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Abstract. The unit ball random geometric graph G = Gd
p(λ, n) has as its

vertices n points distributed independently and uniformly in the unit ball in
R

d, with two vertices adjacent if and only if their ℓp-distance is at most λ.
Like its cousin the Erdős-Rényi random graph, G has a connectivity threshold :
an asymptotic value for λ in terms of n, above which G is connected and below
which G is disconnected. In the connected zone, we determine upper and lower
bounds for the graph diameter of G. Specifically, almost always, diamp(B)(1−

o(1))/λ ≤ diam(G) ≤ diamp(B)(1 + O((ln lnn/ ln n)1/d))/λ, where diamp(B)
is the ℓp-diameter of the unit ball B. We employ a combination of methods
from probabilistic combinatorics and stochastic geometry.

1. Introduction

A random geometric graph consists of a set of vertices distributed randomly over
some metric space X , with two vertices joined by an edge if the distance between
them is sufficiently small. This construction presents a natural alternative to the
classical Erdős-Rényi random graph model, in which the presence of each edge is
an independent event (see, e.g., [2]). The study of random geometric graphs is a
relatively new area; the monograph [9] by M. Penrose is the current authority. In
addition to their theoretical interest, random geometric graphs have many applica-
tions, including wireless communication networks; see, e.g., [4, 10, 12].

In this article, we study the unit ball random geometric graph G = Gd
p(λ, n),

defined as follows. Let d and n be positive integers, B the Euclidean unit ball in
R

d centered at the origin, λ a positive real number, and p ∈ [1,∞] (that is, either
p ∈ [1,∞) or p = ∞). Let Vn be a set of n points in B, distributed independently
and uniformly with respect to Lebesgue measure on R

d. Then G is the graph with
vertex set Vn, where two vertices x = (x1, . . . , xd) and y = (y1, . . . , yd) are adjacent
if and only if ‖x − y‖p ≤ λ. (Thus the larger λ is, the more edges G has.) Here
‖ · ‖p is the ℓp-metric defined by

‖x − y‖p =

{

(
∑d

i=1 |xi − yi|p
)1/p

for p ∈ [1,∞),

max{|xi − yi| : 1 ≤ i ≤ d} for p = ∞,

where the case p = 2 gives the standard Euclidean metric on R
d.

When d = 1, G is known as a random interval graph. (Note that the value of p is
immaterial when d = 1.) Random interval graphs have been studied extensively in
the literature; the asymptotic distributions for the number of isolated vertices and
the number of connected components were determined precisely by E. Godehardt
and J. Jaworski [7]. The random Euclidean unit disk graph G2

2(λ, n) was studied
by X. Jia and the first and third authors [5].
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In the present article, we focus on the case d ≥ 2 and p ∈ [1,∞], but also com-
ment along the way on the special case d = 1. We are interested in the asymptotic
behavior of the connectivity and graph diameter of G as n → ∞ and λ → 0. In fact,
G has a connectivity threshold : roughly speaking, an expression for λ as a func-
tion of n, above which G is connected and below which G is disconnected. (This
behavior is ubiquitous in the theory of the Erdős-Rényi random graph model; cf.
[2].)

We are interested primarily in the combinatorial graph diameter of G, diam(G),
above the connectivity threshold. Our results include

• a lower bound for diam(G) (Proposition 7 of §4);
• an “absolute” upper bound diam(G) < K/λ, where K is a constant de-

pending only on d (Theorem 8 of §5); and
• an asymptotically tight upper bound within a factor of the form (1 + o(1))

of the lower bound, the proof of which builds on the absolute upper bound
(Theorem 10 of §6).

2. Definitions and Notation

As mentioned above, the main object of our study is the random geometric
graph G = Gd

p(λ, n), where d ≥ 1 is the dimension of the ambient unit ball B,
p ∈ [1,∞] describes the metric, λ > 0 is the ℓp-distance determining adjacency, and
n is the number of vertices. We will generally avoid repeating the constraints on
the parameters.

The graph distance dG(x, y) between two vertices x, y ∈ Vn is defined to be the
length of the shortest path between x and y in G, or ∞ if there is no such path.
The graph diameter of G is defined to be diam(G) := max{dG(x, y) : x, y ∈ Vn}.
This graph-theoretic quantity is not to be confused with the ℓp-diameter of a set
X ⊆ R

d, defined as diamp(X) := sup{‖x − y‖p : x, y ∈ X}. The ℓp-ball of radius
r centered at x ∈ R

d is defined as

Bd
p(x, r) := {y ∈ R

d : ‖x − y‖p ≤ r},
while the ℓp-ball of radius r around a set X ⊆ R

d is Bd
p(X, r) := ∪x∈XBd

p(x, r).

The origin of R
d is O := (0, . . . , 0); when the center of a ball is not explicitly given,

we define Bd
p(r) := Bd

p(O, r). Thus B = Bd
2 (1). The ℓp-diameter of B is

diamp(B) =

{

2d1/p−1/2 when 1 ≤ p ≤ 2,

2 when 2 ≤ p ≤ ∞.

The distance dp(X, Y ) between two sets X, Y ⊆ R
d is defined as inf{‖x−y‖p : x ∈

X, y ∈ Y }. The boundary ∂X of X is its closure minus its interior (in the usual
topology on R

d), and its volume vol(X) is its Lebesgue measure.
We will make frequent use of the quantity

(1) αd
p :=

vol(Bd
p(r))

vol(Bd
2 (r))

=
Γ

(

p+1
p

)d

· Γ
(

2+d
2

)

Γ
(

3
2

)d · Γ
(

p+d
p

) ,

where Γ is the usual gamma function (see, e.g., [11]). The calculation of αd
p, along

with the proofs of several other useful facts about ℓp-geometry, may be found in
the Appendix at the end of the article.
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We will say that the random graph G has a property P almost always, or a.a., if

lim
n→∞

Pr [G has property P ] = 1.

