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In this work, we consider the three-dimensional vector Poisson-like equation supple-

mented by a nonstandard set of three scalar boundary conditions consisting of the
simultaneous specification of the divergence of the unknown, its normal component,
and the normal component of its curl on the entire boundary. A weak formulation of
this elliptic boundary value problem is proposed. Existence and uniqueness of a solution
are established under two compatibility conditions. An uncoupled solution algorithm
is introduced together with its finite element approximation. The corresponding error
analysis is performed.
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1. Introduction

1.1. Preliminaries

Let us consider the problem of determining the static magnetic field H = H(r)

produced by a given electric current density j(r) in a bounded three-dimensional

region Ω embedded within a perfect conductor. The magnetic field is solution to

the following boundary value problem














∇ ×H = j(r) ,

∇ · (µH) = 0 ,

n ·H|Γ = 0 ,

where µ is the magnetic permeability, n denotes the outward unit normal to Γ = ∂Ω,

and the source j is assumed to satisfy the compatibility condition ∇· j = 0. Hence-

forth we assume that µ is a positive function bounded from below a.e. by µ0 and

bounded from above a.e. by µ1.

Expressing the solenoidal field µH in terms of a vector potential A so that

µH = ∇ ×A, the original magnetostatic problem can be rewritten as follows:










∇ ×

(

1

µ
∇ ×A

)

= j(r) ,

n ·∇ ×A|Γ = 0 .

The solution A to this problem is non-unique since the solution set is invariant

under the so-called gauge transformation

A −→ A′ = A + ∇Ψ ,

where Ψ(r) is an arbitrary (sufficiently smooth) function. To eliminate this inde-

terminacy a supplementary condition must be imposed. For the static magnetic

problem considered here, it is classical to assume the (scalar) condition ∇·A = 0,

usually called gauge condition. This condition constitutes an additional scalar equa-

tion to be satisfied by the unknown vector field and the above problem for A can

be rewritten as follows:






















∇ ×

(

1

µ
∇ ×A

)

− ∇(∇·A) = j(r) ,

∇ ·A = 0 ,

n ·∇ × A|Γ = 0 .

In this new form, the problem has four (scalar) equations and only three scalar

unknowns, namely, the three components of A.

As a matter of fact, the supplementary equation is almost satisfied as a con-

sequence of the specific form of the Poisson-like equation and of the presence of

the compatibility condition on j. By taking the divergence of the first equation, we

obtain −∇2∇ ·A = ∇ · j = 0. It follows that the function ∇·A|Γ is harmonic in
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Ω and therefore vanishes in Ω provided that the boundary condition ∇·A|Γ = 0 is

satisfied. Thus the problem above is formally equivalent to the following system:






















∇ ×

(

1

µ
∇ ×A

)

− ∇(∇·A) = j(r) ,

∇ ·A|Γ = 0 ,

n ·∇ ×A|Γ = 0 .

This problem has as many (three) equations as unknowns but only two boundary

conditions.

Still, this problem does not determine A uniquely since the solution set is

invariant under the (restricted) gauge transformation

A −→ A′ = A + ∇η ,

for any harmonic function η(r). To remove the residual arbitrariness in A, it is neces-

sary to impose a third scalar boundary condition, i.e. n ·A|Γ = 0. In conclusion, we

are led to consider the following problem: Find the magnetic potential A such that



































∇ ×

(

1

µ
∇ ×A

)

− ∇(∇·A) = j(r) ,

∇ ·A|Γ = 0 ,

n ·A|Γ = 0 ,

n ·∇ ×A|Γ = 0 .

Note that formally there are as many equations and boundary conditions as

unknowns. The three boundary conditions supplementing the Poisson-like equation

for A are nonclassical in two respects. First, the two conditions involving the diver-

gence and the normal component of the unknown appear to be mutually exclusive

if we try to express this problem in a variational form, i.e. if we try to express it as

the first-order optimality condition characterizing the minimum of a quadratic func-

tional. Second, the last scalar condition involving the normal component of ∇×A

is such that there is no corresponding term at all in the surface integrals involved

in the variational formulation of the problem. Thus, this very simple magnetostatic

problem, once formulated in terms of vector potential, leads to a Poisson-like equa-

tion supplemented with a quite uncomfortable set of boundary conditions. The goal

of the present work is to analyze this nonstandard boundary value problem.

1.2. Scope of the paper

As an alternative to the approach described above, we could have enforced the

homogeneous scalar boundary condition n ·∇ × A|Γ = 0 by imposing the two

tangential components of the vector potential to vanish on Γ, i.e. n × A|Γ = 0.

When combined with the condition on the divergence, ∇·A|Γ = 0, we obtain a
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problema that fits well in a standard variational formulation. Since this class of

problem is quite well understood, we shall not consider this alternative technique

any further, and in the rest of the paper we shall enforce n ·∇ ×A|Γ = 0 directly.

Our aim in this paper is to characterize the solution of the vector Poisson-

like equation when the normal component of the unknown, its divergence, and the

normal component of its curl are enforced on the boundary.

