27). Then, as e ? 0, w converges to an isotropic
function u 2 V0,h. Furthermore, there is a vector field J 2 (Vh)d so that the pair (u, J) solves the following DG system for all v 2 V0,h

and all L 2 (Vh)d:
X
K2Th

Z
K
r � Jþ ~rauð Þvdxþ

X
F2Fi

h

Z
F

cnF

c0

2
sutsvt� 2ffJ � nggffvgg

	 

dx ¼

Z
D

~qvdx;

X
K2Th

Z
K

1
3
ruþ ~rsJ

� �
� Ldxþ

X
F2Fi

h

Z
F
�2

3
ffunggffLgg þ d0

3c0
ffJ � nggffL � ngg

� �
dx ¼ 0;

ð28Þ
where cnF :¼
P

Xj �nF60xjjXj � nF j is bounded away from zero uniformly with respect to F 2 Fi
h;h, and nX.
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The system (28) coincides exactly with the method from [7, Section 5.3] on the interior cells of the domain. The two meth-
ods differ only at the boundary, where the present method implements the zero boundary condition strongly. Since this dif-
ference in the implementation of the boundary condition is non-essential, we conclude from the theoretical convergence
analysis in [7] that (28) is a consistent and convergent approximation of (25). That is, the discrete transport formulation
Eq. (27) is robust and yields a convergent approximation of the diffusion equation as e goes to zero.

We restrict ourselves to a formal asymptotic derivation. A complete rigorous convergence proof can be made by adapting
the arguments from [8, Section 4] to the present case.

The formal asymptotic argument consists of assuming that the angular flux can be expanded in powers of e as follows:
w ¼ wð0Þ þ ewð1Þ þ e2wð2Þ þ Oðe3Þ:
Then, we insert this ansatz in Eq. (27) and separate the terms involving different powers of e. This yields equations for the
terms involving e�1, e0, e, etc.

Step 1: Terms involving e�1: isolating the terms of negative order in e in Eq. (27) yields
XnX

j¼1

xj

Z
D

~rs wð0Þj � wð0Þ
	 


v jdxþ d0

c0

X
F2Fi

h

Z
F
ffJðwð0ÞÞ � nggffJðvÞ � nggdx ¼ 0;
for every v 2Wh. Taking v ¼ wð0Þ � wð0Þ in the above equality and observing that Jðwð0ÞÞ ¼ 0 yields
XnX

j¼1

xj

Z
D

~rs wð0Þj � wð0Þ
	 
2

dxþ d0

c0

X
F2Fi

h

Z
F
ffJðwð0ÞÞ � ngg2dx ¼ 0:
Upon observing that the integrands in both terms are squared and that the sum has to be zero, we conclude that wð0Þj ¼ wð0Þ

for all j 2 [1,nX], i.e., the leading order of the angular flux w(0) is isotropic.
Step 2: Terms involving e0: We continue the asymptotic analysis by considering the terms of the next leading order, e0,
which yields
X

K2Th

XnX

j¼1

xj

Z
K

Xj � rwð0Þj þ ~rs wð1Þj � wð1Þ
	 
	 


v jdx�
X
F2Fi

h

XnX

j¼1

xj

Z
F

2Xj � ffwð0Þj nggffv jggdxþ d0

X
F2Fi

h

Z
F
ffJðc�1

0 wð1Þ

� wð0ÞÞ � nggffJðvÞ � nggdxþ
X
F2Fb

h

X
Xj �n60

xj

Z
F
jXj � njwð0Þj v jdx ¼ 0; 8v 2Wh: ð29Þ
Testing this equation with v = w(0), which is isotropic (according to the results obtained in Step 1), we observe that only the
last term in Eq. (29) is non-zero. More precisely the first term in Eq. (29) is zero owing to the symmetry property of the quad-
rature rule (3); the second term is zero since by definition

P
16j6NX

xjw
ð1Þ
j ¼ wð1Þ; the third term is zero again owing to the

symmetry property (3); the fourth term is zero since {{J(v) � n}} = 0 for v isotropic, which is again a consequence of (3). Thus,
we deduce that
X

