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Abstract

Classical Gončarov polynomials arose in numerical analysis as a basis for the solutions of

the Gončarov interpolation problem. These polynomials provide a natural algebraic tool in the

enumerative theory of parking functions. By replacing the differentiation operator with a delta

operator and using the theory of finite operator calculus, Lorentz, Tringali and Yan introduced

the sequence of generalized Gončarov polynomials associated to a pair (∆,Z) of a delta operator

∆ and an interpolation grid Z. Generalized Gončarov polynomials share many nice algebraic

properties and have a connection with the theories of binomial enumeration and order statistics.

In this paper we give a complete combinatorial interpretation for any sequence of generalized

Gončarov polynomials. First we show that they can be realized as weight enumerators in par-

tition lattices. Then we give a more concrete realization in exponential families and show that

these polynomials enumerate various enriched structures of vector parking functions.
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1 Introduction

The classical Gončarov interpolation problem in numerical analysis was introduced by Gončarov

[2, 3] and Whittaker[17]. It asks for a polynomial f(x) of degree n such that the ith derivative of

f(x) at a given point ai has value bi for i = 0,1,2, ..., n. The solution is obtained by taking linear

combinations of the (classical) Gončarov polynomials, or the Abel-Gončarov polynomials, which

have been studied extensively by analysts; see e.g. [2, 10, 1, 4]. Gončarov polynomials also play

a crucial role in Combinatorics due to their close relations to parking functions. A (classical)
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parking function is a sequence (a1, a2, ..., an) of positive integers such that for every i = 1,2, ..., n,

there are at least i terms that are less than or equal to i. For example, the sequences (1,2,3,4)
and (2,1,4,1) are both parking functions while (2,2,3,4) is not. The set of parking functions

stays in the center of enumerative combinatorics, with many generalizations and connections

to other research areas, such as hashing and linear probing in computer science, graph theory,

interpolation theory, diagonal harmonics, representation theory, and cellular automaton. See

the comprehensive survey [19] for more on the combinatorial theory of parking functions.

The connection between Gončarov polynomials and combinatorics was first found by Joseph

Kung, who in a short note [8] of 1981 proved that classical Gončarov polynomials give the

probability distribution of the order statistics of n independent uniform random variables, and

its difference analog describes the order statistics of discrete, injective functions. These results

were further developed in [9] to an explicit correspondence between classical Gončarov polyno-

mials and vector parking functions. Inspired by the rich theory on delta operators and finite

operator calculus, which is a unified theory on linear operators analogous to the differentiation

operator D and special polynomials, Lorentz, Tringali, and the second author of the present

paper introduced the generalized Gončarov polynomials [11] as a basis for the solutions to the

Gončarov interpolation problem with respect to a delta operator. Many algebraic and analytic

properties of classical Gončarov polynomials have been extended to the generalized version.

A natural question is to find the combinatorial interpretations for the generalized Gončarov

polynomials. To answer this question we need to understand the combinatorial significance of

delta operators. In the third paper of the seminal series On the Foundations of Combinatorial

Theory III, Mullin and Rota [12] developed the basic theory of delta operators and their asso-

ciated sequence of polynomials. Such sequences of polynomials are of binomial type and occur

in many combinatorial problems when objects can be pieced together out of small, connected

objects. Mullin and Rota’s work provides a realization of binomial sequences in combinatorial

problems. However, this realization is only valid for binomial sequences whose coefficients are

non-negative integers, and so excludes many basic counting polynomials, for example, the falling

factorial x(n) = x(x − 1)⋯(x − n + 1). Mullin and Rota hint at a generalization of their theory

to incorporate such cases. Using the language of partitions, partition types and partition cat-

egories, Ray [14] proved that every polynomial sequence of binomial type can be realized as a

weighted enumerator in partition lattices.

In this paper we give a complete combinatorial interpretation of the generalized Gončarov

polynomials, first in Ray’s partition lattices and then in a more concrete model, the exponential

families, as described by Wilf [18]. Basically, to any polynomial sequence of binomial type and

any given interpolation grid Z there is an associated sequence of Gončarov polynomials. While

the sequence of binomial type can be realized as weighted enumerators in partition lattices or in

an exponential family, the associated Gončarov polynomials count those structures which also

encode vector parking functions. In other words, the generalized Gončarov polynomials charac-

terize structures in a binomial enumeration problem that are subject to certain order-statistic

constraints. Our results cover the initial attempt in [11] which provides a combinatorial inter-

pretation for some families of generalized Gončarov polynomials in a structure called reluctant

functions.

The rest of the paper is organized as follows. In Section 2, we recall the basic theory
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of delta operators and binomial enumeration, as well as the concepts of generalized Gončarov

polynomials and vector parking functions. In Section 3, we describe the realization of generalized

Gončarov polynomials in partition lattices and weight functions. Then, in Section 4, we study a

more concrete realization of Gončarov polynomials as type-enumerator in exponential families.

We end the paper in Section 5 with a few closing remarks.

2 Background

2.1 Delta Operators and Binomial Enumeration

We recall the basic theory of delta operators and their associated sequence of basic polynomials

as developed by Rota, Kahaner, and Odlyzko [15]. Let K be a field of characteristic zero and

K[x] the vector space of all polynomials in the variable x over K. For each a ∈ K, let Ea

denote the shift operator K[x] → K[x] ∶ f(x) ↦ f(x + a). A linear operator s ∶ K[x] → K[x] is

called shift-invariant if sEa = Eas for all a ∈ K, where the multiplication is the composition of

operators.

Definition 1. A delta operator ∆ is a shift-invariant operator satisfying ∆(x) = a for some

nonzero constant a.

Definition 2. Let ∆ be a delta operator. A polynomial sequence {pn(x)}n≥0 is called the

sequence of basic polynomials, or the associated basic sequence of ∆ if

(i) p0(x) = 1;

(ii) Degree of pn(x) is n and pn(0) = 0 for each n ≥ 1;

(iii) ∆(pn(x)) = npn−1(x).