In a recent paper,6 we analyzed a vector Poisson equation in two dimensions

supplemented with two apparently mutually exclusive scalar boundary conditions:

the normal component of the unknown and its divergence. In the present work,

we extend our study to the three-dimensional problem nontrivially, for in addition

to the two aforementioned scalar boundary conditions, we now enforce the normal

component of the curl of the unknown on the entire boundary.

The content of the paper is organized as follows. In Sec. 2 we introduce a weak

formulation of our problem with the homogeneous version of the three boundary

conditions. The well-posedness of the problem is studied. The kernel of the linear

operator associated with the problem is shown to be trivial (contrary to what was

found for the 2D problem6), while the kernel of the adjoint operator turns out

to be nontrivial. As a consequence, the weak problem we started from is modified

and reformulated in a well-posed manner. Then, general nonhomogeneous boundary

conditions are studied, and the problem is shown to be well-posed if the data satisfy

two compatibility conditions. In Sec. 3 we introduce a splitting method that leads

to an uncoupled numerical algorithm requiring to solve only scalar Dirichlet or

Neumann problems for the Poisson or Poisson-like operator and two Quartapelle–

Muzzio problems. The finite element approximation and the corresponding error

analysis of the split solution are discussed in Sec. 4.

2. Analysis of the Weak Form of the Problem

2.1. Preliminaries and problem definition

Throughout this paper, we assume that Ω is a bounded, open, and simply-connected

domain of R
3, with a Lipschitz continuous boundary Γ. We suppose that Γ is

connected (i.e. Ω is contractible).

The problem we consider in this section consists formally of looking for a vector

field u such that


































∇ ×

(

1

µ
∇ × u

)

− ∇(∇ ·u) = f in Ω ,

∇·u = 0 on Γ ,

n ·u = 0 on Γ ,

n ·∇ × u = 0 on Γ .

(2.1)

aThis problem corresponds to a 3D Quartapelle–Muzzio problem with fully homogeneous bound-
ary conditions, see later.
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To build a weak formulation to this problem, we introduce the following Hilbert

spaces.

X(Ω) = {v ∈ L2(Ω) |∇ ·v ∈ L2(Ω), ∇ × v ∈ L2(Ω)} , (2.2)

XN (Ω) = {v ∈ X(Ω) |n× v|Γ = 0} , (2.3)

XT (Ω) = {v ∈ X(Ω) |n ·v|Γ = 0} , (2.4)

XT,T (Ω) = {v ∈ X(Ω) |n ·v|Γ = 0 and n ·∇ × v|Γ = 0} . (2.5)

We introduce the bilinear form

a(u,v) =

(

1

µ
∇ × u, ∇ × v

)

+ (∇ ·u, ∇ ·v) , ∀u,v ∈ X(Ω) . (2.6)

It is clear that a ∈ L(X(Ω) × X(Ω); R) and a is symmetric positive semidefinite.

Furthermore, it can be shown7,12 that the restriction of a to the Hilbert spaces

XN (Ω), XT (Ω) and XT,T (Ω) induces a scalar product and that the associated norm

is equivalent to the natural norm of X(Ω). Hereafter we equip XN (Ω), XT (Ω) and

XT,T (Ω) with the following scalar product and norm:

(u,v)1 = (∇ × u, ∇ × v) + (∇·u, ∇·v) , and | · |1 = (·, ·)
1/2
1 . (2.7)

Given f ∈ L2(Ω), problem (2.1) can be reformulated into the following weak

form:






Find u ∈ XT,T (Ω) such that

a(u,v) = (f ,v), ∀v ∈ XN (Ω) .
(2.8)

Determining whether problem (2.8) is well-posed is equivalent to asking whether

the operator A : XT,T (Ω) −→ X′
N (Ω) defined by

〈Au,v〉 = a(u,v) , ∀u ∈ XT,T (Ω), ∀v ∈ XN (Ω) , (2.9)

is bijective. The answer to this question is rooted in the study of the kernel of A

and At together with the possibility of deriving a priori bounds on the solution.

2.2. Analysis of the kernel of A

Let us introduce the following spaces

L2
0(Ω) =

{

q ∈ L2(Ω)

∣

∣

∣

∣

∫

Ω

q = 0

}

,

H̃1(Ω) = H1(Ω) ∩ L2
0(Ω) .

Since divergence-free vector fields are bound to play an important role in our

analysis, we also introduce:

J0
T (Ω) = {v ∈ L2(Ω)

∣

∣ ∇ ·v = 0 in Ω and n ·v|Γ = 0} ,

J1
N (Ω) = {v ∈ XN (Ω)

∣

∣ ∇·v = 0 in Ω} .
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Lemma 2.1. The operator ∇× : J1
N (Ω) −→ J0

T (Ω) is an isomorphism.

Proof. See the second part of Theorem I.3.6 in Girault–Raviart.7

Corollary 2.1. We have the orthogonal decomposition

L2(Ω) = µ−1/2
∇ × J1

N (Ω) ⊕ µ1/2
∇H̃1(Ω) .