F2Fb
h

cnF

Z
F
jwð0Þj2dx ¼ 0:
Owing to Eq. (5), we observe that cnF is uniformly bounded from below by a positive constant c0. This fact, together with the
above equation, then implies that the leading order term is zero on the domain boundary, wð0Þj@D ¼ 0, i.e., w(0) 2W0,h. Next,
we choose a vector-valued function L 2 (Vh)d and we pick the test function v such that vj(x) = Xj � L(x). Next, we express each
term of Eq. (29). For each cell K 2 Th in Eq. (29), we obtain:
XnX

j¼1

xj

Z
K

Xj � rwð0Þj þ ~rs wð1Þj � wð1Þ
	 
	 


Xj � Ldx ¼
Z

K

XnX

j¼1

xj ðXj � rwð0Þj ÞðXj � LÞdxþ ~rsw
ð1Þ
j Xj � L

	 

¼
Z

K

1
3
rwð0Þj þ ~rsJðwð1Þj Þ

� �
� Ldx:
For each interior face F 2 Fi
h, we have
XnX

j¼1

xj

Z
F

2Xj � ffwð0Þj nggffXj � Lggdx� d0

c0

Z
F
ffJðwð1Þ � c0w

ð0ÞÞ � nggffJðvÞ � nggdx

¼
Z

F

2
3
ffwð0Þj nggffLgg � d0

3c0
ffJðwð1ÞÞ � nggffL � ngg

� �
dx:
Note that we used J(w(0)) = 0 and JðvÞ � n ¼ 1
3 L � n. The terms on the boundary faces vanish, since we have previously estab-

lished that w(0) vanishes at the boundary. Now, let us introduce the notation
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u :¼ wð0Þ; J :¼ Jðwð1ÞÞ: ð30Þ
Summing up the above results and using the above change of notation Eq. (30), we infer that Eq. (29) implies that the fol-
lowing holds for all L 2 (Vh)d:
X
K2Th

Z
K

1
3
ruþ ~rsJ

� �
� Ldxþ

X
F2Fi

h

Z
F
�2

3
ffunggffLgg þ d0

3c0
ffJ � nggffL � ngg

� �
dx ¼ 0: ð31Þ
This is a discrete version of Fick’s law.
Step 3: Terms involving e1: Finally, the terms of first order in e in the asymptotic expansion yield the following:
X
K2Th

Z
K

XnX

j¼1

xj Xj � rwð1Þj þ ~rs wð2Þj � wð2Þ
	 


þ ~raw
ð0Þ
j

	 

v jdx

þ
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F2Fi

h
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XnX
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xj
c0

2
jXj � njswð0Þj tsv jt� 2Xj � ffwð1Þj nggffv jgg

	 

dxþ d0

c0

X
F2Fi

h

Z
F
ffJðwð2Þ � c0w

ð1ÞÞ � nggffJðvÞ � nggdx

þ
X
F2Fb

h

Z
F

X
Xj �n60

xjjXj � njwð1Þj v jdx ¼
XnX

j¼1

xj

Z
D

~qv jdx; 8v j 2Wh: ð32Þ
We test Eq. (32) with an isotropic test function v with zero boundary values, i.e., vj = u, for all j 2 [1,nX], where u 2 Vh,0. We
then obtain
X
K2Th

Z
K
r � Jþ ~rauð Þudxþ

X
F2Fi

h

Z
F

cnF

c0

2
sutsut� 2ffJ � nggffugg

	 

dx ¼

Z
D

~qudx: ð33Þ
This is a discrete balance equation. Equations Eqs. (33) and (31) are a DG discretization of the diffusion equation Eq. (25)
written in mixed form. This completes the derivation of our main asymptotic result.

5. One-dimensional numerical experiments

In this section, we compare the reduced-upwind method proposed in this paper with the standard upwind method for
typical one-dimensional radiation transport test problems published in the literature. Note that the standard solution tech-
nique based on transport sweeps may not be applicable anymore, because downwind angular information is required in the
proposed method. Efficient preconditioning methods are currently being developed for the proposed method, and our find-
ings will be reported in a future communication. Since the numerical experiments presented in this section deal exclusively
with one-dimensional problems, the discrete SN equations are solved by direct inversion of the entire linear system.