Every delta operator has a unique sequence of basic polynomials, which is a sequence of

binomial type (or binomial sequence) that satisfies

pn(u + v) = ∑
i≥0

(n
i
)pi(u)pn−i(v), (1)

for all n ≥ 0. Conversely, every polynomial sequence of binomial type is the associated basic

sequence of some delta operator.

Let s be a shift-invariant operator, and ∆ a delta operator. Then s can be expanded uniquely

as a formal power series of ∆. If

s = ∑
k≥0

ak
k!

∆k,

we say that f(t) = ∑k≥0
ak
k!
tk is the ∆-indicator of s. In fact, the correspondence

f(t) = ∑
k≥0

ak
k!
tk ←→ ∑

k≥0

ak
k!

∆k

is an isomorphism from the ring K[[t]] of formal power series in t onto the ring of shift-invariant

operators. Under this isomorphism, a shift-invariant operator is invertible if and only if its ∆-

indicator f(t) satisfies f(0) ≠ 0, and it is a delta operator if and only if f(0) = 0 and f ′(0) ≠ 0,

i.e., f(t) has a compositional inverse g(t) satisfying f(g(t)) = g(f(t)) = t.
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Another important result is the generating function for the sequence of basic polynomials

{pn(x)}n≥0 associated to a delta operator ∆. Let f(t) be the D-indicator of ∆, where D = d/dx
is the differentiation operator. Let g(t) be the compositional inverse of f(t). Then,

∑
n≥0

pn(x)
tn

n!
= exp (xg(t)) . (2)

The operator Λ = g(D) is called the conjugate delta operator of ∆, and {pn(x)}n≥0 is the

conjugate sequence of Λ. It is easy to see that if pn(x) = ∑
k≥1

pn,kx
k, then g(t) = ∑

k≥1
pk,1

tk

k!
.

Polynomial sequences of binomial type are closely related to the theory of binomial enumer-

ation. Consider the following model. Assume B is a family of discrete structures. For a finite

set E, let Π(E) be the poset of all partitions π of E, ordered by refinement, and write ∣π∣ for the

number of blocks of π. Define a k-assembly of B-structures on E as a partition π of the set E

into ∣π∣ = k blocks such that each block of π is endowed with a B-structure. Let Bk(E) denote

the set of all such k-assemblies. For example, when B is a set of rooted trees, a k-assembly of

B-structures on E is a forest of k rooted trees with vertex set E. We can also take B to be other

structures, such as permutations, complete graphs, posets, etc. Assume that the cardinality of

Bk(E) depends only on the cardinality of E, but not its content. In other words, there is a

bijection between Bk(E) and Bk([n]) where [n] = {1,2, ..., n} and ∣E∣ = n.

Definition 3. Let

bn,k =
⎧⎪⎪⎨⎪⎪⎩

∣Bk([n])∣, if k ≤ n
0, if k > n,

where b0,0 = 1 and bn,0 = 0 for n ≥ 1.

Theorem 1 ([12]). Assume b1,1 ≠ 0. If bn(x) = ∑nk=1 bn,kx
k is the enumerator for assemblies of

B-structures on [n], then (bn(x))n≥0 is a sequence of polynomials of binomial type.

Theorem 1 provides a realization of binomial sequences in combinatorial problems. If we

think of x as a positive integer such that ∣X ∣ = x for some set X, then we can interpret bn(x) as

the number of assemblies of B-structures on [n], where each block carries a label from X. From

this viewpoint, it is easy to see that (bn(x))n≥0 is of binomial type.

This realization is only valid for binomial sequences whose coefficients are non-negative

integers, and so excludes many polynomial sequences naturally appearing in combinatorics, for

example, the falling factorials x(n). Mullin and Rota expanded their construction slightly by

considering the monomorphic classes, in which different blocks receive different labels from X,

and hence the counting polynomial becomes b̃n(x) = ∑nk=1 bn,kx(k). Ray [14] extended Mullin-

Rota’s theory and developed the concept of partition categories, and he proved that any binomial

sequence can be realized as a weight enumerator in partition lattices. We will use Ray’s model

in Section 3.

2.2 Generalized Gončarov Polynomials and Vector Parking Functions

Let Z = (zi)i≥0 be a fixed sequence with values in K, where K is the scalar field. For our

purpose, it suffices to take K to be Q, R, or C. We call Z the interpolation grid and zi ∈ Z the
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i-th interpolation node. Let T = (tn(x; ∆,Z))n≥0 be the unique sequence of polynomials that

satisfies

εzi∆
i(tn(x; ∆,Z)) = n!δi,n, (3)

where εzi is evaluation at zi.

Definition 4. The polynomial sequence T = (tn(x; ∆,Z))n≥0 determined by (3) is called the

sequence of generalized Gončarov polynomials associated with the pair (∆,Z) and tn(x; ∆,Z)
is the n-th generalized Gončarov polynomial relative to the same pair.

This sequence T has a number of interesting algebraic properties. One of them is a recurrence

formula described as follows: Let tn(x) = tn(x; ∆,Z) and {pn(x)}n≥0 be the basic sequence

associated to ∆. Then

pn(x) =
n

∑
i=0

(n
i
) pn−i(zi) ti(x). (4)

We remark that by definition, to compute the generalized Gončarov polynomials given the

basic sequence, one would find the conjugate operator Λ via (2), compute ∆ by solving for the

compositional inverse of the D-indicator of Λ, and then find the n-th polynomial tn(x) of the

sequence by using (3). The computation required in this process can be quite involved. However,

(4) gives a recursive formula which can be used as an alternative definition for tn(x), which is

much more convenient in combinatorial problems. For other algebraic properties of generalized

Gončarov polynomials, see [11].