Proof. Let v be a vector field belonging to L2(Ω). Let q in H̃1(Ω) be such that

(µ1/2∇q, µ1/2∇φ) = (v, µ1/2∇φ) for all φ in H̃1(Ω). Then, set w = µ1/2(v −

µ1/2∇q). It is clear that w belongs to L2(Ω) and, for all φ in H̃1(Ω), (w, ∇φ) = 0,

which proves that w is in J0
T (Ω). Then, owing to Lemma 2.1, we infer that there is

ψ ∈ J1
N (Ω) such that w = ∇×ψ. As a result, we have v = µ−1/2∇×ψ+µ1/2∇q.

Furthermore, it is clear that the decomposition is orthogonal.

Remark 2.1. Corollary 2.1 is a simple extension of the standard Hodge decompo-

sition L2(Ω) = J0
T (Ω) ⊕ ∇H̃1(Ω).

We are now ready to study the kernel of the operator A.

Lemma 2.2. KerA is trivial.

Proof. Let u ∈ XT,T (Ω) belong to KerA. By definition, u satisfies

a(u,v) = 0 , ∀v ∈ XN (Ω) . (2.10)

For any g ∈ J0
T (Ω), by Lemma 2.1 we can find a v ∈ J1

N (Ω) ⊂ XN (Ω) such

that ∇ × v = g. Thus, from (2.10) we have
(

1

µ
∇ × u,g

)

= 0 , ∀g ∈ J0
T (Ω) .

Since ∇ × u ∈ J0
T (Ω), we deduce ∇ × u = 0.

On the other hand, for any ζ ∈ L2(Ω), let q ∈ H1
0 (Ω) satisfying ∇2q = ζ in

Ω. Then, by choosing v = ∇q ∈ XN (Ω) in (2.10), we have (∇ ·u, ∇· (∇q)) = 0,

namely,

(∇·u, ζ) = 0 , ∀ ζ ∈ L2(Ω) ,

which implies that ∇ ·u = 0.

Summarizing the analysis above, |u|1 = 0; hence, u = 0. This completes the

proof.

2.3. Analysis of the adjoint operator At

Now we turn our attention to the study of the adjoint of A, At : XN (Ω) −→

(XT,T (Ω))′, which is defined by

〈Atv,u〉 = a(u,v) , ∀u ∈ XT,T (Ω) , ∀v ∈ XN (Ω) . (2.11)
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Let us define

J1
T,T (Ω) = {v ∈ XT,T (Ω) |∇ ·v = 0 in Ω} .

Lemma 2.3. The operator ∇× : J1
T,T (Ω) −→ J0

T (Ω) is an isomorphism.

Proof. See Theorem I.3.5 in Girault–Raviart.7

Lemma 2.4. The kernel of At is such that

KerAt = span(v0) , (2.12)

where v0 ∈ X(Ω) is a unique solution of















∇ × v0 = 0 in Ω ,

∇·v0 = 1 in Ω ,

n× v0 = 0 on Γ .

(2.13)

Proof. Let v ∈ XN (Ω) satisfying

a(u,v) = 0 , ∀u ∈ XT,T (Ω) . (2.14)

For any ζ ∈ L2
0(Ω), let q ∈ H̃1(Ω) be the solution of











∇2q = ζ in Ω ,

∂q

∂n
= 0 on Γ .

Then, by taking u = ∇q ∈ XT,T (Ω) in (2.14), we have (∇ ·v, ζ) = 0, for all

ζ ∈ L2
0(Ω), which implies that

∇·v = Cv :=
1

|Ω|

∫

Γ

n ·v . (2.15)

On the other hand, owing to Lemma 2.3, for any g ∈ J0
T (Ω), there exists a

unique w ∈ J1
T,T (Ω) ⊂ XT,T (Ω) such that ∇ ×w = g. Then, (2.14) gives

(

1

µ
g, ∇ × v

)

= 0 , ∀g ∈ J0
T (Ω) .

Since ∇ × v ∈ J0
T (Ω), we deduce ∇ × v = 0.

Consequently, we obtain that, if v ∈ XN (Ω) and Atv = 0, then v satisfies the

system
{

∇ × v = 0 ,

∇·v = Cv .
(2.16)

The converse is also true.
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2.4. A well-posed problem

The analysis above has shown that problem (2.8) is not well-posed, since the cor-

responding linear operator is not bijective (the operator is injective, but its adjoint

is not). Hence we shall now modify the problem accordingly. In order to exclude

span(v0) from XN (Ω), we set

X?
N (Ω) =

{

v ∈ XN (Ω)

∣

∣

∣

∣

∫

Γ

n ·v = 0

}

. (2.17)

Instead of problem (2.8), we shall hereafter consider the following:






Find u ∈ XT,T (Ω) such that

a(u,v) = (f ,v) , ∀v ∈ X?
N (Ω) .

