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The algebraic structure sooner or later comes to dominate, whether or
not it is recognized when a subject is born. Algebra dictates the
analysis.

Gian-Carlo Rota [33]

1. Algebraic structures and identities

This issue of Algebra Universalis is dedicated to the memory of Gian-Carlo Rota
1932 1999. Rota began his research career in analysis in the 1950’s, but changed
his focus to combinatorics in the 1960’s. His work precipitated a revolution in
combinatorics. We shall not repeat this well-known story. Instead, we will
describe six research ideas of Rota in lattice theory and universal algebra which
have not received adequate exposition or exposure. These problems come from
Rota’s own papers (particularly [30, 31, 32, 33]), his lectures at M. I. T. and
elsewhere, and personal discussions with the authors.

Beyond specific problems, ideas from universal algebra lie at the heart of Rota’s
work. For example, a motivation for Rota’s change of focus was his recognition of
the central role which identities play in analysis and probability theory. At the
risk of exaggeration, a risk that Rota was always willing to take, most
mathematicians regard identities, at best, as necessary evils, that is, tricks, or



things to be disposed of by tricks. To correct this, one of Rota’s programs is to
study identities at a fundamental level. The most natural environment for
studying identities is, of course, universal algebra. The key result here is Garrett
Birkhoff’s theorem on free algebras. Philosophically, Birkhoft’s theorem says that
there are free structures associated with every set of identities and the best way to
study identities is to describe the free structures. In addition, free algebras are
universal objects in a suitable category. In Rota’s conception of mathematics,
constructing and studying the “right” free or universal object is the key to
unveiling the algebraic structure underlying a subject.

The best example of how universal algebra influenced Rota’s work is his study of
Baxter algebras. The Baxter identity for a linear operator P is

P(z(Py)) + P(y(Px)) = qP(zy) + (Pz)(Py),

where ¢ is a constant. A Baxter algebra is an algebra with a linear operator
satisfying the Baxter identity. In a tour de force of universal algebra, the theory of
symmetric functions, and combinatorics, Rota constructed the free Baxter algebra.
The free Baxter algebra provides a common structure underlying identities in
probability theory, integration by parts, symmetric functions, g-integration and
g-series. Rota’s own account of his work and the unsolved problems in this area
can be found in [29].

2. Linear lattices

In the early history of lattice theory, two classes of lattices held center stage.
One is the class of distributive lattices, whose study is partly motivated by
propositional logic. The natural models are collections of subsets closed under
unions and intersections. The other is the class of modular lattices. Their study is
motivated by order relations among congruence relations of algebraic structures.
More specifically, lattices of normal subgroups of a group, ideals of a ring,
subspaces of vector spaces, and submodules of a module are modular lattices. In
actuality, as Birkhoff and M. L. Dubreil-Jacotin observed, all these lattices are
more than modular: they are linear lattices, that is, they can be represented by

lattices of equivalence relations which commute under composition of relations. !

2.1. Algebraic characterization of linear lattices

Linear lattices are modular, but there are modular lattices which cannot be
represented as linear lattices. A fundamental problem is to characterize linear
lattices by identities. In 1945, Schiitzenberger [34] found an identity satisfied by
certain modular lattices which is equivalent to Desargues’ theorem. Shortly after
that Jénsson [19] proved that every linear lattice satisfies a variant of
Schiitzenberger’s identity, now known as the Arguesian law. The following simpler
equivalent form of the Arguesian law was found by Haiman [13]:

al/\{aQ\/[(bl\/bg)/\(01V02)]} < bl\/{(az\/bg)/\[((b1Vcl)/\(bg\/cz))\/((a1Vcl)/\(a2ch))]}.

1The normal usage is to call such lattices type-I lattices. We follow Rota’s preference for his
own, perhaps more “catchy”, terminology.