By the notation f(n) = o(g(n)) and f(n) = O(g(n)), we mean, respectively,
limn→∞ f(n)/g(n) = 0 and lim supn→∞ f(n)/g(n) ≤ c, for some absolute non-
negative constant c.

3. Connectivity thresholds

In order for G = Gd
p(λ, n) to have finite diameter, it must be connected. There-

fore, we seek a connectivity threshold – a lower bound on λ so that G is almost
always connected. When d = 1, all ℓp-metrics are identical. For this case we now
quote parts of Theorems 10 and 12 of [7], to which we refer the reader for their pre-
cise determination of the asymptotic Poisson distributions of the number of isolated
vertices and the number of connected components.

Theorem 1 (Godehardt, Jaworski). Let λ1(n) = 1
n (log n + c + o(1)) and λ2(n) =

2
n (log n + c + o(1)), where c is a constant. Then

lim
n→∞

Pr[G1
p(λ1(n), n)has an isolated vertex ] = e−e−c

,

lim
n→∞

Pr[G1
p(λ2(n), n)is connected ] = e−e−c

.

In particular, by replacing c in Theorem 1 with a nonnegative sequence γ(n) →
∞, almost always G1

p(λ1(n), n) has no isolated vertices and G1
p(λ2(n), n) is con-

nected. The case d = 1 is exceptional in that the thresholds for having isolated
vertices and for connectivity are separated.

For d ≥ 2, we will use the fact that the connectivity threshold coincides with the
threshold for the disappearance of isolated vertices, which follows from two theorems
of M. Penrose. First we compute the threshold for isolated vertices, which is easier
to calculate.

Proposition 2. Let d ≥ 2, let p ∈ [1,∞], and let α = αd
p be the constant of (1).

Suppose γ(n) is a nonnegative sequence such that limn→∞ γ(n) → ∞, and that

λ ≥
(

1

αn

(

2(d − 1)

d
lnn +

2

d
ln lnn + γ(n)

))1/d

.

Then, almost always, G = Gd
p(λ, n) has no isolated vertices.

Proof. Let Vn = {v1, v2, . . . , vn} be the vertex set of G. For each vertex vi, let Ai

be the event that vi is an isolated vertex, and let Xi be the indicator of Ai; that is,
Xi = 1 if Ai occurs and 0 otherwise. Set X = X1 + X2 + · · · + Xn. We will show
that E[X ] = o(1).

By definition, vi is isolated if and only if there are no other vertices in Bd
p(vi, λ)∩

B. We condition Pr[Ai] on the ℓ2-distance from vi to the origin O. If ‖vi − O‖2 ∈
[0, 1 − d1/2λ), then Bd

p(vi, λ) ⊆ B. Otherwise, if ‖vi − O‖2 ∈ (1 − d1/2λ, 1], then

the volume of Bd
p(vi, λ) ∩ B is not less than 1

2vol(Bd
p(vi, λ))(1 + O(λ)). Hence

Pr[Ai] ≤ (1 − d1/2λ)d(1 − αλd)n−1 +

(1 − (1 − d1/2λ)d)

(

1 − αλd

2
(1 + O(λ))

)n−1

.
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Using 1 − x = e−x(1 + o(1)) as x → 0 and the binomial expansion, we have

Pr[Ai] ≤ (1 + o(1))e−αnλd

+ (dd1/2λ + O(λ2))(1 + o(1))e−αnλd/2.

The first term is o(n−1) for d ≥ 2. By linearity of expectation, E[X ] = n · Pr[Ai],
and so

E[X ] ≤ o(1) + d3/2nλ(1 + o(1))n−1+1/d(lnn)−1/de−γ(n)/2 .

The second term is o(1), and so Pr[X > 0] ≤ E[X ] ≤ o(1); that is, almost always,
G has no isolated vertices. �

The number of isolated vertices below the threshold is easy to compute in certain
special cases. For example, if p ∈ [1,∞], d = 2, λ =

√

c lnn/n, and 0 ≤ c < α−1,
then a minor modification of [5, Theorem 1] yields X = (1 + o(1))n1−αc almost
always. In general, to determine the behavior of X more exactly would require
complicated integrals that describe the volume of Bd

p(vi, λ)∩B near the boundary
of B (cf. [9, Chapter 8]). For our purposes, it suffices to concentrate on the values
of λ for which G has no isolated vertices.

For d ≥ 2 and p ∈ (1,∞], the connectivity threshold for the unit-cube random
geometric graph coincides with the threshold for lacking isolated vertices. We quote
Penrose’s theorem [8, Thm. 1.1] after some supporting definitions. Define the unit

cube geometric graph H = Hd
p (λ, n) analogously to G = Gd

p(λ, n), except that its

vertices are points in [0, 1]d rather than B. For any nonnegative integer k, define

ρ(H ; κ ≥ k + 1) = min{λ | H has vertex connectivity κ ≥ k + 1},(2a)

ρ(H ; δ ≥ k + 1) = min{λ | H has minimum degree δ ≥ k + 1}.(2b)

Theorem 3 (Penrose). Let p ∈ (1,∞] and let k ≥ 0 be an integer. Then

lim
n→∞

Pr[ ρ(H ; κ ≥ k + 1) = ρ(H ; δ ≥ k + 1) ] = 1.

When k = 0, Theorem 3 asserts that as λ increases (forcing more edges into the
graph), almost always, H becomes connected simultaneously as the last isolated
vertex disappears. In the proof of Theorem 3 in [8], Penrose shows that the limiting
probability distributions for ρ(H ; κ ≥ k+1) and ρ(H ; δ ≥ k +1) are the same. The
proof requires only a series of geometric and probabilistic arguments which hold in
the unit ball as well as in the unit cube (see, in particular, Sections 2 and 5 of [8]),
so we have as an immediate corollary the following.

