
Vector Parking Functions with Periodic Boundaries and Rational Parking
Functions

Yue Caia, Catherine H. Yanb,∗

aSchool of Information Technology, Jiangxi University of Finance and Economics, Jiangxi, China, 330032

bDepartment of Mathematics, Texas A&M University, College Station, TX 77843, United States

Abstract

Vector parking functions are sequences of non-negative integers whose order statistics are bounded by a given
integer sequence u = (u0, u1, u2, . . . ). Using the theory of fractional power series and an analog of Newton-
Puiseux Theorem, we derive the exponential generating function for the number of u-parking functions when
u is periodic. Our method is to convert an Appell relation of Gončarov polynomials to a system of linear
equations. Solving the system we obtain an explicit formula of the exponential generating function in terms
of Schur functions of certain fractional power series. In particular, we apply our methods to rational parking
functions for which the boundary is induced by a linear function with rational slope.
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1. Introduction

The notion of parking functions was introduced by Konheim and Weiss in the analysis of a well-known
computer algorithm: the hashing with linear probing. In [8] Konheim and Weiss gave a picturesque description of
parking functions via a parking process on a one-way street. There are several equivalent definitions for parking
functions. In this paper we adopt the one in terms of order statistics. For a sequence a = (a0, a1, . . . , an−1), let
inc(a) = (a(0), a(1), . . . , a(n−1)) be its non-decreasing rearrangement, that is, a(0) ≤ a(1) ≤ · · · ≤ a(n−1), where
a(i) is called the i-th order statistic of the sequence a.

Definition 1.1. An integer sequence a = (a0, a1, . . . , an−1) is a parking function if and only if its order statistics
satisfy the inequalities 0 ≤ a(i) < i+ 1 for all i.

The set of parking functions is an object lying in the center of combinatorics and appearing in many discrete
and algebraic structures. In addition to hashing and linear probing, they are also related to enumeration of
trees and forests, hyperplane arrangements, noncrossing partitions, monomial ideals, and combinatorial theory
of Macdonald polynomials, to list a few. See [22] for a survey on its history and some recent developments.
There are various generalizations in literature, for example, vector parking functions that depend on a vector u
[11, 19], G-parking functions related to the critical configurations of the sandpile model on a directed graph G
[15], parking functions on trees and directed graphs that generalize the parking process of Konheim and Weiss
[2, 7, 12], and parking sequences allowing cars of different sizes [4]. In this paper we are concerned with vector
parking functions.
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Definition 1.2. Let u = (u0, u1, . . . ) be a sequence of non-decreasing positive integers. A u-parking function
of length n is a sequence a = (a0, a1, . . . , an−1) ∈ Nn whose order statistics satisfy 0 ≤ a(i) < ui for i =
0, 1, . . . , n− 1.

We denote by PFn(u) the set of u-parking functions of length n and by PFn(u) the cardinality of PFn(u).
When ui = i + 1 for all i, we recover Definition 1.1 and the sequences in PFn(u) are referred to as classical
parking functions.

A sequence of polynomials from interpolation theory gives a natural algebraic tool to study u-parking
functions. Those polynomials are called Gončarov polynomials, which are the basis of solutions to the Gončarov
interpolation problem in numerical analysis. The n-th Gončarov polynomial gn(x; u) = gn(x;u0, . . . , un−1) is
a monic polynomial of degree n depending on the parameters u0, u1, . . . , un−1. The detailed description of the
algebraic and combinatorial theory of Gončarov polynomials can be found in [11]. The main result connecting
u-parking functions and Gončarov polynomials is the following equation.

Theorem 1.3 ([11]).

PFn(u) = gn(0;−u0, . . . ,−un−1) = (−1)ngn(0;u0, . . . , un−1). (1.1)

In particular, when u is an arithmetic progression with ui = a + bi for some positive integers a and b,
PKn(u) = a(a + bn)n−1. For general u, the only formula available for computing PKn(u) is a determinantal
formula, which is not easy to evaluate. The goal of the present paper is to give an explicit formula of the
exponential generating function of PFn(u) when u is a periodic sequence. Here a sequence u = (u0, u1, . . . ) is
periodic with period k and height ` if there are positive integers k and ` such that u0 ≤ u1 ≤ · · · ≤ uk−1 ≤ u0 + `
and um = q` + ur whenever m = qk + r with 0 ≤ r < k. Our analysis will start with an identity called the
Appell relation for Gončarov polynomials.

Theorem 1.4 ([11]). Appell relation.

ext =

∞∑
n=0

gn(x; u)
tneunt

n!
. (1.2)

We will combine Eqs.(1.1) and (1.2) to get explicit generating functions of PFn(u) for periodic u. The
idea is to use the theory of fractional power series and an analog of Newton-Puiseux Theorem. This method
was used previously in [10] to show the algebraicity of the (ordinary) generating functions of lattice paths
with periodic boundaries. In this paper we extend it to vector parking functions. In particular, our result
covers rational parking functions, which arose in the study of diagonal harmonic and combinatorial theory of
Macdonald polynomials. The notion of rational parking functions come from an encoding of parking functions
as labeled Dyck paths. Next we recall the necessary definitions and explain how to fit it into the notion of
vector parking functions.