Lattices satisfying the Arguesian law are called Arguesian lattices. Linear
lattices are Arguesian, but the converse is not true. In [14], Haiman constructed a
family of Arguesian lattices which cannot be represented as linear lattices. This
construction also implies that there does not exist a finite set of lattice identities
or universal Horn sentences characterizing linear lattices. Nevertheless, linear
lattices have a simple and elegant proof theory [13] along the lines of Gentzen’s
system of natural deduction for the predicate calculus. Specifically, there is a set
of deduction rules such that for every lattice identity, either it has a formal proof
in the deduction system (and hence is true in all linear lattices), or an (infinite)
counterexample to it exists and can be explicitly constructed in terms of the
deduction rules. The question remains whether this proof theory gives a decision
procedure for the theory of linear lattices.

Rota has pointed out that one could determine whether linear lattices form an
equational class without an explicit set of identities characterizing them by using a
theorem of Birkhoff. This theorem states that a category of algebraic systems can
be defined by identities if and only if it is closed under products, subalgebras and
homomorphic images. It is easy to verify that the class of linear lattices is closed
under products and subalgebras. Hence, one need only prove closure under
homomorphic images. However, this seems difficult and the only known partial
result is the following theorem of Herrmann [17]: Every homomorphic image of a
finite length lattice represented by a lattice of subspaces of a vector space can
again be so represented.

2.2. Structure of free linear lattices

Another theorem of Birkhoff asserts that a category of algebraic systems is
endowed with free algebras if and only if it is closed under products and
subalgebras. It follows that free linear lattices on any set of generators exist. The
problem then arises of describing the structure of the free linear lattice generated
by a given poset. There are two questions which are of particular interest:
describe the free linear lattices generated by three disjoint chains, and the free
linear lattice with n (mutually incomparable) generators.

It is known that the free linear lattice (or modular lattice) generated by two
finite chains 1 = ag > a1 > - - - >ak:6, 1=0b,>--->by >by=0 is finite and
distributive. In fact, it is isomorphic to the Young lattice Y (k,n), the lattice of
order ideals of the product partially ordered set [k] x [n] of two chains, one having
length k£ and the other having length n. It is also known that the free linear lattice
with three generators has exactly twenty-eight elements. These elements describe
explicitly all the projective invariants of three subspaces of a projective space in
general position. On the other hand, free linear lattices with four or more
generators and free linear lattices generated by three or more chains are infinite
and complicated. Thus the free linear lattice generated by three chains or the free
linear lattice on four generators are crucial examples for study, as they are the
smallest “generic” linear lattices which are not finite. The second example would
also shed light on the fundamental properties of linear varieties in projective
spaces.

The free linear lattice on n generators is intimately related to the ring of
invariants of a set of n subspaces in general position in projective spaces. Gelfand



has conjectured that the free linear lattices in four generators is decidable. If true,
this conjecture would distinguish the class of linear lattices from that of modular
lattices, for it is proved by Freese [8] and Herrmann [16] that the free modular
lattices with four or more generators have an undecidable word problem. A
thorough study of representations of free linear lattices in vector spaces was
carried out by Gelfand and Ponomarev in [9] and [10]. It should be possible to
translate their constructions using lattice-theoretic language to linear lattices.
Such an extension will shed light on rings of invariants and may lead to a solution
to Gelfand’s conjecture.

2.3. Linear lattices and synthetic projective geometry

A major application of linear lattices is to synthetic projective geometry. This is
done by regarding joins and meets as algebraic renderings of spans and
intersections of subspaces [2, 5, 12]. It is very likely that many invariant properties
of subspaces of vector spaces should be expressible as identities holding in linear
lattices or modular lattices. Hawrylycz and Rota conjectured that for any theorem
holding in all projective geometries, a closely related identity, with spans and
intersections replaced by joins and meets, will hold in linear lattices. A first step
in this program is to check whether one can get valid lattice identities for the
classical theorems in projective geometry, such as the theorems of Desargues,
Pappus, Bricard, and Fontené, and their higher dimensional generalizations (see
[15] for descriptions of these theorems). The lattice identity equivalent to
Desargues’ theorem is the Arguesian law. Hawrylycz [15] went a step further and
constructed a class of identities holding in Grassmann-Cayley algebras which
correspond to classical theorems of projective geometry. Mainetti and Yan [21, 22]
then developed a systematic method to translate a subfamily of Hawrylycz’s
identities into lattice identities valid in linear lattices. As Yan showed in [37],
these methods also translate all the Hawrylycz identities into valid lattice
identities among congruence varieties of Abelian groups.