Classical Gončarov polynomials have a combinatorial interpretation in enumeration. Let u⃗ =
(ui)i≥1 be a sequence of non-decreasing positive integers. A (vector) u⃗-parking function of length

n is a sequence (x1, ..., xn) of positive integers whose order statistics, i.e., the nondecreasing

rearrangement (x(1), x(2), ..., x(n)), satisfy the inequalities x(i) ≤ ui for all i = 1, . . . , n. Vector

parking functions can be described via a parking process of n cars trying to park along a line

of x ≥ n parking spots. Cars enter one by one in order, and before parking, each driver has a

preferred parking spot. Each driver goes to her preferred spot directly and parks in the first

spot available from there, if there exists one. A u⃗-parking function is a sequence of drivers’

preferences such that at least i cars prefer to park in the first ui spots, for all i = 1, . . . , n. When

ui = i, we recover the classical parking functions, which were originally introduced by Konheim

and Weiss [7] and are the preference sequences such that x = n and every driver can find some

spot to park. In general, the n-th Gončarov polynomials associated to the pair (D,−Z) counts

the number of z⃗-parking functions of length n, where z⃗ = (z0, z1, . . . , zn−1) is the initial segment

of the grid Z; see [9].

A concrete realization of tn(x; ∆,Z) for some other delta operators ∆ is found in a combina-

torial object called reluctant functions whose underlying structure are families of labeled trees.

In [11], it is proved for some properly defined ∆ and Z, tn(x; ∆,Z) enumerates the number of

reluctant functions in a certain binomial class B whose label sequences are z⃗-parking functions.

The object of the present paper is to extend this result and prove that for any delta operator, the

generalized Gončarov polynomials (up to a scaling) have a realization as a weighted enumerator

in partition lattices and in any exponential family.
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3 Gončarov Polynomials in Partition Lattices

In this section we give a generic, or universal realization of generalized Gončarov polynomials in

weighted enumeration over partition lattices. Our result is built on Ray’s solution of the real-

ization problem for arbitrary sequences of binomial types in the context of partition categories.

Here, we will simplify his notation and present his construction in terms of incidence algebra

of partially ordered sets, which was the language originally used by combinatorialists, e.g., see

Joni and Rota [6].

For any finite set S, let Π(S) denote the set of all partitions of S, and write Πn for Π([n]).
Elements of Π(S) are partially ordered by refinement: that is, define π ≤ σ if every block of

π is contained in a block of σ. In particular, Π(E) has a unique maximal element 1̂ that has

only one block and a unique minimal element 0̂ for which every block is a singleton. Let ∣π∣ be

the number of blocks of π and Π(π) be the partitions of the set that consists of blocks of π,

When π ≤ σ, the induced partition σ/π is the partition σ viewed as an element of Π(π). Define

the class of (π,σ) as the sequence λ = (λ1, λ2, ...) of non-negative integers such that λi is the

number of blocks of size i in the partition σ/π, for 1 ≤ i ≤ ∣π∣. It follows that

∑
i≥1

iλi = ∣π∣ and ∑
i≥1

λi = ∣σ∣.

Example 1. Let E = [8], π = {1},{2},{345},{67},{8}, σ = {1345},{2},{678} ∈ Π8. Then,

σ/π = {(1), (345)},{(2)},{(67), (8)} ∈ Π(π). The class of (π,σ) is λ = (1,2,0,0, ...), where we

have ∑i≥1 iλi = ∣π∣ = 5 and ∑i≥1 λi = ∣σ∣ = 3.

We recall the basic notation in incidence algebra. Let P be a finite poset andA a commutative

ring with unity. Denote by Int(P ) the set of all intervals of P , i.e., the set {(x, y) ∶ x ≤ y}. The

incidence algebra I(P,A) of P over A is the A-algebra of all functions

f ∶ Int(P ) → A,

where multiplication is defined via the convolution

fg(x, y) = ∑
x≤z≤y

f(x, z)g(z, y).

The algebra I(P,A) is associative with identity δ, where

δ(x, y) =
⎧⎪⎪⎨⎪⎪⎩

1, if x = y,
0, if x ≠ y.

An element f ∈ I(P,A) is invertible under the multiplication if and only if f(x,x) is invertible

in A for every x ∈ P .

In this paper we are concerned with the case P = Πn, the partition lattice of [n], and

A = K[w2,w3, . . .], where w2,w3, ... are independent variables. In addition, we set w1 = 1.

Definition 5. Assume π ≤ σ in Πn and the class of (π,σ) is λ = (λ1, λ2, . . .). Define the zeta-type

function w(π,σ) ∈ I(Πn,A) by letting

w(π,σ) = wλ1

1 wλ2

2 . . .w
λ∣π∣
∣π∣ . (5)
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Note that w(π,π) = 1 for all π. Hence w is invertible. The inverse of w is called the

Möbius-type function and denoted by µw. Explicitly, µw(π,π) = 1 and for π < σ,

µw(π,σ) = − ∑
π≤τ<σ

µw(π, τ)w(τ, σ).

When all wi = 1, the zeta-type function and the Möbius-type function become the zeta function

and the Möbius function of Πn respectively.

Example 2. Consider the lattice Π3. Then for all π < σ, w(π,σ) = w2 except that w(0̂, 1̂) = w3.

Consequently, µw(π,σ) = −w2 if π < σ except that µw(0̂, 1̂) = 3w2
2 −w3.

Define the zeta-type enumerator {an(x;w)}n≥0 and Möbius-type enumerator {bn(x;w)}n≥0

as follows. Let a0(x;w) = b0(x;w) = 1 and for n ≥ 1,

an(x;w) = ∑
π∈Πn

w(0̂, π) x∣π∣, (6)

bn(x;w) = ∑
π∈Πn

µw(0̂, π) x∣π∣. (7)

Theorem 2 ([14]). 1. The polynomial sequences {an(x;w)}n≥0 and {bn(x;w)}n≥0 are of bi-

nomial type.

2. Let Λ be the delta operator whose D-indicator is given by g(t) = t + ∑i≥2wit
i/i!. Then

{an(x;w)}n≥0 is the conjugate sequence of Λ and {bn(x;w)}n≥0 is the basic sequence of Λ.