For any sequence a = (a0, a1, . . . , an−1) ∈ Nn, inc(a) can be represented by a lattice path from (0, 0) to
(n, n) with north step N and east step E. If inc(a) = (a(0), a(1), . . . , a(n−1)), the lattice path has E-steps from
(i, a(i)) to (i+ 1, a(i)) for each i. The sequence a is a classical parking function if and only if the corresponding
lattice path is a Dyck path, which stays weakly below the diagonal y = x. To extend this representation to a
bijection to all parking functions, we assign each E-step in the Dyck path a label. If aj1 = aj2 = · · · = ajk = i
for j1 < j2 < · · · < jk we label the E-steps in the Dyck path at height i as j1, j2, . . . , jk from left to right.
Conversely, given a Dyck path whose E-steps are labeled by {0, 1, . . . , n− 1} and the labels on each consecutive
run of E-steps are from small to large, we can recover the parking function by taking aj = i whenever the
E-step with label j is at height i. Figure 1(a) gives an example of a labeled Dyck path and its corresponding
parking function.

From this encoding of parking functions Armstrong, Loehr, and Warrington introduced rational parking
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(a) Labeled Dyck path for
the parking function (1, 0, 4, 0, 1)
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(b) Labeled Dyck path for the
(4, 7)-parking function (2, 0, 3, 0, 1, 2, 0)

Figure 1: Parking function and rational parking function.

functions [1]. 1

Definition 1.5. Let a and b be coprime positive integers. An (a, b)-Dyck path is a lattice path from (0, 0) to
(b, a) with steps {N,E} that stays weakly below the diagonal y = ax/b. An (a, b)-parking function of length b is
an (a, b)-Dyck path together with a labeling of the E-steps by the set {0, 1, . . . , b− 1} such that labels increase
in each consecutive run of E-steps.

In [1] Armstrong, Loehr, and Warrington considered the Frobenius characteristic of parking functions under
an action of the symmetric group and showed the following theorem using representation theoretical method.

Theorem 1.6. When gcd(a, b) = 1, the number of (a, b)-parking functions of length b is ab−1.

Note that when (a, b) = (n + 1, n) this recovers the result on classical parking functions: the number of
parking functions of length n is given by the famous Cayley’s formula (n+ 1)n−1.

For an (a, b)-Dyck path labeled as described above, define a sequence (x0, x1, . . . , xb−1) by letting xj = i
whenever the E-step with label j is at height i. Figure 1(b) shows a (4, 7)-parking function, which corresponds
to the sequence (2, 0, 3, 0, 1, 2, 0). It is easy to see that a sequence (x0, x1, . . . , xb−1) corresponds to an (a, b)-
parking function if and only if the height of the i-th E-step is weakly below ia/b for 0 ≤ i < b. Hence we can
extend the notion of (a, b)-parking functions to arbitrary lengths.

Definition 1.7. A sequence (x0, x1, . . . , xn−1) is an (a, b)-parking function of length n if and only if its order
statistics x(0) ≤ x(1) ≤ · · · ≤ x(n−1) satisfy 0 ≤ x(i) ≤ ia/b for all i = 0, 1, . . . , n − 1. Given an (a, b)-parking
function x, denote by D(x) its corresponding labeled Dyck path.

Comparing to Definition 1.2, one sees that (a, b)-parking functions are exactly the vector parking functions
associated with the integer sequence u = (1 + bia/bc)i≥0. If a is not a multiple of b, this sequence is not an
arithmetic progression. Nevertheless, it is periodic with period b and height a, to which our techniques apply.

The paper is organized as follows. We will describe the method and proofs for rational parking functions
first, since the results are most clear. In section 2 we prove that the equation z = tbe−at has b fractional power
series solutions. Then we convert Eq.(1.2) associated with the vector u = (1 + bia/bc)i≥0 into a system of
linear equations, and we solve the system to get an explicit formula for the exponential generating functions of

1The definition here is essentially the one given in [1], except that we change the orientation and put the labels on E-steps to
make the notation consistent with the rest of the paper.
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PFn(u) in terms of the elementary symmetric functions of the fractional power series solutions. Section 3 gives
a combinatorial approach to enumerate the (a, b)-parking functions of length nb. In Section 4 we apply the
techniques of fractional power series to vector parking functions with general periodic boundaries and present
various applications. In Section 5 we discuss the cases when integers a, b are not relatively prime, and in Section
6 we extend the technique to eventually periodic u, i.e., u is periodic except for finitely many terms. We end
this paper with some open questions in Section 7.

For future use, we briefly recall the definition of Schur functions.

Let α = (α1, α2, . . . , αn) ∈ Nn with α1 > α2 > · · · > αn ≥ 0. Let δ = (n − 1, n − 2, . . . , 1, 0), then we can
write α = λ + δ where λ is an integer partition of length no greater than n. Here we use the definition and
notation from [17, Section 1.7]. In particular, the length of an integer partition is the number of non-zero terms
in this partition. Let x = (x1, x2, . . . , xn) be a set of variables. Define the determinant

aα(x) = aλ+δ(x) = det
(
x
λj+n−j
i

)n
i,j=1

(1.3)

When λ = ∅,
aδ(x) =

∏
1≤i<j≤n

(xi − xj) (1.4)

is the Vandermonde determinant.

The Schur function is defined as
sλ(x) = aλ+δ(x)/aδ(x). (1.5)

In particular, s(1k)(x) = ek(x), the k-th elementary symmetric function of degree k, and s(`)(x) = h`(x), the
complete homogeneous symmetric function of degree `. For more details on symmetric functions, we refer the
readers to [14, Chapter 1].