The method of Mainetti and Yan can in fact be used to translate any identity
holding in Grassmann-Cayley algebras into a lattice identity, which may or may
not hold for all linear lattices. The key condition used by Hawrylycz is that his
identities are “multilinear” in vectors or covectors. Such multilinearity properties
are also used essentially in the proof of Mainetti and Yan that their translations of
the subfamily of Hawrylycz’s identities holds in linear lattices. Thus,
multilinearity seems to be a natural condition ensuring that the translated lattice
identity holds for linear lattices. Supporting this view is the following example.
The identity in Grassmann-Cayley algebras corresponding to Pappus’ theorem is:

(VYA Ve)V(evd)n(d Va))V((aVvb)A(a Vb))
=((cVH)AN( VD))V ((aVb)A(d V)V ((aVb)A(ad V)

where a,b,c,a’,V/, ¢’ are vectors in a Grassmann-Cayley algebra of dimension 3.
This identity is not multilinear in the vectors a, b, c or the vectors a’,b’,c’. As
expected, the Mainetti-Yan translation fails to create a identity valid in linear
lattices. This is consistent with the fact that Pappus’ theorem does not hold in
projective geometries over skew fields. (Identities which do not hold in all linear
lattices are also interesting, for such identities define natural varieties of linear



lattices.) Currently, the simplest open problem is to find a valid linear lattice
identity corresponding to Bricard’s theorem, which is about incidence relations of
lines in a projective plane. The Grassmann-Cayley algebra identity corresponding
to Bricard’s theorem is multilinear. A lattice version holding for congruence
varieties of Abelian groups is given in [37].

2.4. Commuting equivalence relations and information theory

Two equivalence relations on a set are said to be independent when every
equivalence class of the first has non-empty intersection with every equivalence
class of the second. This notion of independence originated in information theory,
and has the following intuitive interpretation. In the problem of searching for an
unknown element, an equivalence relation can be viewed as a question, whose
answer will tell which equivalence class the unknown element belongs to. Two
equivalence relations are independent when the answer to one question gives no
information on the possible answer to the other question. Pairs of equivalence
relations occurring in algebra are seldom independent. Instead, they often
commute, that is, they are isomorphic to disjoint sums of independent equivalence
relations on disjoint sets. It would be interesting to find an information-theoretic
interpretation of two commuting equivalence relations. Another open problem is
to generalize the notion of two equivalence relations commuting to three or more
equivalence relations.

2.5. Ferrers relations

In the theory of partitions of a number, a partition A\ + X2+ ...+ A\, = n,
A1 > A2 > ... A > 0 of a number n is represented as a Ferrers diagram consisting
rows with A1, Ag, ..., A, boxes. Ferrers diagrams motivate the following definition.
Let R be a binary relation on the set S. For an element a in S, let R(a) be the set
{b€ S:(a,b) € R}. The relation R is a Ferrers relation if there is an linear
ordering of S such that R(a) C R(b) whenever a < b. Is there a simple algebraic
characterization of Ferrers relations? Are there natural examples? Is there an
information-theoretic interpretation?

3. Lattices and the foundations of probability theory

In the words of Rota, classical probability can be considered a game played on
two lattices defined on a sample space: the Boolean o-algebra of events and the
lattice of Boolean o-subalgebras. The lattice X of all (Boolean) o-subalgebras of a
Boolean algebra is one of the most interesting objects in lattice theory. For
example, it has been proved that the class of o-subalgebras satisfies no lattice
identities other than the trivial ones and that every lattice can be embedded in a
lattice of o-subalgebras. On the other hand, by imposing suitable conditions on
the Boolean algebra or its o-subalgebras, one can obtain many classes of lattices
as subclasses of the class of lattices of o-subalgebras. Examples of such classes are
the partition lattices, the modular lattices, the linear lattices, and their stochastic
analogs. Understanding the structure of lattices of Boolean o-subalgebras would
greatly enhance our knowledge of the interplay between lattice theory and



probability.
3.1. Algebraic and stochastic independence

The lattice of all Boolean o-subalgebras of a Boolean algebra is a natural
generalization of the lattice of equivalence relations on a set; in fact, the two
notions coincide in the case of finite Boolean algebras. The notion of independence
can be extended to Boolean o-subalgebras. Two Boolean o-subalgebras B and C
are algebraically independent if for all non-zero elements b € B and ¢ € C,

bAc#0.