For n = 0,1, . . . ,4, the polynomials an(w,x) and bn(w,x) are

a0(x;w) = 1,

a1(x;w) = x,

a2(x;w) = x2 +w2x,

a3(x;w) = x3 + 3w2x
2 +w3x,

a4(x;w) = x4 + 6w2x
3 + (4w3 + 3w2

2)x2 +w4x,

and

b0(x;w) = 1,

b1(x;w) = x,

b2(x;w) = x2 −w2x,

b3(x;w) = x3 − 3w2x
2 + (3w2

2 −w3)x,
b4(x;w) = x4 − 6w2x

3 + (15w2
2 − 4w3)x2 + (10w2w3 −w4 − 15w3

2)x.

The linear coefficient in bn(w;x) is µwn = µw(0̂, 1̂) in Πn. Assume ∆ is the conjugate delta

operator of Λ. Then {an(x;w)}n≥0 is the basic sequence of ∆ and {bn(x;w)}n≥0 is the conjugate

sequence of ∆. The operator ∆ can be written as ∆ = ∑n≥1 µ
w
nD

n/n!. Since w1 = 1, each µwn
is a polynomial of w2,w3, . . . . If we take w1 to be a variable, µwn would be a polynomial in

w−1
1 ,w2,w3, . . . .

The condition w1 = 1 is equivalent to the equation a1(x;w) = x. Since the weight vari-

ables w2,w3, . . . can take arbitrary values, Theorem 2 implies that any polynomial sequence
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{pn(x)}n≥0 of binomial type with p1(x) = x can be realized as the zeta-type weight enumerator

or the Möbius-type weight enumerator over partition lattices. Note that for any scalar k ≠ 0,

if a sequence {pn(x)}n≥0 is the basic sequence of ∆ and the conjugate sequence of Λ, then

{pn/kn}n≥0 is the basic sequence of k∆ and the conjugate sequence of g(D/k) where g(t) is the

D-indicator of Λ. Hence Theorem 2 covers all polynomial sequences of binomial type up to a

scaling.

In the problem of counting assemblies of B-structures outlined in Section 2.1, the enumerator

∑k bn,kxk in Theorem 1 is a specialization of the polynomial an(x;w), where wn is the number

of B-structures on a block of size n. For example, when B is the set of rooted trees, wn = nn−1

and hence an(x;w) = x(x + n)n−1, the n-th Abel polynomial.

Our objective is to fit the generalized Gončarov polynomials into this model and present

a combinatorial interpretation in terms of weight-enumeration in partition lattices. Following

the notation of Theorem 2, let ∆ be the conjugate delta operator of Λ. Given an interpolation

grid Z, we denote by tn(x;w,Z) the n-th generalized Gončarov polynomial relative to the pair

(∆,Z). We use this notation to emphasize the role of the zeta-type function w(π,σ).
To get a formula for the polynomial tn(x;w,Z), we use the recurrence (4) in Section 2.2.

Since an(x;w) is the basic sequence of ∆, {tn(x;w,Z)}n≥0 is the unique sequence of polynomials

that satisfies the recurrence

an(x;w) =
n

∑
i=0

(n
i
)an−i(zi;w) ti(x;w,Z). (8)

In other words,

tn(x;w,Z) = an(x;w) −
n−1

∑
i=0

(n
i
)an−i(zi;w) ti(x;w,Z). (9)

In particular, t0(x;w,Z) = 1 and t1(x;w,Z) = a1(x;w)−a1(z0;w) = x−z0. Here we again assume

w1 = 1 and hence a1(x;w) = x. Since if ∆ is changed to k∆, the corresponding tn(x;w,Z) just

changes to tn(x;w,Z)/kn, again we cover all the cases up to a scaling.

Assume x is a positive integer and X = {1,2, . . . , x}. Then an(x;w) is the zeta-type weight

enumerator of all the block-labeled partitions, where each block of the partition carries a label

from X. In symbols,

an(x;w) = ∑
π∈Πn

w(0̂, π) ⋅ ∣{f ∶ Block(π) →X}∣,

where Block(π) is the set of blocks of π. For a partition π with a block-labeling f , we record

the labeling by the list fπ = (x1, x2, . . . , xn), where xi = f(Bj) whenever i is in the block Bj of

π.

Let z⃗ = (z0, z1,⋯, zn−1) be the initial segment of the grid Z. Furthermore, assume that

z0 ≤ z1⋯ ≤ zn−1 are positive integers with zn−1 < x.

Define the set PFπ(Z) as the set of all block-labelings of π that are also z⃗-parking functions,

i.e.,

PFπ(Z) = {f ∶ Block(π) →X ∣ fπ is a z⃗-parking function}. (10)

More precisely, PFπ(Z) is the set of block-labelings of π such that the order statistics of

fπ = (x1, x2, . . . , xn) satisfies x(i) ≤ zi−1 for i = 1, . . . , n. Let PFπ(Z) be the cardinality of

PFπ(Z).
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Our main result of this section is the following theorem.

Theorem 3. Assume tn(x;w,Z) is the n-th generalized Gončarov polynomial defined by (8)

with a positive increasing integer sequence Z = (z0, z1, ...). Let x be an integer larger than zn−1.

Then,

tn(0;ω,−Z) = tn(x;ω,x −Z) = ∑
π∈Πn

w(0̂, π) ⋅ PFπ(Z), (11)

where x −Z = (x − z0, x − z1, x − z2, . . . ) and −Z = (−z0,−z1,−z2, . . . ).

The first equality follows from [11, Prop.3.5] that was proved by verifying the defining equa-

tion (3), and the second equality follows from the recurrence (8) and Lemma 4 proved next.

Note that all three parts of (11) are polynomials of z0, z1, . . . , zn−1, hence (11) is a polynomial

identity.

Lemma 4. For every n ≥ 0, it holds that

an(x;w) =
n

∑
i=0

(n
i
)an−i(x − zi;w) ∑

π∈Πi
w(0̂, π) ⋅ PFπ(Z) (12)

Proof. Again we assume that x and zi are positive integers and z0 < z1 < ⋯ < zn−1 < x. For a

finite set E and P , let S(E,P ) be the set of pairs (π, f) where π is a partition of the set E and

f is a function from Block(π) to P . Then the left-hand side of (12) counts the set S([n],X)
by the zeta-type weight function w(0̂, π). Note that if π has blocks B1,B2, . . . ,Bk, then

w(0̂, π) =
k

∏
j=1

w∣Bj ∣.