2. Rational parking functions: An algebraic approach

In this section, we give an algebraic approach to compute the exponential generating function of PFn(u),
where ui = bia/bc + 1. This is done in three steps: First, we find a system of linear equations of generating
functions of PFn(u) using Appell relation. Next we simplify the equations using a generalization of Newton-
Puiseux Theorem that appeared in [10]. Lastly, by Cramer’s rule and computing the determinants for certain
matrices, we obtain explicit expression of the generating function in terms of symmetric functions.

Let PF0(u) = 1. Combining Theorems 1.3 and 1.4 and letting x = 0, we have

1 =

∞∑
n=0

PFn(u)
tne−unt

n!
. (2.1)

Expanding the right-hand side with ui = bia/bc+ 1, we get

1 =
∑
n≥0

∑
0≤i≤b−1

PFnb+i(u) · t
nb+i · e−(na+ui)·t

(nb+ i)!

=
∑
n≥0

PFnb(u)

(nb)!
· tnbe−(na+u0)·t +

∑
n≥0

PFnb+1(u)

(nb+ 1)!
· tnb+1e−(na+u1)·t + · · ·

+
∑
n≥0

PFnb+b−1(u)

(nb+ b− 1)!
· tnb+b−1e−(na+ub−1)·t

=
∑
n≥0

PFnb(u)

(nb)!
· zn · e−u0t +

∑
n≥0

PFnb+1(u)

(nb+ 1)!
· zn · t · e−u1t + · · ·
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+
∑
n≥0

PFnb+b−1(u)

(nb+ b− 1)!
· zn · tb−1 · e−ub−1t

where z = tb · e−at. Let Qi(z) =
∑
n≥0

PFbn+i(u)

(bn+ i)!
· zn be the exponential generating function for PFbn+i(u), then

the above equation can be rewritten as
b−1∑
i=0

Qi(z) · tie−uit = 1. (2.2)

In [10, Lemma 4.1], the authors gave a generalization of the Newton-Puiseux Theorem on certain power
series.

Lemma 2.1. Let h(t) be a power series such that h(0) = 1. Then the equation

z = tkh(t)

has k fractional power series solutions τm(z), 0 ≤ m ≤ k − 1 such that

τ0(z) = z1/k +
∑
i≥2

ciz
i/k

and
τm(z) = ωmz1/k +

∑
i≥2

ciω
mizi/k, 1 ≤ m ≤ k − 1,

where ω is a primitive k-th root of unity.

This lemma guarantees that there exist b distinct solutions t0(z), . . . , tb−1(z) to z = tb ·e−at. Thus we obtain
b linear equations from Eq.(2.2):

e−u0t0 t0e
−u1t0 · · · tb−10 e−ub−1t0

e−u0t1 t1e
−u1t1 · · · tb−11 e−ub−1t1

...
...

. . .
...

e−u0tb−1 tb−1e
−u1tb−1 · · · tb−1b−1e

−ub−1tb−1




Q0(z)
Q1(z)

...
Qb−1(z)

 =


1
1
...
1

 . (2.3)

Denote the coefficient matrix by

A =
(
tji · e

−ujti
)b−1
i,j=0

. (2.4)

If det(A) 6= 0, then by Cramer’s rule, Qi(z) = detAi/ detA, where Ai is the matrix obtained by replacing the
i-th column of A by a column vector of ones. Note that our index starts from 0.

In order to find the determinants, we first simplify the matrix A by finding ti(z).

Following the notation in [18, Section 5.3], we denote R(x) =
∑
n≥1

nn−1
xn

n!
as the generating function for

labeled rooted trees. Then
R(x) = xeR(x). (2.5)

Moreover, fixing w as a primitive b-th root of unity, we let

γi(z) = z1/abωi exp

(
1

a
R
(ωai · a

b
z1/b

))
. (2.6)

We have the following lemma.
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Lemma 2.2. For 0 ≤ i ≤ b− 1, ti(z) = γi(z)
a are b solutions to z = tb · e−at.

Proof. Simplify the expression γai :

γai = z1/bωia exp

(
R
(ωai · a

b
z1/b

))
= z1/bωia ·R

(ωai · a
b

z1/b
)
·
(ωai · a

b
z1/b

)−1
=
b

a
R
(ωai · a

b
z1/b

)
.

Since gcd(a, b) = 1, {ωai : 0 ≤ i ≤ b− 1} are b distinct roots for xb = 1. Hence ti(z) are all distinct.

On the other hand, since R(x) = xeR(x), we can verify

tbi · e−at =

(
b

a
R
(ωai · a

b
z1/b

))b
· exp

(
− a · b

a
R
(ωai · a

b
z1/b

))
=

(
b

a

)b(
R
(ωai · a

b
z1/b

)
· exp

(
−R

(ωai · a
b

z1/b
)))b

=

(
b

a

)b
·
(ωai · a

b
z1/b

)b
= z.

Hence ti(z) is a solution to z = tb · e−at for i = 0, 1, . . . , b− 1.

We remark that Lemma 2.2 agrees with Lemma 2.1. Just notice that ti can be obtained from t0 by
substituting ωaiz1/b for z1/b, where ωa is again a primitive b-th root of unity. The format in Lemma 2.2 allows
us to simplify the entries in the matrix A.