A strengthening of algebraic independence is stochastic independence. Given a
probability measure P, two o-subalgebras B and C are stochastically independent
if, for elements b € B and c € C,

P(bAc) = P(b)P(c)

Banach proved the following theorem for a sequence of algebraically independent
o-subalgebras (B;) of a lattice B of o-subalgebras. Let P; be a probability
measure on B;. Then there exists a probability measure P on B such that the the
o-subalgebras B; in the sequence are stochastically independent, and the
restriction P to the o-subalgebra B; equals P; for all indices 7. A definition of
algebraic commutativity for a pair of Boolean o-subalgebras was proposed and an
analog of the Banach’s theorem for a pair of o-subalgebras was proved in [36].
However, two questions are still open. (1) Extend the definition of algebraic and
stochastic commutativity to sequences of o-subalgebras. (2) Find an analog of
Banach’s theorem for sequences of commuting o-subalgebras.

3.2. Lattices of commuting o-subalgebras

The concept of commuting equivalence relations also has a stochastic analog.
The o-subalgebras B and C' are stochastically commuting if, for all pairs of
random variables X and Y measurable with respect to the o-subalgebras B and C
respectively, the following equality holds between conditional expectations:

E(X|BNC)E(Y|BNC) = E(XY|BNC),

or, equivalently, the conditional expectation operators Ep and Ec commute, that
is, Ep o Ec = Ec o Ep. In [36], Yan characterized the structure of a pair of
non-atomic stochastically commuting o-subalgebras, thus, obtaining the
probabilistic analog of Dubreil-Jacotin’s theorem for commuting equivalence
relations.

A stochastic analog of a linear lattice is a sublattice of the lattice of
o-subalgebras in which any two elements are stochastically commuting. It is
natural to ask what lattice identities are valid in lattices of (algebraically or
stochastically) commuting o-subalgebras. In particular, do the Arguesian law and
its higher dimensional generalizations hold in lattices of commuting
o-subalgebras? It is not known whether these two classes of lattices can be defined
by a set of identities. A promising approach to this problem is to to develop a



proof theory for such lattices, extending Haiman’s proof theory for linear lattices.
We expect to have a syntactic set of deduction rules which is complete, in the
sense that every valid theorem in the theory of lattices of commuting
o-subalgebras is provable by the deduction rules. Such a proof theory should lead
to an algebraic characterization of lattices of commuting o-subalgebras. Finally, it
would be interesting to find necessary and sufficient conditions for a lattice of
commuting o-subalgebras to be a linear lattice.

8.8. Lattices of o-subalgebras associated with stochastic processes

The o-subalgebra of the random variable X is the smallest o-subalgebra relative
to which X is measurable. Two random variables are conditionally independent if
their o-subalgebras are stochastically commuting. Rota has conjectured that
Gaussian processes are “typical” in the following sense: any sufficiently large
family of conditionally independent random variables can be made simultaneously
Gaussian.

The lattice of o-subalgebras associated with a stochastic process is the sublattice
generated by the o-subalgebras of all the random variables belonging to the
stochastic process in the lattice of all o-subalgebras of the sample space. For
example, the lattice of o-subalgebras associated with a martingale is isomorphic to
a linearly ordered set and this fact plays an essential role in the study of
martingales. Since linearly ordered o-algebras stochastically commute, lattices of
o-subalgebras associated with martingales are stochastically commuting.