Corollary 4. Let d ≥ 2 and p ∈ (1,∞], and let λ = λ(n) be sufficiently large

so that, almost always, G = Gd
p(λ(n), n) has no isolated vertices. Then, almost

always, G is connected.

We now consider the case that d ≥ 2 and p = 1. Here Theorem 3 does not
apply. However, we can appeal to two general results about the behavior of a
random geometric graph in an ℓp-metric space whose boundary is a compact (d−1)-
submanifold of R

d For such a graph, Theorem 7.2 of [9] provides a threshold for
the disappearance of isolated vertices, and Theorem 13.7 provides a threshold for
connectivity. Applying these results to G, with the thresholds for G defined as in
(2a) and (2b), we obtain the following fact.
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Proposition 5. Let d ≥ 2, p ∈ [1,∞], and G = Gd
p(λ(n), n). Let α = αd

p be the

constant of (1), and let k ≥ 0 be an integer. Then, almost always,

lim
n→∞

(

nα

log n
ρ(G; κ ≥ k + 1)d

)

= lim
n→∞

(

nα

log n
ρ(G; δ ≥ k + 1)d

)

=
2(d − 1)

d
.

We now collect the above results to present the connectivity thresholds that we
will use in the rest of the paper.

Theorem 6. Let G = Gd
p(λ, n) and let α = αd

p be the constant of (1).

(i) Suppose that d ≥ 2, p ∈ (1,∞], γ(n) is a nonnegative sequence such that

γ(n) → ∞ and

λ ≥
(

1

αn

(

2(d − 1)

d
lnn +

2

d
ln lnn + γ(n)

))1/d

.

Then, almost always, G is connected.

(ii) Suppose that d ≥ 2, p ∈ [1,∞], and λ = (c lnn/n)1/d for some constant

c > 0. Then, almost always, G is connected if c > (2(d − 1)/(dα)), and

disconnected if c < (2(d − 1)/(dα)).
(iii) Suppose that d = 1, p ∈ [1,∞], and λ = 2(lnn + γ(n))/n. Then, almost

always, G is connected if γ(n) → ∞ and disconnected if γ(n) → −∞.

Assertion (i) follows from combining Proposition 2 with Corollary 4, and asser-
tion (ii) is implied by Proposition 5. (When p > 1 and d ≥ 2, the lower bound in
(ii) is implied by the stronger bound in (i).) Assertion (iii) is implied by Theorem 1
and its accompanying remarks.

4. A lower bound for diameter

When G is connected, B will usually contain two vertices whose ℓp-distance is
(asymptotically) diamp(B). Therefore, the diameter of G will almost always be at
least diamp(B)(1 − o(1))/λ. The precise statement is as follows.

Proposition 7 (Diameter lower bound). Let d ≥ 1 and p ∈ [1,∞], and suppose

that λ = λ(n) is sufficiently large so that Theorem 6 guarantees that almost always,

G = Gd
p(λ, n) is connected. If h = h(n) satisfies

(3) lim
n→∞

h(d+1)/2n = ∞,

then, almost always,

diam(G) ≥ 1 − h

λ
diamp(B) =

{

2(1 − h)d1/p−1/2/λ if p ≤ 2,

2(1 − h)/λ if p ≥ 2.

Proof. Let ±a be a pair of antipodes of the unit ball B, chosen as in Figure 4, and
let ±C be the spherical cap formed by slicing B with hyperplanes at distance h
from ±a respectively, perpendicular to the line joining a and −a. Let A be the
event that at least one of the two caps ±C contains no vertex of Vn. Then

Pr[A] = 2 Pr[C ∩ Vn = ∅] = 2

(

1 − vol(C)

vol(B)

)n

≤ 2 exp

(

−n
vol(C)

vol(B)

)

.

On the other hand, vol(C)/vol(B) = O(h(d+1)/2) by (18) of §A.3, which together
with the condition (3) on h implies that Pr[A] = o(1). That is, G almost always



6 ROBERT B. ELLIS, JEREMY L. MARTIN, AND CATHERINE YAN

contains a vertex in each of C and −C. The result now follows from the definition
of G and the lower bound (19) on the ℓp-distance between C and −C. �

Note that for all d ≥ 1, h can be chosen to satisfy both (3) and limn→∞ h/λ = 0.
Also, if the limit in (3) is a nonnegative constant, then limn→∞ Pr[A] > 0; that is,
vertices are not guaranteed in both caps. For the case p = 2, Proposition 7 can be
strengthened by identifying a collection of mutually disjoint antipodal pairs of caps
of height h and showing that, almost always, both caps in at least one pair contain
a vertex. Such a collection corresponds to an antipodally symmetric spherical code
(see [3]).

5. The absolute upper bound

In this section we prove that when G is connected, the graph distance dG(x, y)
between two vertices x, y ∈ Vn is at most K‖x − y‖p/λ, where K > 0 is a con-
stant independent of n and p, but dependent on d. As a consequence, diam(G) ≤
Kdiamp(B)/λ. This will not be strong enough to meet (asymptotically) the lower
bound in Proposition 7, but does guarantee a short path between any pair of ver-
tices. This fact will be used repeatedly in the proof of the tight upper bound in
Theorem 10 of §6. It is sufficient to prove the following Theorem 8, since for any
two points x, y ∈ R

d, we have ‖x − y‖2 ≤ d1/2‖x − y‖p.

Theorem 8. Let d ≥ 2, and suppose that λ = λ(n) is sufficiently large so that

Theorem 6 guarantees that almost always, G = Gd
p(λ, n) is connected. Then for

any two points x, y ∈ Vn there exists a constant K independent of n and p such

that as n → ∞, almost always,

dG(x, y) ≤ K‖x − y‖2

λ
.