For a pair (π, f) ∈ S([n],X) with fπ = (x1, x2, . . . , xn), let inc(fπ) = (x(1), x(2), . . . , x(n)) be

the non-decreasing rearrangement of the terms of fπ. Set

i(f) = max{k ∶ x(j) ≤ zj−1 ∀j ≤ k}.

Thus, the maximality of i = i(f) means that

x(1) ≤ z0, x(2) ≤ z1, ... , x(i) ≤ zi−1

and

zi < x(i+1) ≤ x(i+2) ≤ ⋯ ≤ x(n) ≤ x.

In the case that x(j) > zj−1 for all j, we have i(f) = 0.

Assume (xr1 , ..., xri) is the subsequence of fπ from which the non-decreasing sequence

(x(1), x(2), ..., x(i)) is obtained. Let R1 = {r1, r2, . . . , ri} ⊆ [n]. Then it is easy to see that

R1 must be a union of some blocks of π, while R2 = [n]∖R1 is the union of the remaining blocks

of π. Let π1 be the restriction of π on R1 and π2 the restriction of π on R2. Thus π is a disjoint

union of π1 and π2. Furthermore, let fi be the restriction of f on Ri. Then f1 is a map from

the blocks of π1 to {1, . . . , zi} that is also a z⃗-parking function, and f2 is a map from blocks of

π2 to the set X ∖ [zi] = {zi + 1, . . . , x}.

Let SP (E,X) be the subset of S(E,X) such that for each pair (π, f), the sequence fπ is

a z⃗-parking function. Then the above argument defines a decomposition of (π, f) ∈ S([n],X)
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into pairs (π1, f1) ∈ SP (R1,X) and (π2, f2) ∈ S(R2,X ∖ [zi]). Conversely, any pairs of (π1, f1)
and (π2, f2) described above can be reassembled into a partition π of [n] with labels in X. In

other words, the set S([n],X) can be written as a disjoint union of Cartesian products as

S([n],X) = ⊍
i;R1⊆[n]∶∣R1∣=i

SP (R1,X) × S(R2,X ∖ [zi]). (13)

In addition, if π is the disjoint union of π1 and π2, then

w(0̂, π) = w(0̂, π1)w(0̂, π2).

Putting the above results together, we have

an(x;w) = ∑
(π,f)∈S([n],X)

w(0̂, π)

=
n

∑
i=0

∑
R1∶∣R1∣=i

⎛
⎝ ∑
(π1,f1)∈Sp(R1,X)

w(0̂, π1) ⋅ ∑
(π2,f2)∈S(R2,X∖[zi])

w(0̂, π2)
⎞
⎠

=
n

∑
i=0

(n
i
)an−i(x − zi;w) ∑

(π1,f1)∈Sp(R1,X)
w(0̂, π1)

=
n

∑
i=0

(n
i
)an−i(x − zi;w) ∑

π∈Πi
w(0̂, π)PFπ(Z).

The last equation follows from the definition of PFπ(Z).

Example 3. From the recurrence (8) we get

t2(x;w,Z) = x2 + (w2 − 2z1)x + (2z0z1 − z2
0 −w2z0).

Hence t2(0;w,−Z) = 2z0z1 − z2
0 +w2z0. On the other hand, there are two partitions in Π2. For

π = {12}, clearly w(0̂,{12}) = w2 and PF{12}(Z) = z0. For π = {1}{2}, w(0̂, π) = 1 and PFπ(Z)
is the number of pairs of positive integers (x, y) such that min(x, y) ≤ z0 and max(x, y) ≤ z1. It

is easy to check that there are 2z0z1 − z2
0 such pairs.

Since {an(x;w)} gives a generic form of the sequence of polynomials of binomial type,

{tn(x;w,Z)} is the generic form of the generalized Gončarov polynomials. In particular, from

Theorem 3 we see that when w2 = w3 = ⋯ = 0, tn(0;w,−Z) gives the number of z⃗-parking

functions of length n.

4 Gončarov Polynomials in Exponential Families

In this section, we explore a more concrete realization of generalized Gončarov polynomials in

exponential families, which are picturesque models that deal with counting structures that are

built out of connected pieces and can be applied to many combinatorial problems.

4.1 Exponential Families

Exponential families are combinatorial models based on the partition lattices where the enu-

meration are captured by the exponential generating functions. The description of exponential
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families and their relation to the incidence algebra of Πn can be found in standard textbooks,

e.g., [16, Section 5.1]. Here we adopt Wilf’s description of exponential families [18] in the context

of ‘playing cards’ and ‘hands’.

Suppose that there is given an abstract set P of ‘pictures’, which typically are the connected

structures. A card C(S, p) is a pair consisting of a finite label set S of positive integers and a

picture p ∈ P . The weight of C is ∣S∣. If S = [n], the card is called standard. A hand H is a

set of cards whose label sets form a partition of [n] for some n. The weight of a hand is the

sum of the weights of the cards in the hand. The n-th deck Dn is the set of all standard cards

of weights n. We require that Dn is always finite. An exponential family F is the collection of

decks D1,D2, . . . .

In an exponential family, let di = ∣Di∣ and hn,k be the number of hands H of weight n that

consist of k cards. Let h0(x) = 1 and for n ≥ 1,

hn(x) =
n

∑
k=1

hn,kx
k. (14)

Then the main counting theorem, the exponential formula, states that these polynomials satisfy

the generating relation:

exD(t) = ∑
n≥0

hn(x)
tn

n!
, (15)

where D(t) = ∑k≥1 dkt
k/k!. In other words, if d1 = h1,1 ≠ 0, {hn(x)}n≥0 is a sequence of binomial

type that is conjugate to the delta operator ∑k≥1 dkD
k/k!.

Example 4. Set Partitions: Here, a card is a label set [n] with a ‘picture’ of n dots. Each

deck Dn consists of the single card of weight n, and a hand is just a partition of the set [n].
Thus, hn,k is the number of partitions of the set [n] into k classes, which is S(n, k), the Stirling

number of the second kind.