Since the linear discontinuous finite element (DG1) discretization with standard upwinding does not lock in the thick dif-
fusive limit in one space dimension, we mostly present results obtained using the constant discontinuous (DG0) spatial dis-
cretization. Most of the numerical tests shown have been proposed in Larsen et al. [12]. All the calculations are performed
using the S8 Gauss–Legendre quadrature. We used c0 = 2 and d0 = 1 in all the calculations. In agreement with the above
asymptotic analysis, numerical tests, not reported here, have shown that the method performs well and does not depend
much on c0 and d0 provided these two coefficients are of order one. All the numerical results are compared with the analyt-
ical S8 solutions which have been obtained using the Maple scripts of [17].

The units employed to measure lengths are denoted unitL; the units for the scalar flux, angular flux, and volumetric source
are denoted unitU, unitW, and unitS, respectively. For instance, it is usual in the literature to take unitL to be cm and unitU to
be particles/cm2/s.
5.1. Problem A

The first test case that we consider is problem #1 from [12]. A constant volumetric source is placed in a highly diffusive,
pure scatterer (ra = 0, rs = 100 unitL�1, domain length of 10 unitL, q = 0.01 unitS) with vacuum boundary conditions.

We show in Fig. 1 the scalar flux computed using DG0 on four meshes composed of 10, 20, 40, and 500 cells, respectively.
For each mesh we compare the solution obtained with the new reduced upwind method, the solution obtained with stan-
dard upwinding and the S8 analytical solution. The solution with standard upwinding locks even with 500 cells. This test
demonstrates well that the reduced upwind method is better than standard upwinding for highly diffusive configurations.
For instance, the new method provides vastly superior results than the standard one on coarse cells (10 cells total, each 100
mfp thick). The new method converges significantly faster than the standard one to the exact analytical solution when the
mesh is refined.
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Fig. 1. DG0 Scalar flux solutions for Problem A with various mesh resolutions.
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Fig. 2. DG0 Scalar flux solutions for Problem B with various mesh resolutions.

J.C. Ragusa et al. / Journal of Computational Physics 231 (2012) 1947–1962 1955
5.2. Problem B

The second test case that we consider is problem #2 from [12]. An isotropic unit boundary source, placed at x = 0, radiates
onto a highly diffusive pure scatterer (ra = 0, rs = 100 unitL�1, domain length of 10 unitL). Fig. 2 shows that for DG0, the stan-
dard upwind and the reduced upwind methods both give reasonable approximations of the exact solution. No locking is ob-
served in this test case.
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5.3. Problem C

The third test case that we consider is problem #4 from [12]. A quasi-normally incident beam radiates from the left onto a
highly diffusive pure scatterer (ra = 0, rs = 100 unitL�1, domain length of 10 unitL). The incident angular flux is 1

xN
unitW,

where xN is the quadrature weight associated with the direction closest to the normal in the SN Gauss–Legendre quadrature
set. This pencil beam problem develops a narrow boundary layer at x = 0.

The results shown in Fig. 3 indicate again that the reduced upwind method performs better than standard upwinding for
the DG0 approximation. For instance, one observes in the right panel of Fig. 3 that the DG0 discretization with reduced
upwinding attempts at capturing the boundary layer effect whereas the standard upwind technique seems to ignore it
completely.

In [12], a variation of this problem (labeled problem #5 in [12]) employs a fine mesh in which the first 0.05 unitL of the
domain is discretized using 50 cells and the remainder of the domain is discretized using 10 cells; thus, a total of 60 cells is
used. We show the corresponding DG0 results in Fig. 4. The benefits of the new method are obvious.