From z = tbi · e−ati we have e−ti = ηz1/a · γ−bi where η is an a-th root of unity. Expanding both sides as
fractional power series and comparing the constant coefficient, we have η = 1. Hence e−ti = z1/a · γ−bi and
consequently

A =
(
zuj/a · γaj−ujbi

)b−1
i,j=0

. (2.7)

Next, we claim that

Lemma 2.3. Let λi = uib− ia, then λ = (λ0, λ1, . . . , λb−1) ∈ Sb. Here Sn denotes the set of permutations of
{1, 2, . . . , n}

Proof. Assume bia/bc = j, then ia = jb+r where 0 ≤ r < b. This gives λi = (j+1)b− ia = b−r. So 0 < λi ≤ b
for all 0 ≤ i ≤ b. The values of λi are all distinct because they are in different congruence classes modulo b.
Hence λ ∈ Sb.

Now we are ready to compute detA.

Proposition 2.4. Let A be the matrix defined in Eq.(2.4), then

detA = sgn(λ) · zc · aδ(γγγ) ·
b−1∏
i=0

γ−bi .

Here c =
∑b−1
i=0 ui/a, aδ(γγγ) is as defined in Eq.(1.4), and sgn(λ) is the sign of permutation λ. That is, sgn(σ) =

(−1)m where m is the number of transpositions to map σ to inc(σ).
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Proof. Using Eq.(2.7) and Lemma 2.3, we have

detA = det

(
zuj/a · γaj−ujbi

)b−1
i,j=0

= zc · det
(
γ
−λj
i

)b−1
i,j=0

= sgn(λ) · zc · det
(
γ−1−ji

)b−1
i,j=0

= sgn(λ) · zc ·
b−1∏
i=0

γ−bi · det
(
γb−1−ji

)b−1
i,j=0

= sgn(λ) · zc · aδ(γγγ) ·
b−1∏
i=0

γ−bi

as desired.

Using a similar idea, we compute detAi.

Proposition 2.5. For 0 ≤ i ≤ b − 1, let Ai be the matrix obtained by replacing the i-th column of A by a
column vector of ones, then

detAi = (−1)λi−1 · sgn(λ) · zc−ui/a ·
b−1∏
j=0

γ−bj · eλi(γγγ) · aδ(γγγ)

where γγγ = (γ0, γ1, . . . , γb−1) as defined in Eq.(2.6).

Proof. By definition,
detAi = det(ajk)b−1j,k=0

where ajk = zuj/a · γ−λjk when k 6= i, and aji = 1. Thus

detAi = (−1)λi−1 · sgn(λ) · zc−ui/a ·
b−1∏
j=0

γ−bj · det
(
γ
µj
i

)b−1
i,j=0

,

where (µ0, µ1, . . . , µb−1) = (b, b− 1, . . . , b− λi + 1, b− λi − 1, . . . , 0) = µ+ δ and µ = (1λi), a partition with all
nonzero parts equal to one. By Eqs.(1.3) and (1.5) we have

detAi = (−1)λi−1 · sgn(λ) · zc−ui/a ·
b−1∏
j=0

γ−bj · s(1λi )(γγγ) · aδ(γγγ)

= (−1)λi−1 · sgn(λ) · zc−ui/a ·
b−1∏
j=0

γ−bj · eλi(γγγ) · aδ(γγγ),

which proves the proposition.

Combining Propositions 2.4 and 2.5, we find the generating function for (a, b)-parking functions of any
length.

Theorem 2.6. Assume a, b are two coprime positive integers and u is the sequence given by ui = bia/bc + 1.

Let Qi(z) =
∑
n≥0

PFbn+i(u)

(bn+ i)!
· zn. Then

Qi(z) = (−1)λi−1z−ui/aeλi(γγγ), (2.8)
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where λi = uib − ia and γγγ = (γ0, γ1, . . . , γb−1) is given by Eq.(2.6). Consequently, the exponential generating
function of PFn(u) can be computed by

∞∑
n=0

PFn(u)
zn

n!
=

b−1∑
i=0

ziQi(z
b).

Note that when b = 1, (a, b)-parking functions are u-parking functions where u is the arithmetic progression
with ui = 1 + ai. In this case Theorem 2.6 gives∑

n≥0

PFn((1 + ai)i≥0)
zn

n!
= exp

(
1

a
R(az)

)
.

We can extract the value of PFn((1+ai)i≥0) by the Lagrange inversion formula and hence recover the following
formula in [11, Corollary 5.5].

Corollary 2.7. Let ui = 1 + ai for a positive integer a. Then PFn(u) = (1 + an)n−1.

Proof. Let g(z) = 1
aR(az). Then R(x) = x exp(R(x)) implies g(z) = z exp(ag(z)). Applying a generalized

version of the Lagrange inversion formula, for example, see [18, Corollary 5.4.3] with G(z) = eaz and H(z) = ez,
we have

[zn] exp(g(z)) = [zn]H(g(z)) =
1

n
[zn−1]H ′(z)G(z)n =

1

n
[zn−1] exp((1 + an)z),

which gives PFn(u) = (1 + an)n−1.

When b > 1, we have the following special cases.

Corollary 2.8. Assume a = ` · b+ r, where b > 1, ` ≥ 0 and r ≤ b− 1, then

Q0(z) = (−1)b−1z−1/a
b−1∏
i=0

γi (2.9)

and
Qb−1(z) = (−1)r−1z−1er(γγγ). (2.10)

Proof. Apply u0 = 1 and ub−1 = a to Theorem 2.6. Note that λ0 = b and λb−1 = r.