Example 5. Permutations and their Cycles: Each card is a cyclic permutation on a label set

S. The deck Dn consists of all distinct cyclic permutations on [n] so dn = (n − 1)! and a hand

is a permutation of [n] consisting of k cycles. Thus, hn,k is the number of permutations on [n]
that have k cycles, that is, the signless Stirling number of the first kind c(n, k).

Note that we can interpret xk in hn(x) as the number of maps from the set of cards in a

hand to the set X = {1, . . . , x} for some positive integer x. Hence hn(x) counts the number of

hands of weight n in which each card is labeled by an element of X. This set-up gives a natural

combinatorial interpretation for binomial polynomial sequences whose coefficients are positive

integers.

In Foundation III [12] Mullin and Rota introduced a structure called reluctant functions,

which can be used to give a combinatorial interpretation for some generalized Gončarov poly-

nomials; see [11]. We remark that reluctant functions is a special case of exponential families,

in which the ‘pictures’ are certain sets of trees. We will show that by taking the type enumera-

tor an exponential family actually provides a combinatorial model for all generalized Gončarov

polynomials.
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4.2 Type Enumerator in Exponential Families

In a given exponential family F , we have seen that

hn(x) =
n

∑
k=1

hn,kx
k = ∑

H

∣{f ∶ cards in H →X}∣ (16)

where H ranges over all hands of weight n. For a hand H consisting of cards C1, C2, . . . ,Ck of

weights t1, t2, . . . , tk, define the type of H as

type(H) = yt1yt2⋯ytk ,

where y1, y2, . . . , are free variables.

Let

hn(x;y) = ∑
H ∶ weight n

type(H)∣{f ∶ cards in H →X}∣. (17)

Then we have the following form of the exponential formula.

Proposition 5. The sequence of type enumerators {hn(x;y)}n≥0, viewed as a polynomial in x,

is a sequence of polynomials of binomial type satisfying the equation

∑
n≥0

hn(x;y) t
n

n!
= exp(x∑

k≥1

dkyk
tk

k!
) . (18)

Proof. We compare the formula of hn(x;y) with that of hn(x). Note for n ≥ 1, hn(x) can be

computed by

hn(x) = ∑
k≥1

∑
H={C1,...,Ck}

dt1dt2⋯dtkxk, (19)

where {C1,⋯,Ck} is a hand of weight n and ti is the weight of card Ci, while

hn(x;y) = ∑
k≥1

∑
H={C1,...,Ck}

dt1dt2⋯dtkyt1yt2⋯ytkxk. (20)

The exponential formula for hn(x) then implies Proposition 5.

Remark. Comparing to the generic form an(x;w) in the previous section, we see that hn(x;y)
corresponds to the case where the variables in the zeta-type function are determined by wn =
dnyn. As far as d1 ≠ 0, we can obtain arbitrary polynomial sequences of binomial type by taking

suitable values for the yi-variables.

4.3 Sequence of Generalized Goncarov Polynomials

Let Z = (zi)i≥0 be an interpolation grid. For the binomial sequence {hn(x;y)}n≥0 defined in an

exponential family F , we can consider the associated generalized Gončarov polynomials given

by (4) with pn(x) replaced by hn(x;y). Denote this Gončarov polynomial by tn(x;y,F ,Z) to

emphasize that it has variables yi and is defined in F . Explicitly, tn(x;y,F ,Z) is obtained by

the recurrence

tn(x;y,F ,Z) = hn(x; y) −
n−1

∑
i=0

(n
i
)hn−i(zi; y)ti(x;y,F ,Z). (21)
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Suppose X = {1,2, ..., x} and assume that z0 ≤ z1 ≤ ⋯ ≤ zn−1 are integers in X. Let

z⃗ = (z0, z1, . . . , zn−1). For a hand H = {C1,C2, . . . ,Ck} of weight n with a function f from

{C1,C2, . . . ,Ck} to X, denote by fH the list (x1, x2, . . . , xn), where xi = f(Cj) if i is in the label

set of Cj . Let

PFH(Z) = {f ∶ {C1,C2, . . . ,Ck} →X ∣ fH is a z⃗-parking function},

and PFH(Z) the cardinality of PFH(Z). Then we have the following analog of Theorem 3.

Theorem 6. For n ≥ 0,

tn(0;y,F ,−Z) = tn(x;y,F , x −Z) = ∑
H ∶ of weight n

type(H) ⋅ PFH(Z). (22)

Here by convention, the third term of (22) equals 1 when n = 0.

Theorem 6 follows from (21) and the following recurrence relation

hn(x;y) =
n

∑
i=0

(n
i
)hn−i(x − zi;y) ∑

H ∶ of weight i

type(H) ⋅ PFH(Z), (23)

whose proof is similar to that of Lemma 4. In an exponential family F , let A(S,X) be the set

of pairs (H,f) such that H is a hand whose label sets form a partition of S and f is a function

from the cards in H to X. Then the basic ingredients of the proof are that

(1) type(H) is a multiplicative function only depending on the weights of cards in H, and

(2) The set A([n],X) can be decomposed into a disjoint union of Cartesian products of the

form

AP (R,X) ×A([n] ∖R,X ∖ [zi]),

where AP (R,X) = {(H,f) ∈ A(R,X) ∶ fH is a z⃗-parking function}, and the disjoint union

is taken over all the subsets R of [n].
We skip the details of the proof of Eq. (23).

We illustrate the above results and some connections to combinatorics in the exponential

families given in Examples 4 and 5. There are many other exponential families in which the type

enumerator and associated Gončarov polynomials have interesting combinatorial significance.

1. Let F1 be the exponential family of set partitions described in Example 4. In this family,

di = 1 for all i and hn(x) =
n

∑
k=0

S(n, k)xk. In the type enumerator, if we substitute y1 = 1

and yi = wi for i ≥ 2, then hn(x;y) is exactly the same as the generic sequence an(x;w)
in (6), and consequently tn(x;y,F1,Z) is the same as the generic Gončarov polynomial

tn(x;w,Z) defined by (9). In particular, if all yi = 1, tn(0;y,F1,−Z) gives a formula for

the number of z⃗-parking functions with the additional structure that cars arrive in disjoint

groups, and drivers in the same group always prefer the same parking spot.