The proof is based on Proposition 9 below. For any two vertices x, y ∈ Vn, let

Tx,y(k) =
[

convex closure of (Bd
2 (x, kλ) ∪ Bd

2 (y, kλ))
]

∩ B.

Thus Tx,y is a “lozenge”-shaped region. Let An(k) be the event that there exist

two vertices x, y ∈ Vn such that (i) at least one point is inside Bd
2(O, 1−(k+

√
d)λ),

and (ii) there is no path of G that lies in Tx,y(k) and connects x and y. The proof
of our next result uses ingredients from [9, p. 285], adapted and extended for our
present purposes.

Proposition 9. Under the same assumptions as in Theorem 8, there exists a

constant k0 > 0, such that for all k > k0,

lim
n→∞

Pr[An(k)] = 0.

Proof. First, we cover the unit ball B with d-dimensional cubes, each of side length
ǫλ, where ǫ = 1/(4d). Let Ld be the set of centers of these cubes, and for each
z ∈ Ld, denote the closed cube centered at z by Qz.

Suppose An(k) occurs for a pair of vertices x, y; without loss of generality, sup-

pose y ∈ Bd
2 (O, 1 − (k +

√
d)λ). Abbreviate Tx,y(k) by Tx,y.

Step 1. First we construct a connected subset P ⊆ Tx,y such that

(i) Bd
p(P, λ/4) ⊆ B;

(ii) diam2(P ) ≥ (k −
√

d)λ; and
(iii) Bd

p(P, λ/4) ∩ Vn = ∅.
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y

w

u
x

∂B

∂Tx,y

P1

Figure 1. The frontier P1 must intersect the line segment be-
tween vertices x, y ∈ Vn at some point u, and must also satisfy
dp(P1, w) ≤ λ/2 for some point w on the boundary ∂Tx,y \ ∂B.

Let VT = Vn ∩Tx,y be the set of vertices of G lying in Tx,y. Then Bd
p(VT , λ/2) is

(topologically) disconnected with x and y lying in different connected components.
Let Dx be the connected component of Bd

p(VT , λ/2) containing x. Let S be the
closure of the connected component of Tx,y \Dx containing y. Let T be the closure
of Tx,y \S, so that T contains x. Then both S and T are connected, and their union
is Tx,y. The lozenge Tx,y is simply connected, so it is unicoherent [9, Lemma 9.1];
by definition of unicoherence, since Tx,y is the union of closed connected sets S, T ⊆
Tx,y, then P1 := S ∩ T is connected. Since x ∈ T , y ∈ S, and P1 separates x and
y, any path in Tx,y from x to y must pass through P1. In particular, P1 intersects
the line segment joining x and y. Let u be one of the intersection points.

Next, we show that there is a point w on ∂Tx,y such that dp(P1, w) ≤ λ/2,

and derive from this that diam2(P1) ≥ (k −
√

d/2)λ provided that the ℓ2-distance
between u and w is at least kλ (see Figure 1 for an illustration). To achieve
this, we must avoid the case that w lies in the boundary of B. To this end, let
C1 = ∂B ∩ Tx,y, and let C2 = ∂Tx,y \ C1. If dp(P1, C2) ≥ λ/2, then C2 must
be a subset either of S or of T ; without loss of generality, assume S. Then y
is disconnected from x in G, which happens with probability tending to zero by
Theorem 6. Hence, almost always, dp(P1, C2) < λ/2. It follows that there is a
point w ∈ C2 such that dp(P1, w) ≤ λ/2. Furthermore, Bd

p(P1, λ/2) ∩ Vn = ∅, by
definition of P1 as the intersection of S and T .

As constructed, P1 may be too close to the boundary of B so that some cube
Qz intersecting P1 might not lie entirely inside B. To overcome this, we let P be
obtained from P1 by moving every point toward O by λ/4 under the transformation
x → x− (λ/4)(x/‖x‖2). Then P is connected, and diam2(P ) ≥ diam2(P1)−λ/2 ≥
(k −

√
d)λ; that is P satisfies conditions (i–iii).

Step 2. We now show that when k is large enough, the probability

Pr[Qz ∩ Vn = ∅ for every Qz ⊆ Bd
p(P, λ/4)]

tends to zero. Let ω be the set of points z ∈ Ld such that Qz ∩ P 6= ∅. Since P is
connected, ω is a ∗-connected subset of Ld; that is, the union of the corresponding



8 ROBERT B. ELLIS, JEREMY L. MARTIN, AND CATHERINE YAN

P
yx

Figure 2. Two vertices x, y ∈ Vn which are not connected by any
path in Tx,y(k), and the “frontier” P separating them, when d = 2.
The gray squares are the ∗-connected subset ω intersecting P of
the set of squares covering B.

set of cubes is (topologically) connected (see Figure 2). For each z ∈ ω, we have
Qz ∩ P 6= ∅ and ǫ ≤ 1/(4d1/p); hence Qz ⊆ Bd

p(P, λ/4). By considering the ℓ2-

diameter of P , we see that ω contains at least 4
√

d(k −
√

d) points. Hence we

have a ∗-connected subset ω ⊆ Ld with cardinality at least 4
√

d(k −
√

d) such that
Qz ∩ Vn = ∅ for all z ∈ ω. We show that the probability of such an event is o(1).