By simplifying the coefficient of z in Eq.(2.9), we obtain a new proof of Theorem 1.6.

Corollary 2.9. Let a, b be two positive integers such that gcd(a, b) = 1.

(i) The number of (a, b)-parking functions of length b is ab−1.

(ii) The number of (a, b)-parking functions of length 2b is (2a)2b−1 +
1

2
·
(

2b

b

)
a2b−2.

Proof. Using Formula (2.6), we have

Q0(z) =

b−1∏
i=0

exp

(
1

a
R
(ωaia

b
z1/b

))
= exp

(
1

a

b−1∑
i=0

R
(ωaia

b
z1/b

))
.
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Let η = ωa. Note that η is also a b-th primitive root of unity. Thus
∑b−1
i=0 (ηi)n = b if n is a multiple of b, and

the sum is 0 otherwise. Hence

b−1∑
i=0

R

(
ωaia

b
z1/b

)
=

b−1∑
i=0

∑
n≥1

nn−1

n!

(
ωaia

b
z1/b

)n

=
∑
n≥1

nn−1

n!

(
b−1∑
i=0

ωain

)(a
b

)n
zn/b

=
∑
k≥1

(kb)kb−1

(kb)!
b
(a
b

)kb
zk

=
ab

b!
z +

a · (2a)2b−1

(2b)!
z2 +Kz3,

where K is a formal power series of z. Therefore

Q0(z) = exp

(
ab−1

b!
z +

(2a)2b−1

(2b)!
z2 +Kz3/a

)
= 1 +

ab−1

b!
z +

1

(2b)!

(
(2a)2b−1 +

1

2

(
2b

b

)
a2b−2

)
z2 + higher powers of z,

which gives the desired results.

Another special case is when a = 1. In this case we can simplify γi as

γi(z) = z1/bωi exp

(
R
(ωi
b
z1/b

))
= b ·R

(ωi
b
z1/b

)
,

where the last equation follows from Eq.(2.5). Thus Theorem 2.6 has the form

Theorem 2.10. When a = 1, we have

Qi(z) = (−1)b−i−1z−1eb−i(γγγ).

In particular,

Q0(z) = (−1)b−1z−1bb
b−1∏
i=0

R
(ωi
b
z1/b

)
(2.11)

and

Qb−1(z) = z−1b

b−1∑
i=0

R
(ωi
b
z1/b

)
. (2.12)

Computing the coefficients in Eq.(2.12) we get the following corollary.

Corollary 2.11. When a = 1, that is, when u = (1, 1, . . . , 1, 2, 2, . . . , 2, 3, . . .), the number of (1, b)-parking
functions of length nb+ b− 1 is given by

PFnb+b−1(u) = (n+ 1)nb+b−2.

Proof. Expanding Eq.(2.12) we obtain

Qb−1(z) = z−1b ·
b−1∑
i=0

∑
n≥1

nn−1

n!

(
ωi

b
z1/b

)n

= z−1b ·
∑
n≥1

nn−1

n!bn
zn/b

b−1∑
i=0

ωni.
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Note that when b 6 |n,
∑b−1
i=0 ω

ni = 0, thus the only non-zero terms will be when b|n, in which case ωni = 1. So
we have

Qb−1(z) = z−1b ·
∑
n≥1

(nb)nb−1

(nb)!bnb
zn · b

= b ·
∑
n≥1

nnb−1

(nb)!
zn−1

= b ·
∑
n≥0

(n+ 1)nb+b−1

(nb+ b)!
zn

= b ·
∑
n≥0

(n+ 1)nb+b−1

b(n+ 1)(nb+ b− 1)!
zn

=
∑
n≥0

(n+ 1)nb+b−2

(nb+ b− 1)!
zn.

Comparing the coefficients of zn, we obtain the desired result.

Theorem 2.10 and Corollary 2.11 recover the work of Blake and Konheim [3, Section 2], who considered a
computer storage problem similar to that of the classical parking functions, except that each address (parking
space) is capable of holding k items.

3. Rational parking functions: A combinatorial approach

In this section, we give a combinatorial proof for the cardinality of PFnb(u) for ui = bia/bc + 1. Again
assume a, b are positive integers with gcd(a, b) = 1. From Section 1 we see that PFnb(u) counts the number of
certain labeled (a, b)-Dyck paths. We adapt the techniques in lattice path counting and consider how the labels
would contribute. In particular, we use the well-known cycle lemma; see [9] for a survey and many related
references.

For convenience, we will use PFnb to denote the number of (a, b)-parking functions of length nb. Moreover,
denote by [n] the set {1, 2, . . . , n} and [n]0 the set {0, 1, 2, . . . , n}.

First we present a purely combinatorial proof of Theorem 1.6, which is an extension of Pollak’s classical proof
for the formula (n + 1)n−1 for classical parking functions; see [16]. This proof for rational parking functions,
written in terms of cosets in the group (Z/aZ)b, was presented in [21, Section 3.1.2] and used in [20, Section
2.4]. For completeness, we include the proof here again.

A combinatorial proof of Theorem 1.6. We build a bijection φ : PFb(u) −→ [a− 1]b−10 as follows.