When yi = 1 and zi = 1 + i for all i, the first few terms of the Gončarov polynomials
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tn(x) = tn(x;y,F1,−Z) are

t0(x) = 1

t1(x) = x + 1

t2(x) = x2 + 5x + 4

t3(x) = x3 + 12x2 + 40x + 29

t4(x) = x4 + 22x3 + 163x2 + 453x + 311

In particular, for x = 0 we get the sequence 1,1,4,29,311, .... This is sequence A030019 in

the On-Line Encyclopedia of Integer Sequences (OEIS) [13], where it is interpreted as the

number of labeled spanning trees in the complete hypergraph on n vertices (all hyper-edges

having cardinality 2 or greater). It would be interesting to find a direct bijection between

the hyper-trees and the parking-function interpretation.

2. Let F2 be the exponential family of the permutations and their cycles, as described in

Example 5. Here dn = (n − 1)! and hn(x) =
n

∑
k=0

c(n, k)xk = x(n), where the c(n, k) is the

signless Stirling numbers of the first kind and x(n) is the rising factorial x(x+1)⋯(x+n−1).
When y1 = 1, the Gončarov polynomial tn(x;y,F2,Z) can be obtained from the generic

form tn(x;w,Z) by replacing wn with (n − 1)!yn for n ≥ 2. When all yi = 1, i.e. y = 1,

tn(0;1,F2,−Z) gives a formula for the number of z⃗-parking functions with the addition

requirement that cars are formed in disjoint cycles, and drivers in the same cycle prefer

the same parking spot.

In addition, when y = 1, and Z is the arithmetic progression zi = a + bi, the Goncarov

polynomial is

tn(x;1,F2;−Z) = (x + a)(x + a + nb + 1)(n−1). (24)

Another combinatorial interpretation of tn(0;1,F2,−Z) is given in [11, Section 6.7], where

it shows that tn(0;1,F ,−Z) is n! times the number of lattice paths from (0,0) to (x−1, n)
with strict right boundary Z. For example, when zi = a + bi for some positive integers a

and b, 1
n!
tn(0;1,F2,−Z) is the number of lattice paths from (0,0) to (x− 1, n) which stay

strictly to the left of the points (a + ib, i) for i = 0,1, . . . , n. In particular for a = 1 and

b = k, it counts the number of labeled lattice paths from the origin to (kn,n) that never

pass below the line x = yk. In that case (24) gives 1
1+kn(

(k+1)n
n

), the n-th k-Fuss-Catalan

number.

Remark. We can also consider the injective functions in the definition of hn(x) and hn(x; y) in

(16) and (17), where the term xk is replaced by the lower factorial x(k) = x(x−1)⋯(x−k+1). In

other words, cards of a hand are labeled by X with the additional property that different cards

get different labels. Some examples are given in [11, Section 6] and called monomorphic classes.

A result analogous to Theorem 6 still holds for the momomorphic classes of an exponential

family.

As a final result we point out an explicit formula to compute the constant coefficient of the

generalized Gončarov polynomial whenever we know the basic sequence {pn(x)}n≥0. It is proved

in [11] and only depends on the recurrence (4) and the fact that pn(0) = 0 for n > 0. The proof
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does not need an explicit formula for the delta operator ∆ and hence the result is easier to use

when we need to compute the value of tn(0;y,F ,−Z) in a given exponential family.

Let {pn(x)}n≥0 be a sequence of binomial type and Z = (z0, z1, . . . ) be a given grid. Assume

{tn(0;−Z)}n≥0 is defined by the recurrence relation

tn(0;−Z) = −
n−1

∑
i=0

(n
i
)pn−i(−zi)ti(0),

for n ≥ 1 and t0(0;−Z) = 1. Then for n ≥ 1, tn(0;−Z) can be expressed as a summation over

ordered partitions.

Given a finite set S with n elements, an ordered partition of S is an ordered list (B1, ...,Bk)
of disjoint nonempty subsets of S such that B1 ∪ ⋯ ∪Bk = S. If ρ = (B1, ...,Bk) is an ordered

partition of S, then we set ∣ρ∣ = k. For each i = 1,2, ..., k, we let bi = bi(ρ) = ∣Bi∣, and si ∶= si(ρ) ∶=
∑ij=1 bj . In particular, set s0(p) = 0. Let Rn be the set of all ordered partitions of the set [n].

Theorem 7 ([11]). For n ≥ 1,

tn(0;−Z) = ∑
ρ∈Rn

(−1)∣ρ∣
k−1

∏
i=0

pbi+1(−zsi)

= ∑
ρ∈Rn

(−1)∣ρ∣pb1(−z0),⋯pbk(−zsk−1). (25)

The following list is the formulas for the first several Gončarov polynomials.

t0(0;−Z) = 1

t1(0;−Z) = −p1(−z0)
t2(0;−Z) = 2p1(−z0)p1(−z1) − p2(−z0)
t3(0;−Z) = −p3(−z0) + 3p2(−z0)p1(−z2) + 3p1(−z0)p2(−z1) − 6p1(−z0)p1(−z1)p1(−z2).

4.4 Degenerate Cases

In an exponential family, the polynomial hn(x) or hn(x;y) may not always have degree n, e.g.,

when d1 = h1,1 = 0. We say that such polynomial sequences and the corresponding exponential

families are degenerate. For a degenerate sequence of polynomials, there is no delta operator

for which the sequence is the basic or the conjugate sequence. Nevertheless, the exponential

formulas (15) and (18) are still true. Hence the sequences {hn(x)}n≥0 and {hn(x;y)}n≥0 still

satisfy the binomial-type identity (1).

Without a delta operator, we cannot define the generalized Gončarov interpolation problems.

However, we can still introduce the generalized Gončarov polynomials via the recurrence (4).