Let Cd,i denote the collection of ∗-connected sets of ω ⊆ Ld of cardinality i. It is
known that the number of ∗-connected subsets of Z

d of cardinality i containing the

origin is at most 23di (see, for example, [9, Lemma 9.3]). Since |Ld| ≤ (2/(ǫλ))d,

we have Cd,i ≤ (2/(ǫλ))d23di ≤ 2d(ǫλ)−de3di. Therefore

Pr[An(k)] ≤
∑

i≥4
√

d(k−
√

d))

∑

ω∈Cd,i

Pr[Vn ∩ (∪z∈ωQz) = ∅]

≤
∑

i≥4
√

d(k−
√

d))

2d(ǫλ)−d exp(3di)

(

1 − i

vol(B)
(ǫλ)d

)n

≤
∑

i≥4
√

d(k−
√

d))

cn exp(−iǫd(d − 1) lnn/ (dα vol(B)))(4)

= O
(

n1−(4
√

d(k−
√

d)(d−1))/(dα vol(B)(4d)d)
)

,(5)

where c is a constant and α = αd
p is the constant of (1). To justify inequality (4),

when n is sufficiently large, we have 3d < ǫd(d − 1) lnn/(dα vol(B)). The order
bound in (5) is immediate by geometric series, and the resulting quantity is o(1)

provided k >
√

d + dα vol(B)(4d)d/(4
√

d(d − 1)), which proves the existence of k0

in the proposition. �

Proof of Theorem 8. Fix k > k0 as in Proposition 9. Let x and y be two vertices
in Vn with ‖x − y‖p > λ. If at least one of x, y lies in Bd

2 (O, 1 − (k +
√

d)λ), then,
almost always, there is a path of G connecting x and y in Tx,y. Suppose the shortest
path between x and y in Tx,y has length g. Then the ℓp-balls of radius λ/2 around
every other vertex in the path must be pairwise disjoint, and each must lie inside
the convex closure of Bd

2 (x, (k +
√

d/2)λ)∪Bd
2 (y, (k +

√
d/2)λ). By comparing the
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volume of the ℓp-balls of radius λ/2 to the volume of Tx,y, we obtain
⌊g

2

⌋

vol
(

Bd
p(x, λ/2)

)

≤ vol
(

Bd
2 (x, (k +

√
d/2)λ)

)

+d2(x, y) · vol
(

Bd−1
2 (x, (k +

√
d/2)λ)

)

,

which implies that g ≤ K1 + K2d2(x, y)/λ ≤ (K1

√
d + K2)d2(x, y)/λ, where K1

and K2 are constants independent of n and p.
If both x and y lie outside Bd

2 (O, 1 − (k +
√

d)λ), then we can travel from x to

an intermediate vertex x1 just inside B(O, 1 − (k +
√

d)λ) via a path of bounded

length, and then on to y. To this end, let r = max{(αd
p)

1/d
√

d,
√

d}, and let En(k)

be the event that there is a vertex z ∈ Vn such that z 6∈ B(O, 1 − (k +
√

d)λ) and

Vn ∩ (B(O, 1 − (k +
√

d)λ) ∩ B(z, (k +
√

d + 2r)λ)) = ∅. Then

Pr[En(k)] ≤ n
(

1 − (1 − (k +
√

d)λ)d
)

(1 − (
√

dλ)d)n = o(1).

Applying this observation with z = x, we can find a point x1 ∈ Vn inside B(O, 1 −
(k +

√
d)λ) ∩B(x, (k +

√
d + 2r)λ). By the preceding argument we can first travel

from x to x1 in Kd2(x, x1)/λ steps, and then from x1 to y in Kd2(x1, y)/λ steps.
The total length of the path is no more than K(d2(x, y) + 2d2(x, x1))/λ. Theorem

8 follows from the fact that d2(x, x1) ≤ (k +
√

d + 2r)λ. �

We briefly discuss the case that d = 1, so that B is the interval [−1, 1] ⊂ R.
Suppose that λ = λ(n) is sufficiently large so that Theorem 6 guarantees that,
almost always, G1

p(λ, n) is connected. For any two vertices x, y, the shortest path
between them clearly consists of a strictly increasing set of vertices x = x0 < x1 <
x2 < · · · < xdG(x,y) = y. Moreover, the balls B(x0, λ/2), B(x2, λ/2), B(x4, λ/2), . . .
must be pairwise disjoint (else some xi is redundant). Hence |x−y| ≥ ⌈dG(x, y)/2⌉λ,
and from this it is not hard to deduce that dG(x, y) ≤ 2|x − y|/λ.

6. The asymptotically tight upper bound

In this section, we improve the upper bound in Theorem 8, reducing the constant
K to diamp(B) (asymptotically). Our main result is as follows:

Theorem 10. Let d ≥ 2 and p ∈ [1,∞], and suppose that λ = λ(n) is sufficiently

large so that Theorem 6 guarantees that almost always, G = Gd
p(λ, n) is connected.

Then as n → ∞, almost always,

diam(G) ≤
{

(

2d1/p−1/2 + O
(

(ln lnn/ lnn)1/d
))

/λ when 1 ≤ p ≤ 2,
(

2 + O
(

(ln lnn/ lnn)1/d
))

/λ when 2 ≤ p ≤ ∞.

That is, almost always, diam(G) ≤ diamp(B)(1 + O((ln lnn/ lnn)1/d))/λ.

The proof uses the geometric ingredients of pins and pincushions. A pin consists
of a collection of evenly spaced, overlapping ℓp-balls whose centers lie on a diameter
of the Euclidean unit d-ball B. By making suitable choices for the geometry, we
can ensure that each intersection of consecutive balls contains a vertex in Vn, so
that the pin provides a “highway” through G. Having done this, we construct a
pincushion so that every point of B is reasonably close to an ℓp-ball in one of its
constituent pins. The following definitions are illustrated in Figure 3.
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B

Figure 3. (a) A pin in the unit circle in R
2, with angle θ. Here

p = 1, so that the ℓp-balls are diamonds, and r is the ℓ2-distance
between consecutive centers (such as u0 and u1) of ℓ1-balls. The
petals are the shaded regions. (b) A pincushion consisting of sev-
eral pins.