We show in Fig. 5 the solution to the above problem using the DG1 approximation with 10 and 40 cells. The reduced and
the standard upwind methods perform equally well. After the first cell, both approximations are indistinguishable and the
two curves coincide. This is not a surprise since it is known that DG1 does not lock in one space dimension with the standard
upwind method. It seems that the scalar flux of the DG1 approximation with reduced upwinding slightly overshoots in the
boundary layer; however, the reduced upwind method yields an average scalar flux in the first cell that is more accurate than
the one resulting from the standard upwind method. Simulations run on the refined mesh defined above with the DG1
approximation reveal that both techniques give very similar results. We do not show these results here for conciseness.
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Fig. 3. DG0 Scalar flux solutions for Problem C.
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Fig. 4. DG0 scalar flux solutions for Problem C, fine discretization in the boundary layer.
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Fig. 5. DG1 Scalar flux solutions for Problem C.
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5.4. Problem D

In this fourth test case we solve the transport equation in a domain of length 1 unitL and the total and scattering cross
sections are: rt ¼ 1

e unitL�1 and rs ¼ 1
e � e
� �

unitL�1, respectively. The parameter e takes the following values: 10�2, 10�3,
10�4. As e decreases the problem configuration is increasingly optically thick and diffusive: rt values are 102, 103, 104 unitL�1,
respectively. The associated scattering ratio, c ¼ rs

rt
, are 0.9999, 0.999999, and 0.99999999, respectively. Vacuum boundary

conditions apply and a unit volumetric source is used.
We show in Fig. 6 the numerical solutions obtained with the new technique (left panel) and the standard upwind tech-

nique (right panel) for the various predefined values of e. The analytical solutions are also shown in each case. Again, it is
clear that the new technique is vastly superior to the standard upwinding. We note that as e ? 0, the standard upwind tech-
nique locks, i.e., it yields the continuous zero solution (a well-known result), whereas the new technique does not show this
flaw.

We show in Fig. 7 the solutions obtained with e = 10�4 and various mesh resolutions (10, 20, and 40 mesh cells). The new
technique converges towards the analytical solution as the mesh is refined, even for very thick and diffusive material con-
figurations, whereas the solution obtained with the standard upwind method locks and tends toward the zero solution.
5.5. Problem E

In the last test case we consider a domain composed of two different materials. Three different configurations are con-
sidered. In material region 1 (0 < x < 0.5 unitL), rs,1 is held constant and set to 100 unitL�1. In the material in region 2
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Fig. 6. DG0 scalar flux solutions for Problem D for e = 10�2, 10�3, and 10�4 (left panel: reduced upwind scheme and exact solutions; right panel: standard
upwind scheme and exact solutions).
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Fig. 9. DG0 scalar flux solutions for Problem E with 100 spatial cells: new upwind formulation (left panel), standard upwind formulation (right panel).
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(0.5 < x < 1 unitL) rs,2 is uniformly constant and is either 102, 103, or 104 unitL�1. Both materials in region 1 and region 2 are
pure scatterers (i.e., ra = 0). The problem configuration is progressively made more and more heterogeneous as rs,2 increases.
The domain’s optical thicknesses for these three tests are 100, 550, and 5050 mean free paths, respectively. In both regions, a
constant isotropic volumetric source of strength 10�2 unitS is used. The configuration is placed in vacuum.
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We show in Fig. 8 the results obtained with DG0 on a mesh composed of 10 cells uniformly distributed. The left panel
shows the results obtained with the reduced upwinding and the right panel shows the results obtained with the standard
upwind method. We observe, again, that the standard method locks whereas the new method performs very well consider-
ing the small number of cells used.

We show in Fig. 9 the results obtained with DG0 on a mesh composed of 100 cells uniformly distributed. Again, the reduced
upwind method performs very well. The standard method locks on this fine mesh when rs,2 equal to 103 and 104 unitL�1.
6. Conclusions

A new, unconditionally stable, discontinuous Galerkin method for radiative transfer and neutron transport problems has
been introduced. The scheme is based on a reduced upwind stabilization, as opposed to the standard upwinding commonly
used in particle transport problems. This new scheme has been tested with standard one-dimensional (slab) test cases and
has been found to perform well in all regimes, from transport-dominated to diffusion-dominated situations, and for piece-
wise constant (DG0) and piecewise linear (DG1) approximations. In this respect, the piecewise constant version of the new
method performs significantly better than the classical finite-volume ‘‘step’’ scheme. Depending on the relative magnitude of
the scattering cross section, the new numerical flux is defined so that the method reverts back to the standard upwind tech-
nique in transport-dominated regimes.