Furthermore, we will prove in Theorem 8 that the shift invariance of Gončarov polynomials

can also be derived from (4). Therefore, Theorems 6 and 7 still hold true for the degenerate

exponential families since all the proofs follow from the binomial-type identity (1) and the

recurrence (4).

Theorem 8. Assume {pn(x)}n≥0 is a polynomial sequence of binomial type with p0(x) = 1, but

the degree of an(x) is not necessary n. Let tn(x;Z) be defined by the recurrence relation

tn(x;Z) = pn(x) −
n−1

∑
i=0

(n
i
)pn−i(zi)ti(x;Z). (26)
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For any scalar η and the interpolation grid Z = {z0, z1, z2, . . . ), let Z + η be the sequence (z0 +
η, z1 + η, z2 + η,⋯). Then we have

tn(x + η;Z + η) = tn(x;Z) (27)

for all n ≥ 0.

Proof. We prove Theorem 8 by induction on n. The initial case n = 0 is trivial since t0(x;Z) = 1

for all x and any grid Z. Assume Eq. (27) is true for all indices less than n. We compute

tn(x + η;Z + η). By definition

tn(x + η;Z + η) = pn(x + η) −
n−1

∑
i=0

(n
i
)pn−i(zi + η)ti(x + η;Z + η). (28)

By the inductive hypothesis ti(x + η;Z + η) = ti(x;Z) for i < n and the binomial identity of

pn(x), the right-hand side of (28) can be written as

n

∑
k=0

(n
k
)pk(x)pn−k(η) −

n−1

∑
i=0

(n
i
)
⎛
⎝
n−i
∑
j=0

(n − i
j

)pn−i−j(zi)pj(η)
⎞
⎠
ti(x;Z)

=
n

∑
k=0

(n
k
)pk(x)pn−k(η) − ∑

i+j≤n
except (i,j)=(n,0)

(n
i
)(n − i

j
)pj(η)pn−i−j(zi)ti(x;Z) (29)

Since

(n
i
)(n − i

j
) = n!

i!j!(n − i − j)! = (n
j
)(n − j

i
),

then (29) can be expressed as

n

∑
k=0

(n
k
)pk(x)pn−k(η) − ∑

i+j≤n
except (i,j)=(n,0)

(n
j
)(n − j

i
)pj(η)pn−i−j(zi)ti(x;Z)

=
n

∑
k=0

(n
k
)pk(x)pn−k(η) −

n

∑
j=1

(n
j
)pj(η)

n−j
∑
i=0

(n − j
i

)pn−i−j(zi)ti(x;Z)

−
n−1

∑
i=0

(n
i
)pn−i(zi)ti(x;Z). (30)

The last summation in (30) corresponds to the terms with j = 0. Note that

n−j
∑
i=0

(n − j
i

)pn−i−j(zi)ti(x;Z) = pn−j(x).

Hence For. (30) is equal to

n

∑
k=0

(n
k
)pk(x)pn−k(η) −

n

∑
j=1

(n
j
)pj(η)pn−j(x) −

n−1

∑
i=0

(n
i
)pn−i(zi)ti(x;Z)

= pn(x) −
n−1

∑
i=0

(n
i
)pn−i(zi)ti(x;Z)

= tn(x;Z).

This finishes the proof.
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The next example shows a degenerate exponential family.

Example 6. 2-Regular simple graphs. In this exponential family a card is an undirected cycle

on a label set [m] (where m ≥ 3). The deck Dn consists of all undirected circular arrangements

of n letters so dn = 1
2
(n−1)! for n ≥ 3 and d1 = d2 = 0. A hand is then a undirected simple graph

on the vertex set [n], which is 2-regular, that is, every vertex has degree 2. Thus, hn,k is the

number of undirected 2-regular simple graphs on n vertices consisting of k cycles. Denote by

F3 this exponential family.

For F3, the type enumerators are h0(x,y) = 1, h1(x;y) = h2(x;y) = 0, h3(x;y) = y3x,

h4(x;y) = 2y4x, h5(x,y) = 12y5x, and h6(x;y) = 60y6x + 10y2
3x

2, etc. Although the degree of

hn(x;y) is not n, the exponential formula still holds:

n

∑
k=0

hn(x;y) t
k

k!
= exp(x∑

k≥3

yk
tk

2k
) .

We compute by the recurrence (21) that

t0(x;y,F3,Z) = 1

t1(x;y,F3,Z) = t2(x; y,F3,Z) = 0

t3(x;y,F3,Z) = y3(x − z0),
t4(x;y,F3,Z) = 3y3(x − z0),
t5(x;y,F3,Z) = 12y5(x − z0),
t6(x;y,F3,Z) = 10y2

3x
2 + 60y6x − 20y2

3z3x − 60y6z0 − 10y2
3z

2
0 + 20y2

3z0z3.

The equation

tn(0;y,F3,−Z) = ∑
H ∶ of weight n

type(H) ⋅ PFH(Z)

is still true. For example, for n = 6, t6(0; y,F3,−Z) = 60y6z0 + 20y2
3z0z3 − 10y2

3z
2
0 . The term

60y6z0 comes from the 5!/2 = 60 6-cycles, and the terms 10y2
3(2z0z3 − z2

0) comes from the 10

hands each with two 3-cycles.

5 Closing Remarks

In this paper we present the combinatorial interpretation of an arbitrary sequence of Gončarov

polynomials associated with a polynomial sequence of binomial type. There are many other

combinatorial problems that provide a formal framework of coalgebras, bialgebras, or Hopf

algebras [6]. In those problems the counting sequences satisfy an identity that is analogous to

the binomial-type identity (1), with the binomial coefficients (n
i
) replaced by some other section

coefficients. For example, the theory of binomial enumeration proposed by Mullin and Rota [12]

was generalized to an abstract context and applied to dissecting schemes by Henle [5]. It would

be an interesting project to investigate the role of generalized Gončarov polynomials in these

other dissecting schemes and discrete structures. As suggested by Henle, this research may lead

to connections to rook polynomials, order invariants of posets, Tutte invariants of combinatorial

geometries, cycle indices and symmetric functions, and many others.
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