Another example is the following Gaussian process. Let X1, X5,...,X,, be n
independent random variables with the standard normal distribution and consider
the Gaussian process

{Z a;X;: (a1,0a2,....a,) € R"}.
i—1

Then the lattice associated with the Gaussian process is isomorphic to the lattice
of subspaces of R™ under the bijection: a subspace W corresponds to the
o-subalgebra X (W) generated by the random variables

> a; X;, (a1, az,...,a,) € W. Moreover, the o-subalgebras X (W) commute
stochastically. However, in contrast to martingales, the lattice structure had
remained marginal in the study of these Gaussian processes.

It would be interesting to find other natural examples of stochastic processes
whose associated lattices of o-subalgebras are stochastically commuting. In
addition, one may also try to establish connections between probabilistic
properties of a stochastic process and algebraic properties of its associated lattice
of o-subalgebras. Specifically, intriguing problems are to find interpretations of
the distributive axiom, the modular axiom, and the Arguesian law for stochastic
processes.

4. Continuous geometries, quantum probability, and profinite
combinatorics

A continuous geometry is a complemented, modular, irreducible, order complete



topological lattice not satisfying a chain condition. Continuous geometry was
discovered by von Neumann while trying to find a probabilistic setting for
quantum mechanics [25]. These geometries are continuous analogs of lattices of
subspaces of projective spaces. In particular, they have dimension functions which
take all values in the interval [0, 1]. Von Neumann constructed a non-commutative
ring from a continuous geometry. This ring shares many properties with rings of
random variables. In particular, there is an analog of probability distributions for
continuous geometries.

4.1. Continuous geometries and lattices of commuting o-subalgebras

The theory of continuous geometry is very suggestive for the theory of lattices of
commuting o-subalgebras, since there is strong evidence that the lattices of
commuting o-subalgebras can also be equipped with a “continuous” dimension
function. In particular, there should be a similar axiomatization for the theory of
lattice of commuting o-subalgebras. In addition, if a dimension function can be
defined, lattices of commuting o-subalgebras, especially the ones arising naturally,
make better models for invariant theory and the study of linear varieties in
projective spaces.

4.2. Quantum probability

Von Neumann obtained quantum probability from “classical” probability by
relaxing the condition that conditional expectation operators commute. He also
introduced hyperfinite factors, which are algebras whose elements provide
quantum analogs called observables of random variables. The lattice which plays
the role of the Boolean o-algebra of events in ordinary probability is the lattice of
all closed subspaces of a hyperfinite factor. Such lattices were called quantum
lattices by Rota. Quantum lattices are not necessarily distributive, but they are
always complemented and modular. In fact, they can be realized as complemented
lattices of stochastically commuting o-subalgebras. A quantum lattice is also
endowed with a function called the trace which satisfies many but not all
properties of probability measures.

The problem of deriving the algebra of observables from the (modular) lattice
structure of quantum mechanics was thought to be intractable, even by von
Neumann. However, with the extra knowledge that the quantum lattice is a
lattice of stochastically commuting o-subalgebras, a derivation of the algebra of
observables from the quantum lattice structure now seems feasible. If the theory
of lattices of stochastically commuting o-subalgebras captures the fundamental
properties of observables, then the next step is to develop a new logic for quantum
mechanics. Rota and his coauthors have made several steps in this direction in
[6,7].

4.3. Profinite combinatorics

Von Neumann [24] (see also [3], p. 237) observed that there is a natural
embedding of projective geometries over a finite field of order ¢ which doubles the



rank. This embedding
PG(2™,q) — PG(2™,q) x PG(2™,q) — PG(2m+17 q)

is given by
ar— (a,a) — (a,0)V(0,a).

Taking the profinite limit of the directed system
PG(1,q) — PG(2,q) — PG(4,q) — ... = PG(2™,q) — PG(2™",q) — ...,

one obtains the continuous geometry CG(q) over the finite field of order ¢ in
which there are subspaces of “dimension” r for every real number r in the unit
interval [0, 1].

In [11], Goldman and Rota proved finite g-identities by giving bijections between
objects (such as subspaces, bases, and linear transformations) defined on finite
vector or projective spaces. Rota suggested that infinite g-series identities can be
given natural bijective proofs using the continuous geometries CG(q). He also
suggested that there is a g-analog of the Poisson process on CG(q).