Definition 11 (Pins). Fix d ≥ 2, p ∈ [1,∞], θ ∈ (−π/2, π/2], φ = (φ3, . . . , φd) ∈
[0, π/2]d, and λ, r > 0. For m ∈ Z, put

um = um(r, θ) =
( r

2
+ rm

)

· (x1, . . . , xd) ∈ R
d,

where

x1 = cos θ

d
∏

i=3

sin φi, x2 = sin θ

d
∏

i=3

sinφi, xj = cosφj

d
∏

i=j+1

sin φi for 3 ≤ j ≤ d.

The corresponding pin U(d, p, θ, φ, r, λ) consists of the points {um : m ∈ Z} ∩ B,
together with a collection of ℓp-balls of radius λ/2, one centered at each point um.
Note that the total number of ℓp-balls is 1 + 2⌊ 1

r ⌋.
Definition 12 (Pincushions). Fix d ≥ 2, 1 ≤ p ≤ ∞, and σ ∈ Z

+. The corre-
sponding pincushion (with parameters d, p, σ, r, λ) is the set of (2σ)d−1 pins

U :=

{

U(d, p, θ, φ, r, λ) : θ, φi ∈
{

0,
π

2σ
,
2π

2σ
, . . . ,

(2σ − 1)π

2σ

}}

.

Definition 13 (Petals). Let U be a pin. A petal is the region of intersection of two
overlapping ℓp-balls on U (the shaded regions in Figure 3). A petal is nonempty if
it contains a vertex of Vn.

The probability that a petal is nonempty depends on its volume, which de-
pends in turn on the parameters of the corresponding pin. Certainly, we must
choose r so that the petal has positive volume: for example, it suffices to take
r ≤ (diam2(B)/diamp(B))λ. Unfortunately, the volume is difficult to calculate
exactly. Even finding the minimum volume over all angles, that is,

ξ = ξd
p(r, λ/2) := inf{vol

(

Bd
p(x, λ/2) ∩ Bd

p(y, λ/2)
)

: x, y ∈ B, ‖x − y‖2 = r}.
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requires integrals that are not easily evaluated (although for fixed d and r, it is
certainly true that ξ = Θ(λd)). The easiest way to find a lower bound for ξ is to
inscribe another ℓp-ball in the petal.

Lemma 14. Let d ≥ 1, p ∈ [1,∞], λ > 0 and 0 ≤ r ≤ (diamp(B)/diam2(B))λ.

Then, for all x, y ∈ B with ‖x − y‖2 = r,

Bd
2

(

x+y
2 , r′

)

⊆ Bd
p(x, λ/2) ∩ Bd

p(y, λ/2),

where

r′ =

{

λ
2 d1/2−1/p − r

2 when 1 ≤ p ≤ 2,
λ
2 − r

2 when 2 ≤ p ≤ ∞.

In particular,

ξ

vol(B)
≥

{

(

λ
2 d1/2−1/p − r

2

)d
when 1 ≤ p ≤ 2,

(

λ
2 − r

2

)d
when 2 ≤ p ≤ ∞.

Proof. Let z ∈ Bd
2 (x+y

2 , r′). By the triangle inequality,

‖z − x‖2 ≤
∥

∥z − x+y
2

∥

∥

2
+

∥

∥

x+y
2 − x

∥

∥

2
≤ r′ + r

2 ,

which, together with (17), implies that ‖z − x‖p ≤ λ/2. That is, z ∈ Bd
p(x, λ/2).

The same argument implies that z ∈ Bd
p(y, λ/2). The bound on ξ is then a simple

application of (14). �

For the remainder of this section, we work with the pincushion U defined by

(6a) σ = σ(n) = ⌊(lnn)1/d⌋
and

(6b) r = r(n) =

{

λd1/2−1/p(1 − ρ(n)) when 1 ≤ p ≤ 2,

λ(1 − ρ(n)) when 2 ≤ p ≤ ∞,

where

(6c) ρ = ρ(n) =

{

2d1/p−1/2(ln lnn/ lnn)1/d when 1 ≤ p ≤ 2,

2(ln lnn/ lnn)1/d when 2 ≤ p ≤ ∞.

Let τU = τU (n) be the number of empty petals along the pin U ∈ U , and define

τ = τ(n) = max{τU (n) : U ∈ U}.
We first calculate an upper bound on τ .

Lemma 15. With the assumptions of Theorem 10, and the parameters σ, r, ρ as

just defined, almost always,

τ ≤ σ(d−1)/2 2

r
exp

( −nξ

vol(B)

)

.

Proof. Denote the right-hand side of the desired inequality by T . By linearity of
expectation,

Pr[τ ≥ T ] ≤ E[|{U : τU ≥ T }|]
≤ (2σ)d−1 · Pr[τU∗ ≥ T ],(7)
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where U∗ is chosen so as to maximize Pr[τU ≥ T ]. Let Xi be the indicator random
variable of the event that the ith petal of U∗ is empty, and let X =

∑

i Xi. Now
U∗ contains at most 2/r petals, so by linearity of expectation,

(8) E[X ] ≤ 2

r

(

1 − ξ

vol(B)

)n

≤ 2

r
exp

( −nξ

vol(B)

)

.

Also,

var[X ] ≤ E[X ] +
∑

i6=j

cov(Xi, Xj),(9)

where the covariance cov(Xi, Xj) for i 6= j is

cov(Xi, Xj) = Pr[XiXj = 1] − Pr[Xi = 1] · Pr[Xj = 1]

=

(

1 − 2ξ

vol(B)

)n

−
(

1 − ξ

vol(B)

)2n

≤ o(1) · exp

( −2nξ

vol(B)

)

.(10)

Combining (8), (9) and (10) gives

(11) var[X ] ≤ 2

r
exp

( −nξ

vol(B)

)

+
4

r2
o(1) · exp

( −2nξ

vol(B)

)

.