(2.18)

Theorem 2.1. Problem (2.18) is well-posed.

Proof. According to the global theory on linear Banach operators (cf. e.g. Nečas,9

Babuška2 and Brezzi3), problem (2.18) is well-posed iff the following two conditions

are satisfied:

(i) there exists a constant α > 0 such that

inf
u∈XT,T (Ω)\{0}

sup
v∈X?

N
(Ω)\{0}

a(u,v)

|u|1 |v|1
≥ α , (2.19)

(ii) for any v in X?
N (Ω)

(∀u ∈ XT,T (Ω) , a(u,v) = 0) =⇒ (v = 0) . (2.20)

Given u ∈ XT,T (Ω), let us consider the following problem
{

Find w ∈ X?
N (Ω) such that

a(w,v′) = a(u,v′) , ∀v′ ∈ X?
N (Ω) .

(2.21)

By the Riesz–Fréchet Theorem, problem (2.21) has a unique solution w ∈ X?
N (Ω),

and min(1, µ−1
1 )|w|1 ≤ max(1, µ−1

0 )|u|1.

We are now going to show that w satisfies
{

∇ ×w = ∇ × u in Ω ,

∇·w = ∇·u in Ω .
(2.22)

For any ζ ∈ L2
0(Ω), let φ ∈ H1

0 (Ω) satisfying ∇2φ = ζ in Ω, then v′ = ∇φ ∈

X?
N (Ω). From (2.21), we have

(∇ ·w, ζ) = (∇ ·u, ζ) , ∀ ζ ∈ L2
0(Ω) . (2.23)

Since w ∈ X?
N (Ω) and u ∈ XT,T (Ω), (2.23) implies that the second relation of

(2.22) holds.

On one hand, it is easy to see that

(µ−1/2
∇ ×w, µ1/2

∇q) = 0 = (µ−1/2
∇ × u, µ1/2

∇q) , ∀ q ∈ H̃1(Ω) .
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On the other hand, by (2.21), and ∇·w = ∇ ·u, we have

(µ−1/2
∇ ×w, µ−1/2

∇ × φ) = (µ−1/2
∇ × u, µ−1/2

∇ × φ) , ∀φ ∈ X?
N (Ω) .

Thus, owing to Corollary 2.1, we know that any ψ ∈ L2(Ω) can be written in the

following form:

ψ = µ1/2
∇q + µ−1/2

∇ × φ

where q ∈ H̃1(Ω) and φ ∈ J1
N (Ω) ⊂ X?

N (Ω). Hence,

(µ−1/2
∇ ×w,ψ) = (µ−1/2

∇ × u,ψ) , ∀ψ ∈ L2(Ω) ,

that is, the first relation of (2.22) holds.

Let us now check conditions (2.19) and (2.20). Noting that (2.22) implies |u|1 =

|w|1, we have

sup
v∈X?

N
(Ω)\{0}

a(u,v)

|u|1 |v|1
≥

a(u,w)

|u|1 |w|1
=

a(w,w)

|w|21
≥ min(1, µ−1

1 ) , (2.24)

i.e. condition (2.19) is satisfied.

To establish (2.20), let us assume that v ∈ X?
N (Ω) satisfies:

a(u,v) = 0 , ∀u ∈ XT,T (Ω) .

Similarly to the arguments used to prove (2.16), we obtain
{

∇ × v = 0 in Ω ,

∇·v = 0 in Ω .
(2.25)

Thus, v should be zero. Therefore, condition (2.20) is also satisfied. This completes

the proof.

Remark 2.2. Theorem 2.1 is equivalent to stating that the operatorb A? :

XT,T (Ω) −→ (X?
N (Ω))′ defined by

〈A?u,v〉 = a(u,v) , ∀u ∈ XT,T (Ω), ∀v ∈ X?
N (Ω) (2.26)

is bijective.

We can now interpret problem (2.18) in strong form.

Theorem 2.2. If
∫

Ω f ·v0 = 0 where v0 is defined by (2.13), then the solution u

of problem (2.18) satisfies (2.1) in the distribution sense.

Remark 2.3. The assumption of Theorem 2.2 is a compatibility condition for

problem (2.1). It can also be expressed in the following alternative form:
∫

Ω

f ·∇κ0 = 0 , (2.27)

bNot to be confounded with the adjoint of A, which we denote At.



December 11, 2003 12:0 WSPC/103-M3AS 00309

1734 J. Zhu et al.

where κ0 is such that

{

∇2κ0 = 1 in Ω ,

κ0 = 0 on Γ .
(2.28)

2.5. Nonhomogeneous boundary conditions

We now consider the case of nonhomogeneous boundary conditions, that is the

following boundary value problem:



































∇ ×

(

1

µ
∇ × u

)

− ∇(∇ ·u) = f in Ω ,

∇·u = d on Γ ,

n ·u = b on Γ ,

n ·∇ × u = c on Γ ,

(2.29)

where f ∈ L2(Ω), d ∈ H1/2(Γ), b and c ∈ H−1/2(Γ).