For any (a, b)-parking function c = (c1, c2, . . . , cb) ∈ PFb(u), let φ(c) be its difference sequence d =
(d1, d2, . . . , db−1), where di = ci+1 − ci mod a. Clearly φ(c) is in the set [a− 1]b−10 .

To see φ is a bijection, we prove that for any sequence d ∈ [a − 1]b−10 , there is a unique integer k mod a
such that (k, k + d1, k + d1 + d2, . . . , k + d1 + · · ·+ db−1) mod a is an (a, b)-parking function.

To show the existence of k, we use the following construction. Given a sequence d ∈ [a − 1]b−10 , consider

the sequence c = (c0, c1, . . . , cb−1) where c0 = 0 and ci =
∑i
j=0 dj mod a. Let c(i) be its i-th order statistic.

Since gcd(a, b) = 1, the numbers {c(i) − ia/b : 0 ≤ i ≤ b − 1} are all distinct. Let i be the index that
maximizes c(i) − ia/b, and let ` = c(i). Note that if {c(i) : c(i) − ia/b > 0} = ∅, then ` = 0. We claim that
c− ` = (c0 − `, c1 − `, . . . , cb−1 − `) mod a is an (a, b)-parking function, that is, k = −` mod a.

10



A

B

Figure 2: A graphical explanation of the proof.

For j < i, we have c(j)− ` = c(j) + a− ` mod a and the order statistic for c− ` is then (0 = c(i)− `, c(i+1)−
`, . . . , c(b−1) − `, c(0) + a− `, . . . , c(i−1) + a− `) := (c′(0), c

′
(1), . . . , c

′
(b−1)). In formula,

c′(j) =

{
c(j+i) − `, if 0 ≤ j ≤ b− i− 1
cj−(b−i) + a− `, if b− i ≤ j ≤ b− 1.

Now let’s check the condition that c′(j) ≤ ja/b.

(i) The case 0 ≤ j ≤ b− i− 1. Since c(i) − ia/b > c(i+j) − (i+ j)a/b by our choice of i, we have c(i+j) − ` =
c(i+j) − c(i) ≤ ja/b, that is c′(j) ≤ jb/a.

(ii) The case b − i ≤ j ≤ b − 1. Using c(i) − ia/b > c(i−β) − (i − β)a/b, we have c′(j) = c(i−(b−j)) + a − ` <
c(i) − (b− j)a/b+ a− ` = a− (b− j)a/b = ja/b.

Thus the sequence c− ` is an (a, b)-parking function as desired.

Figure 2 gives a graphical explanation of the above proof: The lattice path from (0, 0) to (b, a) corresponds
to the order statistics inc(c). Given any lattice path from (0, 0) to (b, a), find the peak that is furthest from
the diagonal y = ax/b. Starting from that vertex and cyclically permute the lattice path, we would obtain an
(a, b)-Dyck path that is fully under the diagonal.

Finally we show the uniqueness of the cyclic shift by proof of contradiction. Assume that in addition to
the above c − `, there is another p 6= ` mod a such that c − p is also an (a, b)-parking functions. Assume
that inc(c− `) = 0m01m1 · · · (a− 1)ma−1 , i.e., it contains mi many i for i = 0, . . . , a− 1. Then the inequalities
c′(j) ≤ ja/b are equivalent to the system{ ∑j−1

t=0 mt > jb/a for 0 ≤ j < a− 1∑a−1
t=0 mt = b.

Since c− p is a cyclic shift of c− `, the order statistics inc(c− p) is of the form 0mi1mi+1 · · · (a− 1− i)ma−1(a−
i)m0 · · · (a − 1)mi−1 for some i 6= 0. Hence we would have mi + mi+1 + · · · + ma−1 > (a − i)b/a. Combining

with
∑i−1
t=0mt > ib/a, we obtain

∑a−1
t=0 mt > b, a contradiction.

Next we generalize this argument to get a recurrence for PFnb.

11



Theorem 3.1. For any integer n ≥ 1 and gcd(a, b) = 1 we have

PFnb = (na)nb−1 +
∑

`1+···+`k=n
`i≥1,k≥2

(−1)k ·
(

nb

`1b, `2b, . . . , `kb

)
· 1

k
· PF`1b · · ·PF`kb. (3.1)

Proof. Consider the map φ : PFnb(u) −→ [na − 1]nb−10 as follows: Given an (a, b)-parking function c =
(c0, c1, . . . , cnb−1) ∈ PFnb(u), φ(c) is the difference sequence d = (d1, d2, . . . , dnb−1) where di = ci − ci−1
mod na.

By a similar proof as the previous one, it is straightforward to check that given d ∈ [na − 1]nb−10 , we can

construct a sequence c = (c0, c1, . . . , cnb−1) where c0 = 0 and ci =
∑i
j=0 dj . Then there exists an ` ≥ 0 such

that c− ` is an (a, b)-parking function of length nb− 1. Thus φ is surjective.

However, this map is not injective. Without loss of generality, assume c ∈ PFnb(u) whose difference sequence
is d. Then using a similar argument, we can verify that the sequence c− j mod na is an (a, b)-parking function
with the same difference sequence d if and only if there is an index 0 < j < nb− 1 such that c(j) = ja/b. And
since gcd(a, b) = 1, this only happens when j is a multiple of b.