By Chebyshev’s inequality (cf. [1]) and the bounds for E[X ] and var[X ] in (8) and
(11),

Pr
[

X ≥ T
]

≤ Pr
[

|X − E[X ]| ≥ T − E[X ]
]

≤ var[X ]

(T − E[X ])2
= o

(

1

σd−1

)

.

Now Pr[τU ≥ T ] = Pr[X ≥ T ]. Therefore, substituting this last bound into (7)
gives Pr[τ ≥ T ] = o(1), which implies the desired result. �

We can now prove the main result of this section.

Proof of Theorem 10. Let x, y ∈ Vn. We will find vertices x1 and y1 near x and y
respectively, belonging to petals of the pincushion U . From each of x1, y1, we walk
along the appropriate pin to points x2, y2 near the origin and belonging to petals on
the same pin as x1 and y1, respectively. We will then use Theorem 8 to construct a
path from x2 to y2, as well as any “detours” needed in case there are missing edges
in the paths along the pins. Without loss of generality, we may assume that

(12) ‖x‖2, ‖y‖2 ≥ (τ + 3/2)r.

The justification for this is deferred until the end of the proof.
Let Rx be the (possibly empty) petal nearest to x, and let Ux be the pin contain-

ing Rx. When n is sufficiently large, the distance from x to Rx is at most dπ/2σ.
By definition of τ , there is another vertex x1 ∈ Vn, which also lies in a petal on
Ux, but is closer to the origin, so that ‖x− x1‖2 ≤ dπ/2σ + r(τ + 1). Repeat these
constructions for y to obtain an analogous vertex y1. Then

‖x − x1‖2, ‖y − y1‖2 ≤ dπ

2σ
+ r(τ + 1),
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and, by Theorem 8,

dG(x, x1), dG(y, y1) ≤
(

dπ

2σ
+ r(τ + 1)

)

K

λ
.

By definition of τ , there is a vertex x2 that belongs to a petal Rx2
on Ux (indeed,

lying on the same side of O along Ux) with Rx2
⊆ Bd

2 (O, r(τ + 3/2)). In the worst
case, all empty petals in Ux occur non-consecutively between x1 and x2, so for n
large enough, we have

dG(x1, x2) ≤ ‖x1‖2

r
+

2Krτ

λ

≤ ‖x‖2

r
+

dπ

2σr
+

2Krτ

λ
.

The same construction goes through if we replace the x’s with y’s. Moreover,
‖x2 − y2‖2 ≤ (2τ + 3)r, so the shortest path in G between x2 and y2 satisfies

dG(x2, y2) ≤
(2τ + 3)rK

λ
.

Concatenating all the above paths, we find that

dG(x, y) ≤ dG(x, x1) + dG(x1, x2) + dG(x2, y2) + dG(y2, y1) + dG(y1, y)

≤ ‖x‖2 + ‖y‖2

r
+

(

dπ

σ
+ (8τ + 5)r

)

K

λ
+

dπ

σr

≤ diamp(B)

diam2(B)

‖x‖2 + ‖y‖2 + O(ρ)

λ
+ O(τ) + O

(

(lnn)−1/d

λ

)

.(13)

By the definitions of r and ρ given in (6b) and (6c), and the bounds on ξ and τ
(Lemmas 14 and 15), it follows that

ξ

vol(B)
≥ λd ln lnn

lnn
≥ ln lnn

n
,

where the second inequality follows from the assumption that λ is above the thresh-
old for connectivity in Theorem 6. Therefore

τ ≤ 2σ(d−1)/2

r
exp

( −nξ

vol(B)

)

≤ 4

λ
(lnn)(d−1)/(2d)(lnn)−1 =

O
(

(lnn)−(d+1)/(2d)
)

λ
=

o(ρ)

λ
.

Plugging this bound for τ into (13) gives

dG(x, y) ≤ diamp(B)

diam2(B)

‖x‖2 + ‖y‖2 + O(ρ)

λ
,

and the theorem follows.
We now explain the assumption (12). If ‖x‖2, ‖y‖2 ≤ (τ + 3/2)r, then by

Theorem 8, dG(u, v) ≤ (2τ + 3)rK/λ = o(ρ)/λ. On the other hand, if ‖x‖2 ≤
(τ +3/2)r ≤ ‖y‖2, then, almost always, there is a vertex x2 ∈ Bd

2 (O, (τ +3/2)r) be-
longing to some petal. By the preceding argument, dG(x, y) ≤ o(ρ/λ)+dG(x2, y) ≤
(diamp(B)/diam2(B))(‖y‖2 + O(ρ))/λ. �
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We conclude with two remarks. First, the proof of Theorem 10 can easily
be adapted to the case d = 1 to obtain the upper bound diam(G1

p(λ, n)) ≤
(2 + O(ln lnn/ lnn)) /λ. (Note that when d = 1 a pincushion consists of just one
pin.) Second, the technique of Theorem 10 can be extended to obtain the stronger
result dG(x, y) ≤

(

‖x − y‖p + O
(

(ln lnn/ lnn)1/d
))

/λ, so that the graph distance

approximates the ℓp-metric. Each pin is replaced by σd−1 evenly spaced parallel
pins. We can still bound τ by o(ρ)/λ, but now any two vertices x and y are close
to the same pin, on which a short path from x to y is found. We refer the reader
to [6] for details.
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Appendix A. Facts about ℓp- and spherical geometry

In the body of the article, we used various facts about the Euclidean and ℓp-
geometry of balls and spherical caps. None of these facts are difficult; however, for
convenience we present them together here along with brief proofs.