Together with the interpretation of the Riemann zeta function by a critical
problem on profinite cyclic groups [1], the continuous geometries CG(q) are
motivating examples for Rota’s conception of a new subject: profinite
combinatorics. Rota was just beginning to write down his ideas on this subject at
the time of his death. All we have are the fragments of his vision in [32].

5. Expansions of set functions

This is the sixth problem in Rota’s list [31]. This problem originated in an
abstract [35] of Norbert Weiner, in which the possibility of finding a “Volterra” or
power series expansion for set functions was discussed. McMillan [23] responded
to this idea by proving an analogue for a general class of functions of a theorem of
S. Bernstein, that if the differences of a function F(z) are all non-negative on the
unit interval [0, 1], then F(z) can be represented as a power series

‘F(x)::jii}ﬂ”)ﬁnx”/n!
n=0

on [0,1). This class of functions includes functions defined on a suitable ring of
subsets of the form

”“:h+AﬁW+AAﬁWW+W

In his proof, McMillan developed a theory of finite differences for the functions he
studied. The subject then lay dormant. In this section, we present a brief
exposition based on several informal discussions with Rota.

Let C be a ring of sets, that is, a collection of sets closed under finite unions and
intersections. An n-ary set function is a function defined from the n-fold cartesian
product C X C X ... x C to a commutative ring R. A unary set function will be



called a set function. A set function v is a valuation v if for all subsets A and B in
C,
v(A) +v(B) =v(AUB)+v(ANB)

and

v(0) = 0.
A n-ary set function w is an n-ary valuation v if for every index i and every fixed
sequence Ay, Az, ..., Ai—1,Air1..., Ay, of subsets from C, the “marginal” function

A w(Al,AQ,...,Ai_l,A,A¢+1 ,An)

is a valuation. Just as valuations are set function analogues of linear functions,
n-ary valuations are analogues of multilinear functions.

If one set all the variables equal to one variable X in a multilinear function, one
obtains a constant multiple of a power of X. This motivates the following
definition. A set function f is a homogeneous set function of degree n if there
exists an n-ary valuation w such that for all subsets A in C,

F(A) = w(A, A, ..., A).

Such an n-ary valuation satisfying equation is called an underlying n-ary valuation
for the set function f. The n-ary valuation w is usually not uniquely determined
by f.

For example, if v; and vy are valuations on a ring C, then the product
A — v1(A)vz(A) is a quadratic or degree-2 homogeneous set function. If F is the
ring of all subsets of a finite set and f is a quadratic homogeneous set function
with underlying 2-valuation w, then by expanding w(A, A), we have

FA) =Y flah)+ Do [F{a0}) = f({ad) = F{BD)]-

{a}CA {a,b}CA

In particular, a quadratic homogeneous set function on F is determined by its
value on subsets of cardinality one or two. Similarly, a degree-i homogeneous set
function on F is determined by its value on subsets of cardinality i or less. There
is a continuous analog of part of this. The set function ¢ on the collection all
measurable subsets of the real numbers given by

o= [ [ slemdody

where f(z,y) is an integrable function, is a quadratic set function on the ring of
measurable subsets over the reals or an interval of the reals. However, not all
quadratic set functions are of this form. Is there an analogue of the
Radon-Nikodym theorem for quadratic homogeneous set functions and, more
generally, higher degree homogeneous set functions?

A polynomial set function of degree n on a ring C is a finite sum of homogeneous
set functions, all of degree at most n. As one would expect, every set function on a
finite ring of subsets is polynomial. Indeed, if f is a set function on a finite ring C,
then f can be written as a finite sum

f=00+0,+0:+...,

10



where 6; is a pure degree-i homogeneous set function of degree i. Here, a degree-i
homogeneous set function 6 is pure if §(A) = 0 for all sets A of cardinality less
than 4. The main problem, for set functions over collections of finite sets, is to find
interesting examples of such expansions. We know only one such example. The
principle of inclusion and exclusion can be regarded (although in a somewhat
unnatural way) as a set function expansion. Needless to say, examples of
polynomial set functions over other rings of subsets would also be of great interest.
Rota suggested that one might find natural examples in geometric probability and
the theory of convex sets (see [20]).