We can also give a graphical explanation of this argument. Let c ∈ PFnb(u), and let D(c) be its correspond-
ing labeled Dyck path. By definition, D(c) is weakly below the line y = ax/b. If D(c) touches the diagonal
at an internal point (kb, ka) for some 0 < k < n, we can decompose D into two sub-path: D1 from (0, 0) to
(kb, ka), and D2 from (kb, ka) to (nb, na). Then the Dyck path D′ = (D2, D1) obtained by attaching the initial
point of D1 to the end point of D2 is also an (a, b)-Dyck path. On the other hand, keeping the labels on D1

and D2 unchanged, we can check that c′ obtained from D′ has the same difference sequence as that of c.

In other words, given one difference sequence d ∈ [na−1]nb−10 , and let c be a pre-image of d under the map φ.
If D(c) touches the diagonal y = ax/b exactly k−1 times at some internal points, then D(c) can be decomposed
into sub-paths D1, D2, . . . , Dk, and any cyclic permutation Di, Di+1, . . . , Di−1 with labels unchanged will also
recover a parking function in φ−1(d). Thus |φ−1(d)| = k and we only need one element from each pre-image to
compute |φ(PFnb)|.

Let S ⊆ [n − 1] and denote by AS the number of parking functions whose Dyck paths hits y = ax/b only
at the internal points (sib, sia) for all si ∈ S. Note that |S| = k − 1 implies that the corresponding Dyck path
can be decomposed into k segments, each is a shorter (a, b)-Dyck path. Denote by BS the number of parking
functions whose corresponding Dyck paths hits y = ax/b at least at the internal points (sib, sia) for all si ∈ S.
Then by Principle of Inclusion-Exclusion, we have

BT =
∑
S⊆T

AS

and
AS =

∑
T⊇S

(−1)|T |−|S|BT .

On the other hand, if T = {t1, t2, . . . , tk−1}, then any Dyck path D ∈ BT hits y = ax/b at least at the points
(tib, tia). Since there are nb many horizontal steps in D, if we denote by `ib the number of horizontal steps
between the points (ti−1b, ti−1a) and (tib, tia) where t0 = 0 and tk = n, then (`1, `2, . . . , `k) is a positive integer
composition of n. Since there are

(
nb

`1b,...,`kb

)
many ways to choose a labeling of D, and there are PF`1b · · ·PF`kb

many parking functions with the given decomposition. We have that

BT =

(
nb

`1b, . . . , `kb

)
· PF`1b · · ·PF`kb.
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Thus

(na)nb−1 =
∑

S⊆[n−1]

AS
|S|+ 1

=
∑

S⊆[n−1]

1

|S|+ 1
·
∑
T⊇S

(−1)|T |−|S|BT

=
∑

T⊆[n−1]

BT ·
∑
S⊆T

(−1)|T |−|S|

|S|+ 1

Using the identity

k∑
i=0

(−1)k−i
(
k

i

)
1

i+ 1
=

(−1)k

k + 1
, we can simplify the above equation as

(na)nb−1 =
∑

T⊆[n−1]

(−1)|T |
BT
|T |+ 1

=

n∑
k=1

(−1)k+1 ·
∑
`

1

k

(
nb

`1b, . . . , `kb

)
PF`1b · · ·PF`kb,

where ` ranges over all positive integer compositions of n. This simplifies to Eq.(3.1).

Note that when n = 2 the above formula simplifies to Corollary 2.9(ii).

Define the generating functions P (x) =
∑
n≥1

PFnb
(nb)!

· xnb and let F (x) =
∑
n≥1

(na)nb−1

(nb)!
· xnb. Multiplying

xnb/(nb)! and summing over n ≥ 1 in Eq.(3.1), we get

P (x) = F (x) +
∑
k≥2

(−1)k

k

k∏
i=1

∑
`i≥1

PF`ib
(`ib)!

x`ib

= F (x) +
∑
k≥2

(−1)k

k
P k(x)

= F (x) + P (x)− ln(1 + P (x)).

Thus we obtain the following theorem.

Theorem 3.2. Let PF0 = 1. Then we have 1 + P (x) = exp(F (x)), that is,

∑
n≥0

PFnb
(nb)!

· xnb = exp

∑
n≥1

(na)nb−1

(nb)!
· xnb

 . (3.2)

We remark that Eq.(3.2) is equivalent to Eq.(2.9) by noticing that 1 + P (x) = Q0(xb) and

F (x) =
∑
n≥1

(na)nb−1

(nb)!
· xnb =

b

a

∑
n≥1

(nb)nb−1

(nb)!

(ax
b

)nb
=
b

a

∑
m:b|m

mm−1

m!

(ax
b

)m
=

1

a

b−1∑
i=0

R(ωi
ax

b
),

where ω is a primitive b-th root of unity and R(x) =
∑
n≥1

nn−1
xn

n!
.

Using a similar idea, we can consider the number of (a, b)-parking functions whose corresponding lattice
paths do not touch the line y = ax/b except at the endpoints.
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Definition 3.3. A prime (a, b)-parking function of length nb is an integer sequence (a0, a1, . . . , anb−1) such that
the ith order statistic satisfies a(0) = 0 and 0 ≤ a(i) < ia/b for i = 1, . . . , nb− 1.

Theorem 3.4. Denote by PPFnb the number of prime (a, b)-parking functions of length nb, then

PPFnb = |PFnb| −
∑
`

(−1)k
(

nb

`1b, `2b, . . . , `kb

)
· PF`1b · PF`2b · · ·PF`kb, (3.3)

where the sum is over all compositions of n with at least two parts. As a consequence, let Q(x) =
∑
n≥1

PPFnb
(nb)!

xnb

be its generating function. Then

Q(x) =
P (x)

1 + P (x)
.