A.1. Volume of the ℓp-unit ball. Fix p ∈ [1,∞] and an integer d ≥ 1. Let Bd
p(r)

be the ℓp-ball centered at the origin in R
d with radius r:

Bd
p(r) =

{

x ∈ R
d :

d
∑

i=1

|xi|p ≤ rp

}

.

We will show that the (d-dimensional) volume of Bd
p(r) is

(14) vol(Bd
p(r)) =

(2r)dΓ
(

p+1
p

)d

Γ
(

p+d
p

) ,

where Γ is the usual gamma function [11]. For d = 1 this is trivial. For d > 1 we
have

vol(Bd
p(r)) = 2

∫ r

0

vol
(

Bd−1
p ((rp − xp)1/p)

)

dx.

Make the substitution u = xp/rp, x = ru1/p, dx = (r/p)u(1−p)/p du. By induction
on d, we obtain

vol(Bd
p(r)) =

2drdΓ
(

p+1
p

)d−1

pΓ
(

p+d−1
p

)

∫ 1

0

(1 − u)
d−1

p u
1−p

p du.

Evaluating this integral as in [11, §12.4] yields the desired formula (14). It follows
that

(15) αd
p :=

vol(Bd
p(r))

vol(Bd
2 (r))

=
Γ

(

p+1
p

)d

· Γ
(

2+d
2

)

Γ
(

3
2

)d · Γ
(

p+d
p

) .
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A.2. ℓp-antipodes on the Euclidean sphere. Let B = Bd
2 (1) be the Euclidean

unit ball, centered at the origin in R
d, and let p 6= 2. We wish to calculate the

ℓp-diameter of B, that is,

diamp(B) = max {‖x − y‖p : x, y ∈ B} .

A pair of points of B at distance diamp(B) are called ℓp-antipodes. If d = 1, then
B is a line segment and the only antipodes are its endpoints. Of course, if p = 2,
then the antipodes are the pairs ±x with ‖x‖2 = 1.

Suppose that d > 1. Every pair of antipodes x, y must satisfy ‖x‖2 = ‖y‖2 = 1.
Without loss of generality, we may assume xi ≥ 0 ≥ yi for every i. Using the method

of Lagrange multipliers (with objective function (‖x − y‖p)
p

=
∑d

i=1(xi − yi)
p), we

find that for every i,

(16) p(xi − yi)
p−1 = 2λxi = −2µyi,

where λ and µ are nonzero constants. In particular yi = (−λ/µ)xi for every i,
so y = −x. (That is, every pair of ℓp-antipodes on B is a pair of ℓ2-antipodes.)
Substituting for yi in (16) gives

νxp−1
i = xi,

where ν is some nonzero constant. In particular, the set of coordinates {x1, . . . , xd}
can contain at most one nonzero value, so either x is a coordinate unit vector or
else xi = d−1/2 for every i. In the first case ‖(−x) − x‖p = 2, while in the second

case ‖(−x) − x‖p = 2d−1/2+1/p. In summary:

Proposition 16. Let d ≥ 2, and let B = Bd
2 (1) be the Euclidean unit ball, centered

at the origin in R
d. Then the pairs of ℓp-antipodes on B are precisely the pairs

{±x} satisfying the following additional conditions:










|x1| = · · · = |xd| = d−1/2 when 1 ≤ p < 2,

‖x‖p = 1 when p = 2,

x is a coordinate unit vector when 2 < p ≤ ∞.

In particular, the ℓp-diameter of B is

(17) diamp(B) = max
(

2, 2d1/p−1/2
)

=

{

2d1/p−1/2 for 1 ≤ p ≤ 2,

2 for 2 ≤ p ≤ ∞.

A.3. Spherical caps. Let B = Bd
2 (r) be the Euclidean ball of radius r, centered

at the origin in R
d. Let C be a spherical cap of B of height h, with 0 ≤ h ≤ r; for

instance,

C = {(x1, . . . , xd) ∈ B : r − h ≤ x1 ≤ r}.
The volume of C can be determined exactly, but the precise formula is awkward
for large d (one has to evaluate the integral

∫

sind θ dθ). On the other hand, we
can easily obtain a lower bound for vol(C) by inscribing in it a “hypercone” H of

height h whose base is a (d− 1)-sphere of radius s =
√

r2 − (r − h)2 =
√

2rh − h2.

For r−h ≤ x ≤ r, the cross-section of H at x = x1 is Bd−1
2 (s(r−x)/h), so applying

(14) gives

vol(H) =
2d−1sd−1Γ

(

3
2

)d−1

hd−1Γ
(

d+1
2

)

∫ r

r−h

(r − x)d−1 dx
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Figure 4. Antipodally aligned caps ±C centered at antipodes ±a
of B ⊆ R

2 for different values of p below and above 2.

=
π(2r − h)(d−1)/2h(d+1)/2

d · Γ
(

d+1
2

) .

Since 2r − h ≥ r, we have the bound

(18) vol(C) ≥ πr(d−1)/2

d · Γ
(

d+1
2

) · h(d+1)/2.

A.4. The ℓp-distance between opposite spherical caps. By definition, the
ℓp-distance between two sets Y, Z ⊆ R

d is

dp(Y, Z) := inf{‖y − z‖p : y ∈ Y, z ∈ Z}.
Let B = Bd

2 (r), let ±a be a pair of ℓp-antipodes on B, and let ±C be the cap
of height h centered at ±a. Note that every pair y, z at minimum distance has
displacement parallel to a (see Figure 4). (This can be verified by another easy
Lagrange-multiplier calculation.) Therefore

(19) dp(C,−C) =
2(r − h)

r
‖a‖p =

{

2(r − h)d1/p−1/2 for 1 ≤ p ≤ 2,

2(r − h) for p ≥ 2.
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