To solve problem (2.29), one has to show how its boundary conditions can be

lifted. For this purpose, let q ∈ H̃1(Ω) be the solution to the Neumann problem



















∇2q =
|Γ|

|Ω|
b̄ in L2(Ω) ,

∂q

∂n
= b in H−1/2(Γ) ,

(2.30)

where

b̄ =
1

|Γ|
〈b, 1〉 =

1

|Γ|

∫

Γ

b (2.31)

and b ∈ H−1/2(Γ) guarantees that (2.31) is well defined. Then ub = ∇q is such

that ∇·ub ∈ L2(Ω), ∇ × ub = 0 ∈ L2(Ω), and











































∇ ×

(

1

µ
∇ × ub

)

− ∇(∇·ub) = 0 in Ω ,

∇·ub =
|Γ|

|Ω|
b̄ on Γ ,

n ·ub = b on Γ ,

n ·∇ × ub = 0 on Γ .

(2.32)

Furthermore, if
∫

Γ

c = 0 , (C1)
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then there exists a unique p ∈ H̃1(Ω) such that










∇ · (µ∇p) = 0 in L2(Ω) ,

µ
∂p

∂n
= c in H−1/2(Γ) .

(2.33)

By Theorem I.3.5 in Girault–Raviart,7 we can find a unique uc such that














∇ × uc = µ∇p in Ω ,

∇ ·uc = 0 in Ω ,

n ·uc = 0 on Γ ,

(2.34)

which implies that ∇ ·uc ∈ L2(Ω), ∇ × uc ∈ L2(Ω), and


































∇ ×

(

1

µ
∇ × uc

)

− ∇(∇ ·uc) = 0 in Ω ,

∇·uc = 0 on Γ ,

n ·uc = 0 on Γ ,

n ·∇ × ub = c on Γ .

(2.35)

Therefore, setting φ = u− ub − uc, we have










































∇ ×

(

1

µ
∇ × φ

)

− ∇(∇ ·φ) = f in Ω ,

∇·φ = d −
|Γ|

|Ω|
b̄ on Γ ,

n ·φ = 0 on Γ ,

n ·∇×φ = 0 on Γ .

(2.36)

The weak form of problem (2.36) corresponding to the setting developed in this

paper can be written as:










Find φ ∈ XT,T (Ω) such that

a(φ,v) = (f ,v) +

∫

Γ

(

d −
|Γ|

|Ω|
b̄

)

(n ·v) , ∀v ∈ X?
N (Ω) .

(2.37)

Since
∣

∣

∣

∣

∫

Γ

(

d −
|Γ|

|Ω|
b̄

)

(n ·v)

∣

∣

∣

∣

≤

∣

∣

∣

∣

d −
|Γ|

|Ω|
b̄

∣

∣

∣

∣

1/2,Γ

|n · v|−1/2,Γ

≤

∣

∣

∣

∣

d −
|Γ|

|Ω|
b̄

∣

∣

∣

∣

1/2,Γ

|v|H(div,Ω)

≤

∣

∣

∣

∣

d −
|Γ|

|Ω|
b̄

∣

∣

∣

∣

1/2,Γ

|v|1 ,
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the linear form v :−→ (f ,v) +
∫

Γ
(d − |Γ|

|Ω| b̄)(n ·v) is continuous on X?
N (Ω). Then,

problem (2.37) is well-posed.

Let us assume now that

(f ,v0) +

∫

Γ

(

d −
|Γ|

|Ω|
b̄

)

(n ·v0) = 0 ,

with v0 = ∇κ0, which is equivalent to

(f , ∇κ0) − |Γ| b̄ +

∫

Γ

d
∂κ0

∂n
= 0 . (C2)

Then, the solution φ of problem (2.37) also satisfies

a(φ,v) = (f ,v) +

∫

Γ

(

d −
|Γ|

|Ω|
b̄

)

(n ·v) , ∀v ∈ XN (Ω) . (2.38)

If we introduce the space:

Xb,c(Ω) = {v ∈ X(Ω) | n ·v|Γ = b and n · ∇ × v|Γ = c} , (2.39)

then the weak form of problem (2.29) can be written as






Find u ∈ Xb,c(Ω) such that

a(u,v) = (f ,v) + 〈d,n ·v〉1/2,Γ , ∀v ∈ XN (Ω).
(2.40)

Therefore, we have

Theorem 2.3. Assume that f ∈ L2(Ω), d ∈ H1/2(Γ), b and c ∈ H−1/2(Γ). And

that compatibility conditions (C1) and (C2) hold. Then, problem (2.40) has a unique

solution.

Remark 2.4. When Ω is not simply-connected or Γ is not connected, the results

obtained in this section have to be modified to account for finite dimensional vector

spaces of vector fields with zero divergence, zero curl, and either zero normal or

tangential trace at the boundary. More details on this aspect of the question can

be found, e.g., in Refs. 1, 5 and 12.