From the point of view of implementation, a current drawback of the new scheme is that the resulting transport operator
for a given direction cannot be inverted exactly with a transport sweep anymore, since downwind angular flux contributions
may have to be accounted for. We conjecture, but have not thoroughly investigated the issue yet, that inexact sweeps, as
applied in [9] are a good substitute, in particular when used in conjunction with diffusion acceleration techniques. This is
motivated by the observation that (i) our method reverts to standard upwind in the scattering-free case, and (ii) transport
sweep solutions decay very fast in diffusion-dominated regimes. We are planning to apply a multigrid technique directly to
the radiation operator and devise a robust smoother. Furthermore, performing multi-dimensional tests to assess the accu-
racy and effectiveness of this method are also planned, and will be subsequently communicated, along with a rigorous math-
ematical convergence analysis of the new scheme.
Appendix A. DG formulations for 1D slab problems

We derive in this Appendix explicit formulas for the weak formulations in one-dimensional slab geometries, [0,L]. Spe-
cifically, we provide expressions for the piece-wise constant (DG0) and linear discontinuous (DG1) approximations with vac-
uum boundary conditions, isotropic scattering, and isotropic external source. The SN approximation of this problem can be
formulated as follows:
lj

dwj

dx
þ rtwj ¼ rs

�wþ q; for j 2 ½1;nX�; ðA:1Þ

�w ¼
XnX

j¼1

xjwj; ðA:2Þ
where the angular cosines lj are the x-components of the quadrature directions Xj. The array ðw1; . . . ;wNX
Þ is the vector of

angular fluxes and �w is the scalar flux. We use standard notation from finite volume methods to recast the weak formulation.
The slab is split into N elements, resulting in the following spatial grid: 0 = x1/2 < x3/2 < . . . < xi�1/2 < xi+1/2 < . . . < xN+1/2 = L with
local mesh size Di = xi+1/2 � xi�1/2. We assume that the material properties and the external source are piece-wise constant,
and we denote these quantities with rt;i ¼ rtj½xi�1=2 ;xiþ1=2 � and qi ¼ qj½xi�1=2 ;xiþ1=2 �

Starting from Eq. (18), we write the local DG bilinear form for a single element Ki = [xi�1/2,xi+1/2] and for a given angular
direction j 2 [1,nX] as follows:
Z xiþ1=2

xi�1=2

�ljwjðxÞ
dv i

j

dx
þ rt;iwjðxÞv i

jðxÞ
 !

dx� cF�j ðxi�1=2Þv i
jðxi�1=2Þ þ cFþj ðxiþ1=2Þv i

jðxiþ1=2Þ

¼ rs;i

Z xiþ1=2

xi�1=2

�wðxÞv i
jðxÞdxþ qi

Z xiþ1=2

xi�1=2

v i
jðxÞdx; ðA:3Þ
where v i
j is any test function for direction lj supported in the element Ki. In order to define the numerical flux cF�j , let us de-

note by wi
jðxÞ the restriction of the angular flux in direction lj to the interval Ki, and JiðxÞ ¼

PnX
j¼1xjljw

i
jðxÞ accordingly. Then,

taking into account that ‘‘normal vectors’’ are either +1 or �1, the one-dimensional version of (16) becomes
�cF�j ðxiþ1=2Þ ¼ �lj

wi
jðxiþ1=2Þ þ wiþ1

j ðxiþ1=2Þ
2

�
ciþ1=2

2
jljj wi

jðxiþ1=2Þ � wiþ1
j ðxiþ1=2Þ

	 

� diþ1=2

2
lj

Jiðxiþ1=2Þ � Jiþ1ðxiþ1=2Þ
2

ðA:4Þ
Here, the superscripts ‘‘+’’ and ‘‘�’’ refer to the positive and negative sign of the normal of the interval at xi+1/2, respectively.
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When c = 1 (and thus d = 0), the expressions for the numerical fluxes at xi�1/2 and xi+1/2 simplify to the standard upwind
values:
cFþj ðxiþ1=2Þ ¼ cF�j ðxiþ1=2Þ ¼
ljw

i
jðxiþ1=2Þ if lj P 0;

ljw
iþ1
j ðxiþ1=2Þ if lj < 0:

(
ðA:5Þ
A.1. Expressions for DG0

In the DG0 setting the approximation is piece-wise constant, and there is only one scalar shape function per element.
v iðxÞ ¼
1 if x 2 K ¼ ½xi�1=2; xiþ1=2�;
0 otherwise;

�
ðA:6Þ
and there is only one unknown per element per angular direction j, i.e., wjðxÞ ¼
PN

i¼1w
i
jv iðxÞ. This implies that wjðxÞ ¼ wi

j in the
element Ki = [xi�1/2,xi+1/2]. Furthermore, the vector flux is constant and we let Ji = Ji(x) on Ki with the convention that J0 = 0 and
JN+1 = 0. Inserting these definitions into (A.4), we obtain
�cF�j ðxiþ1=2Þ ¼ �lj

wi
j þ wiþ1

j

2
�

ciþ1=2

2
jljj wi

j � wiþ1
j

	 

� diþ1=2

2
lj

Ji � Jiþ1

2
: ðA:7Þ
In combination with (A.3), we infer that the set of coupled equations to be solved for the N � nX unknowns fwi
jg16i6N;16j6nX

is
rt;iDi þ
ci�1=2 þ ciþ1=2

2
jljj

� �
wi

j þ
lj � ciþ1=2jljj

2
wiþ1

j �
lj þ ci�1=2jljj

2
wi�1

j

¼ rs;iwiDi þ qiDi þ
lj

4
diþ1=2Jiþ1 � ðdi�1=2 þ diþ1=2ÞJi þ di�1=2Ji�1
	 


: ðA:8Þ
Next, we reproduce the arguments of the asymptotic derivation and specialize them to one-dimensional slab problems. We
also assume that rs and rt are constant (homogeneous domain) to simplify the analysis. Using (22)–(26) and inserting the
expansion wi

j ¼ wi
j;0 þ ewi

j;1 þ e2wi
j;2 þOðe3Þ into (A.8) we obtain that the following holds at the e�1 order
~rsDi wi
j;0 � wi

0

	 

�

lj

4
d0

c0
ðJiþ1

0 � Ji
0Þ þ ðJ

i�1
0 � Ji

0Þ
	 


¼ 0:
where J0 = J(w0). Multiplying this equation by xjðwi
j;0 � wiÞ and summing over i and j we obtain that
XN

i¼1

XnX

j¼1

~rsxjDiðwi
j;0 � wi

0Þ
2 þ 1

4
d0

c0

XN�1

i¼1

XnX

j¼1

ðJiþ1
0 � Ji

0Þ
2 ¼ 0;
which immediately implies that w0 is isotropic and J0 = 0. At the order e0 we obtain
~rsDi wi
j;1 � wi

1

	 

þ

lj

2
ðwiþ1

0 � wi�1
0 Þ �

lj

4
d0

c0
Jiþ1

1 � 2Ji
1 þ Ji�1

1

	 

¼ 0:
After multiplying by xjlj and summing over j we infer, using (4), that
~rsJ
i
1 þ

wiþ1
0 � wi�1

0

6Di
� 1

12
d0

c0
Di

Jiþ1
1 � 2Ji

1 þ Ji�1
1

D2
i

¼ 0: ðA:9Þ
At the order e we have
ð~raDiþc0jljjÞw
i
0þ ~rsðwi

j;2�wi
j;2Þþ

lj

2
ðwiþ1

j;1 �wi�1
j;1 Þ�c0

lj

2
ðwiþ1

0 �wi�1
0 Þ�

lj

4
d0

c0
ðJiþ1

2 �2Ji
2þ Ji�1Þ�

lj

4
d0

c0
ðJiþ1

2 �2Ji
2þ Ji�1Þ¼~qDi:

ðA:10Þ
We multiply this equation by xj and sum over j to obtain that
~raw
i
0 þ

Jiþ1
1 � Ji�1

i

2Di
� c0

c0

2
Di

wiþ1
0 � 2wi

0 þ wi
0

D2
i

¼ ~q; ðA:11Þ
where c0 is the constant in (5), which in the one-dimensional case can be computed from the angular quadrature rule.
To conclude we observe now that the system (A.9)–(A.11) is a second-order (assuming the mesh is uniform) approxima-

tion of
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~rsJ þ
1
3
@xw�

1
12

d0

c0
Di@xxJ ¼ 0; ðA:12Þ

~rawþ @xJ � c0
c0

2
Di@xxw ¼ ~q; ðA:13Þ
which is itself a first-order perturbation of the diffusion limit equation in mixed form. In other words, (A.9)–(A.11) is a stable
first-order approximation of the diffusion limit equation as stated in our main asymptotic result. One can finally convince
oneself that (A.9)–(A.11) is a stable (therefore convergent) approximation by observing that the following a priori stability
estimate holds
XN

i¼1

~rsðJi
1Þ

2 þ ~raðwi
0Þ

2 þ 1
12

d0

c0

XN�1

i¼1

Jiþ1
1 � Ji

1

Di

 !2

þ c0
c0

2

XN�1

i¼1

wiþ1
0 � wi

0

Di

 !2

¼
XN

i¼1

~qwi
0: ðA:14Þ
This estimate is obtained by multiplying (A.9) by Ji
1, multiplying (A.11) by wi

0, adding the two equations, and summing over i
(using the zero boundary condition).

A.2. Expressions for DG1

We now specialize Eq. (18) to the DG1 setting in one space dimension. In the DG1 setting the approximation is piece-wise
linear and discontinuous. We use the following two shape functions in each element Ki = [xi�1/2, xi+1/2]:
v i;LðxÞ ¼
xiþ1=2�x

Di
if x 2 Ki;

0 otherwise;

(
ðA:15Þ

v i;RðxÞ ¼
x�xi�1=2

Di
if x 2 Ki;

0 otherwise;

(
ðA:16Þ
and the angular flux in direction j is approximated as follows in the interval Ki:
wjðxÞ ¼ wi;L
j v i;L

j ðxÞ þ wi;R
j v i;R

j ðxÞ; ðA:17Þ
giving the following global representation: wjðxÞ ¼
PN

i¼1 wi;L
j v i;L

j ðxÞ þ wi;R
j v i;R

j ðxÞ
	 


. Evaluating Eq. (18) with the test function

v i;L
j ðxÞ first and then with the test function v i;R

j ðxÞ yields the following two sets of equations:
lj

2
wi;L

j þ wi;R
j

	 

þ

rt;iþ1
2
Di

6
2wi;L

j þ wi;R
j

	 

¼

rs;iþ1
2
Di

6
2wi;L

j þ wi;R
j

	 

þ

qiþ1
2
Di

2
� bFjðxi�1=2Þ; ðA:18Þ
and
�
lj

2
wi;L

j þ wi;R
j

	 

þ

rt;iþ1
2
Di

6
wi;L

j þ 2wi;R
j

	 

¼

rs;iþ1
2
Di

6
wi;L

j þ 2wi;R
j

	 

þ

qiþ1
2
Di

2
þ bFjðxiþ1=2Þ; ðA:19Þ
where the expressions for the numerical fluxes are:
bFjðxiþ1=2Þ ¼ lj

wi;R
j þ wiþ1;L

j

2
þ ciþ1

2
jljj wi;R

j � wiþ1;L
j

	 

þ diþ1

4
ljðJ

i;R � Jiþ1;LÞ; ðA:20Þ
and
� bFjðxi�1=2Þ ¼ �lj

wi;L
j þ wi�1;R

j

2
þ ci

2
jljj wi;L

j � wi�1;R
j

	 

� di

4
ljðJ

i;L � Ji�1;RÞ; ðA:21Þ
with Ji;L ¼
PnX

j¼1xjljw
i;L
j and Ji;R ¼

PnX
j¼1xjljw

i;R
j . The set of coupled equations to be solved for the 2 � N � nX unknowns

fwi;L
j ;w

i;R
j g16i6N;16j6nX

are (A.18) and (A.19). It is now a straightforward task to reproduce again the arguments the main asymp-
totic result. We leave the details to the reader.
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