6. The generator field of a Boolean algebra

To define a measure on a Boolean algebra, one needs a field, usually the real
numbers, where the measure takes its values. The generator field gives a way to
construct a universal field of values for all measures on a given Boolean algebra
using only the structure of the Boolean algebra.

Let B be a Boolean algebra. The generator ring Go(B) of B over the field F is
the quotient ring F|x, : a € B]/Z, where Fz, : a € B] is the ring of polynomials in
the variables z,, one for each element a of the Boolean algebra B and I is the
ideal generated by the elements of the form

Tavb + Tanb — Ta — Tb,
and zg, if B has a minimum 0. In particular,
(%) ZTavb = Tq + Tp — Tanp and x5 =0

in Go(B). Note that we did not include the element zopp — 2 in I and so xpp
does not necessarily equal z,zp in Go(B).

When B is an atomic Boolean algebra, then, by equation () and the
requirement that z; = 0, the generator ring Go(B) is isomorphic to the ring of
polynomials F[x.], where ¢ ranges over all the atoms of B.

LEMMA (Rota). The generator ring Go(B) is an integral domain.

Proof. Suppose p(24)q(r) = 0 in Go(B). Then the set X of all the elements of B
occurring as subscripts in p(z,) and ¢(z,) is finite. Hence, the Boolean subalgebra
Bx generated by X is finite. Since finite Boolean algebras are atomic and
equation (x) holds in Go(B), the subring generated by all the variables occurring
in p(z,) and ¢(z,) is isomorphic to a polynomial ring. Since polynomial rings are
integral domains, we conclude that p(z,) = 0 or ¢(z,) = 0.

The generator field G(B) is defined to be the field of fractions of the integral
domain Go(B). It is evident that Gy is a functor from the category of Boolean
algebras to the category of integral domains. Taking F' to be the field of rational
numbers, we obtain a field of characteristic zero defined intrinsically from the
Boolean algebra.

11



One can go further using valuation rings [28]. Recall that if £ is a distributive
lattice and A a commutative ring, let A[L] be the ring of finite formal linear
combinations Y a;z;, where a; € F' and z; € £ with multiplication given by
xy = x A y. By the distributivity axioms, the submodule I of A[L] generated by
elements of the form

rT+y—xcVy—zcAy

is an ideal of A[L]. The valuation ring Val(L, A) (over the base ring A) is the
quotient ring A[L]/Z. Valuations on £ correspond to linear functionals on its
valuation ring. Taking the valuation ring Val(B,G(B)) with the generator field of
B as the base field, one obtains the universal valuation ring for a Boolean algebra.

The theory of generator rings, generator fields, and universal valuation rings is
totally undeveloped. A specific problem, which can be tackled independently of a
theory, is to describe the generator field and universal valuation ring of the
Boolean algebra of all Borel sets on the unit interval or the real line.

7. Straightening coefficients and Rota’s basis conjecture

The straightening algorithm rewrites a bideterminant (which are products of
determinants of matrices with generic variable entries) in the letter-place algebra
as a unique linear combination of bideterminants which are “standard” [4,5]. This
algorithm has been generalized [12]. A fundamental question in this area is the
problem of straightening coefficients: given a bideterminant D and a standard
bideterminant S, find a direct combinatorial way to compute the coefficient of S in
the linear combination obtained from D by the straightening algorithm. A good
answer for a generalized form of the straightening formula would resolve the
vector space case of the following conjecture of Rota.

ROTA’S BASIS CONJECTURE. Let {x1,22,...,2n}, {y1,¥%2,---,Yn}, ..., and

{z1,22,...,2n} be n bases in a rank-n matroid. Then, there exist n permutations
a, 3,...,7 such that every column of the array
[ Ta(l) Ta2) *°° La(n)
Yy Ys2 " Ysn)
(1) *r(2) Z7(n)

is a basis of the matroid.

A discussion of this conjecture can be found in [18].
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