3. A Split Solution Method and Its Variational Formulation

In this section, we split problem (2.29) into a sequence of uncoupled simple

problems.

First, for f ∈ L2(Ω) and d ∈ H1/2(Γ), we consider the following Dirichlet

problem (to get φ = ∇·u)
{

−∇2φ = ∇ · f in Ω ,

φ = d on Γ ,
(3.1)

which has a unique solution φ ∈ H1(Ω).

By the compatibility condition (C2), we can check that
∫

Ω

φ =

∫

Γ

b .
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This implies that the following Neumann problem










∇2q = φ in Ω ,

∂q

∂n
= b on Γ ,

(3.2)

has a unique solution q ∈ H̃1(Ω) (exactly as in the two-dimensional case6). Then,

by (C1), there exists a unique function p ∈ H̃1(Ω) satisfying










∇· (µ∇p) = 0 in Ω ,

µ
∂p

∂n
= c on Γ .

(3.3)

Finally, consider the following two vector elliptic problems














−∇2ψ = f + ∇φ in Ω ,

∇·ψ = 0 on Γ ,

n×ψ = 0 on Γ ,

(3.4)

and














−∇2w = µ(∇ ×ψ + ∇p) in Ω ,

∇·w = 0 on Γ ,

n×w = 0 on Γ .

(3.5)

These vector problems are the 3D version of the boundary value problem intro-

duced by Quartapelle and Muzzio10 in the particular case of homogeneous boundary

values. By the theory developed recently13,14 or by (3.11) and (3.12) (see below),

we know that they have unique solutions ψ ∈ XN (Ω) and w ∈ XN (Ω).

Finally, one can verify that the vector field

∇ ×w + ∇q = u ∈ X(Ω) (3.6)

is the solution of problem (2.29).

Remark 3.1. The above splitting process provides another proof of Theorem

2.3. In fact, the existence is obtained by (3.6). For the uniqueness, we just use

Lemma 2.2.

The solution of problem (2.29) can be determined by solving the following

sequence of variational forms of (3.1) to (3.6):

For

H1
d(Ω) = {ϕ ∈ H1(Ω) |ϕ = d on Γ} , (3.7)

{

Find φ ∈ H1
d(Ω) such that

(∇φ, ∇ϕ) = −(f , ∇ϕ) , ∀ϕ ∈ H1
0 (Ω) ,

(3.8)
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{

Find q ∈ H̃1(Ω) such that

(∇q, ∇ϕ) = −(φ, ϕ) + 〈ϕ, b〉1/2,Γ, ∀ϕ ∈ H̃1(Ω) ,
(3.9)

{

Find p ∈ H̃1(Ω) such that

(µ∇p, ∇ϕ) = 〈ϕ, c〉1/2,Γ, ∀ϕ ∈ H̃1(Ω) ,
(3.10)

{

Find ψ ∈ XN (Ω) such that

(ψ,ϕ)1 = (f + ∇φ,ϕ) , ∀ϕ ∈ XN (Ω) ,
(3.11)

{

Find w ∈ XN (Ω) such that

(w,ϕ)1 = (µ(∇ ×ψ + ∇p),ϕ) , ∀ϕ ∈ XN (Ω) ,
(3.12)

{

Find u ∈ L2(Ω) such that

(u,ϕ) = (∇ ×w + ∇q,ϕ) , ∀ϕ ∈ L2(Ω) .
(3.13)

Note that, for the 3D Quartapelle–Muzzio problem with homogeneous condi-

tions, the decomposition of the solution13,14 is still valid with a minor modification

when the domain Ω is Lipschitz. Thus, the solutions of problems (3.11) and (3.12)

can be split into

ψ = ψ0 +ψH and w = w0 + wH , (3.14)

respectively, where ψ0, w0 ∈ H1
0(Ω) and ψH, wH ∈ HN (Ω), having introduced

the following space of harmonic vector fields:

HN (Ω) = {v ∈ XN (Ω)
∣

∣ (v,w)1 = 0, ∀w ∈ H1
0(Ω)} . (3.15)

Then, problems (3.11) and (3.12) can be written respectively as:


















Find (ψ0,ψH) ∈ H1
0(Ω) × HN (Ω) such that ∀ϕ0 ∈ H1

0(Ω) , ∀ϕH ∈ HN (Ω) ,

(i) (ψ0,ϕ0)1 = (f + ∇φ,ϕ0) ,

(ii) (ψH,ϕH)1 = −(ψ0,ϕH)1 + (f + ∇φ,ϕH) ,

(3.16)

and, with ψ = ψ0 +ψH,


















Find (w0,wH) ∈ H1
0(Ω) × HN (Ω) such that ∀ϕ0 ∈ H1

0(Ω) , ∀ϕH ∈ HN (Ω) ,

(i) (w0,ϕ0)1 = (µ(∇ ×ψ + ∇p),ϕ0) ,

(ii) (wH,ϕH)1 = −(w0,ϕH)1 + (µ(∇ ×ψ + ∇p),ϕH) .

(3.17)

Subproblems (3.16.i) and (3.17.i) are classical vector Dirichlet problems and are

easily solved as three independent scalar Dirichlet problems. Subproblems (3.16.ii)

and (3.17.ii) are vector problems which cannot be solved componentwise since, by

definition, the three components of the vector fields in HN (Ω) are coupled.

Summarizing the above results, we have:
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Theorem 3.1. Problem (2.29) can be solved by the sequence of variational problems

(3.8)–(3.10), (3.16), (3.17) and (3.13).

4. Finite Element Approximation and Its Convergence Analysis

4.1. The discrete problem

Throughout this section, for simplicity, Ω is assumed to be a convex polyhedral

domain. Furthermore, we assume that µ is a smooth function. The case correspond-

ing to discontinuous values of µ can also be treated provided the mesh matches the

discontinuities of µ.

Let T h be a partition of Ω̄ that fits the boundary, and denote by Σh the set

of all the boundary faces. We assume that T h is composed of tetrahedra, and the

normal n is constant on each face s ∈ Σh. For any given integer ` ≥ 1, we introduce

the following finite element spaces:

Sh,` = {ϕh ∈ C0(Ω̄) |ϕh
|κ ∈ P`, ∀κ ∈ T h} , (4.1)

S
h,`
0 = Sh,` ∩ H1

0 (Ω) , (4.2)

S
h,`
d = {ϕh ∈ Sh,` |ϕh

|s = I`d, ∀ s ∈ Σh} , (4.3)

S̃h,` =

{

ϕh ∈ Sh,`

∣

∣

∣

∣

∫

Ω

ϕh = 0

}

, (4.4)

Sh,` = [Sh,`]3 , (4.5)

S
h,`
0 = [Sh,`

0 ]3 , (4.6)

S
h,`
N = {ϕh ∈ Sh,` |n×ϕh

|s = 0, ∀ s ∈ Σh} , (4.7)

H
h,`
N = {ϕh ∈ S

h,`
N | (ϕh,vh)1 = 0, ∀vh ∈ S

h,`
0 } , (4.8)

where P` denotes the space of all polynomials defined in R
3, of degree less than or

equal to ` ≥ 1, I` denotes the Clément P`-interpolation operator over Σh.

Let k ≥ 1 be an integer and let j be another integer such that either j = k

or j = k + 1. Then, finite element approximations to the sequence of problems

(3.8)–(3.10), (3.16), (3.17) and (3.13) can be proposed as follows:

{

Find φh ∈ S
h,k
d such that

(∇φh, ∇ϕh) = −(f , ∇ϕh) , ∀ϕh ∈ S
h,k
0 ,

(4.9)

{

Find qh ∈ S̃h,j such that

(∇qh, ∇ϕh) = −(φh, ϕh) + 〈ϕh, b〉1/2,Γ , ∀ϕh ∈ S̃h,j ,
(4.10)
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{

Find ph ∈ S̃h,k such that

(µ∇ph, ∇ϕh) = 〈ϕh, c〉1/2,Γ , ∀ϕh ∈ S̃h,k ,
(4.11)



















Find (ψh
0 ,ψh

H) ∈ S
h,j
0 × H

h,j
N s.t., ∀ϕh

0 ∈ S
h,j
0 , ∀ϕh

H ∈ H
h,j
N

(i) (ψh
0 ,ϕh

0 )1 = (f + ∇φh,ϕh
0 ) ,

(ii) (ψh
H,ϕh

H)1 = −(ψh
0 ,ϕh

H)1 + (f + ∇φh,ϕh
H) ,

(4.12)



















Find (wh
0 ,wh

H) ∈ S
h,j
0 × H

h,j
N s.t., ∀ϕh

0 ∈ S
h,j
0 , ∀ϕh

H ∈ H
h,j
N

(i) (wh
0 ,ϕh

0 )1 = (µ(∇ ×ψh + ∇ph),ϕh
0 ) ,

(ii) (wh
H,ϕh

H)1 = −(wh
0 ,ϕH)1 + (µ(∇ ×ψh + ∇ph),ϕh

H) ,

(4.13)

{

Find uh ∈ Sh,k such that

(uh,ϕh) = (∇ × (wh
0 + wh

H) + ∇qh,ϕh) , ∀ϕh ∈ Sh,k .
(4.14)

In problem (4.13), ψh = ψh
0 +ψh

H. Subproblems (4.9)–(4.11), (4.12.i), (4.13.i) and

(4.14) can be easily solved in an uncoupled way. The coupled subproblems (4.12.ii)

and (4.13.ii) can be solved either by the uncoupled direct method of Glowinski and

Pironneau13,14 or by one of its iterative variants, for instance the conjugate gradient

method.8,10

Remark 4.1. In the particular case when the domain is a box, the Quartapelle–

Muzzio problems (3.4) and (3.5) can be written naturally as a system of three

independent scalar Poisson equations each one supplemented with mixed Dirichlet–

Neumann conditions. In this case an uncoupled solution of problem (2.29) is

obtained directly.

4.2. Error estimates

Let T h belong to a regular family of partitions4 and denote below by ‖ · ‖s and

| · |s the standard norm and semi-norm of the Sobolev space Hs(Ω), s > 0. We

denote by C a generic constant independent of h.

Estimating φ−φh. Since φh is a conforming Pk finite element approximation of

φ, this estimate is classical. If φ ∈ Hk+1(Ω), we then have (cf. Ciarlet4 or Strang

and Fix11):

‖φ − φh‖0 + h|φ − φh|1 ≤ Chk+1|φ|k+1 . (4.15)

Estimating q− qh. Similarly to the analysis of the 2D problem,6 if q ∈ Hj+1(Ω)

and φ ∈ Hk+1(Ω), we have, for j = k or k + 1

‖∇(q − qh)‖0 ≤ Chj{|q|j+1 + |φ|k+1} . (4.16)
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Estimating p− ph. This estimate is also classical. If p ∈ Hk+1(Ω), we then have

(cf. Ciarlet4 or Strang and Fix11):

‖p− ph‖0 + h|p − ph|1 ≤ Chk+1|p|k+1 . (4.17)

Estimating ψ0−ψ
h
0 and ψH−ψh

H. Similar to the analysis,6 if ψ0,ψH ∈ Hj+1(Ω)

and φ ∈ Hk+1(Ω), we can get, for j = k or k + 1,

|ψ0 −ψ
h
0 |1 ≤ Chj{|ψ0|j+1 + |φ|k+1} , (4.18)

|ψH −ψh
H|1 ≤ Chj{|ψ0|j+1 + |ψH|j+1 + |φ|k+1} . (4.19)

Estimating w0 − wh
0 and wH −wh

H. Similarly, we can get

|w0 −wh
0 |1 ≤ Chj{|ψ0|j+1 + |ψH|j+1 + |w0|j+1 + |φ|k+1 + |p|k+1} , (4.20)

|wH −wh
H|1 ≤ Chj{|ψ0|j+1 + |ψH|j+1 + |w0|j+1 + |wH|j+1 + |φ|k+1 + |p|k+1} ,

(4.21)

if ψ0,ψH,w0,wH ∈ Hj+1(Ω), φ and p ∈ Hk+1(Ω), j = k or k + 1.

Estimating u − uh. By (3.13) and (4.14), noting that (4.16), (4.20) and (4.21),

we finally infer

‖u− uh‖0 ≤ Chj{|q|j+1 + |ψ0|j+1 + |ψH|j+1 + |w0|j+1

+ |wH|j+1 + |u|k+1 + |φ|k+1 + |p|k+1} , (4.22)

if q ∈ Hj+1(Ω), ψ0, ψH,w0,wH ∈ Hj+1(Ω), u ∈ Hk+1(Ω), φ and p ∈ Hk+1(Ω),

j = k or k + 1.

Summarizing the analysis above, we obtain:

Theorem 4.1. Assume that the solutions
































φ

q

p

ψ0

ψH

w0

wH

u

































to problems

































(3.8)

(3.9)

(3.10)

(3.16.i)

(3.16.ii)

(3.17.i)

(3.17.ii)

(3.13)

































belong to

































Hk+1(Ω)

Hj+1(Ω)

Hk+1(Ω)

Hj+1(Ω)

Hj+1(Ω)

Hj+1(Ω)

Hj+1(Ω)

Hj+1(Ω)

































.

Then there exists a constant C independent of h such that the following error

estimates hold :

‖φ − φh‖0 + h|φ − φh|1 ≤ Chk+1|φ|k+1 , (4.23)
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|q − qh|1 ≤ Chj{|q|j+1 + |φ|k+1} , (4.24)

‖p − ph‖0 + h|p − ph|1 ≤ Chk+1|p|k+1 , (4.25)

|ψ0 −ψ
h
0 |1 ≤ Chj{|ψ0|j+1 + |φ|k+1} , (4.26)

|ψH −ψh
H|1 ≤ Chj{|ψ0|j+1 + |ψH|j+1 + |φ|k+1} , (4.27)

|w0 − wh
0 |1 ≤ Chj{|ψ0|j+1 + |ψH|j+1 + |w0|j+1

+ |φ|k+1 + |p|k+1} , (4.28)

|wH −wh
H|1 ≤ Chj{|ψ0|j+1 + |ψH|j+1

+ |w0|j+1 + |wH|j+1 + |φ|k+1 + |p|k+1} , (4.29)

‖u− uh‖0 ≤ Chj{|q|j+1 + |ψ0|j+1 + |ψH|j+1 + |w0|j+1

+ |wH|j+1 + |u|k+1 + |φ|k+1 + |p|k+1} . (4.30)

Remark 4.2. By Theorem 4.1, if j = k + 1, then we get an optimal convergence

result for approximating u with order of O(hk+1). If we choose j = k, then the

convergence result only can reach O(hk). In the special case k = 1, the linear finite

elements can be applied to all approximations.
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