Proof. This follows easily by considering the parking functions whose corresponding Dyck paths touches the
diagonal y = a/b · x and using the Inclusion-Exclusion Principle.

The combinatorial method described in this section provides a different approach to study rational parking
functions. We expect to extend the lattice path counting techniques to study parking functions whose underlying
paths end at a given point, carry various weight, or have a piecewise linear boundary.

4. Vector parking functions with a periodic boundary

Notice that Eq.(2.3) does not depend on explicit u values, so it holds for any periodic boundary u with
period b and height a. In this section, we show that when gcd(a, b) = 1, we can still compute the determinant
in a similar way and solve the system.

Throughout this section, assume gcd(a, b) = 1.

Lemma 4.1. Let 1 ≤ u0 ≤ u1 ≤ · · · ≤ ub−1. Then for 0 ≤ i ≤ b− 1, the numbers λi = uib− ia are distinct.

Proof. It follows from the fact that λi’s are in different congruence classes modulo b,

Lemma 4.2. Denote inc(λ) = (λ(0), . . . , λ(b−1)) and let c =
∑b−1
i=0 ui/a. Then

detA = sgn(λ) · zc · sµ(γγγ) · aδ(γγγ) ·
b−1∏
i=0

γ
−λ(b−1)

i , (4.1)

Here γγγ = (γ0, . . . , γb−1) is given by Eq.(2.6), sπ(x) is as defined in Eq.(1.5), and µ = (µ0, . . . , µb−1) is a partition
where µi = λ(b−1) − λ(i) − (b− i− 1).
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Proof. Rewrite z = tbi · e−ati as e−ti = z1/aγ−bi , then

detA = det

(
zuj/a · γ−λji

)b−1
i,j=0

= zc · det
(
γ
−λj
i

)b−1
i,j=0

= sgn(λ) · zc · det
(
γ
−λ(j)

i

)b−1
i,j=0

= sgn(λ) · zc
b−1∏
i=0

γ
−λ(b−1)

i · det(γ
λ(b−1)−λ(j)

i )b−1i,j=0

= sgn(λ) · zc · sµ(γγγ) · aδ(γγγ) ·
b−1∏
i=0

γ
−λ(b−1)

i .

Note that by Lemma 4.1, λ(i+1) > λ(i) and λ(b−1) − λ(i) ≥ b − i − 1. It implies that µi ≥ µi+1 and
µi = λ(b−1) − λ(i) − (b− i− 1) ≥ 0. Thus sµ(γγγ) is well-defined.

Next we consider detAi.

Consider λ(i) = (λ0, . . . , λi−1, 0, λi+1, λb−1), and let inc(λ(i)) = (λ
(i)
0 , λ

(i)
1 , . . . , λ

(i)
b−1). Note that since

gcd(a, b) = 1, we have uib− ia 6= 0. Thus λ
(i)
j with 0 ≤ j ≤ b− 1 are all distinct.

Lemma 4.3.

detAi = sgn(λ(i)) · zc−ui/a · sµ(i)(γγγ) · aδ(γγγ) ·
b−1∏
j=0

γ
−λ(i)

b−1

j , (4.2)

here µ(i) = (µ
(i)
0 , µ

(i)
1 , . . . , µ

(i)
b−1) is the partition with parts µ

(i)
j = λ

(i)
b−1 − λ

(i)
j − (b− j − 1).

Proof. Replacing the i-th column of A by 1, we get

detAi = det


zu0/aγ−λ0

0 · · · 1 · · · zub−1/aγ
−λb−1

0

zu0/aγ−λ0
1 · · · 1 · · · zub−1/aγ

−λb−1

1
...

. . .
...

. . .
...

zu0/aγ−λ0

b−1 · · · 1 · · · zub−1/aγ
−λb−1

b−1


= sgn(λ(i)) · zc−ui/a · det

(
γ
−λ(i)

j

i

)b−1
i,j=0

= sgn(λ(i)) · zc−ui/a ·
b−1∏
j=1

γ
−λ(i)

b−1

j · det
(
γ
λ
(i)
b−1−λ

(i)
j

k

)b−1
k,j=0

.

By a similar argument as in the proof of Lemma 4.1 we obtain the desired result.

Combining Lemmas 4.2 and 4.3 we have

Theorem 4.4. For 0 ≤ i ≤ b− 1,

Qi(z) = sgn(λ) · sgn(λ(i)) · z−ui/a ·
b−1∏
j=0

γ
λ(b−1)−λ

(i)
b−1

j ·
sµ(i)(γγγ)

sµ(γγγ)
. (4.3)

Next we look at some examples of Theorem 4.4.
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Example 1. ui = bia/bc+ `. Consider the parking functions whose corresponding lattice paths are weakly
below the line y = a/b · x+ `− 1, that is, u-parking functions with ui = bia/bc+ ` for some integer ` ≥ 1.

The proof of the following lemma is similar to that of Lemma 2.3 and is omitted here. Interested readers
can fill the details themselves.

Lemma 4.5. The entries λi = uib− ia form a permutation of the numbers (`− 1)b+ 1, (`− 1)b+ 2, . . . , `b.

Using the notation in Theorem 4.4, we have λ(i) = `b− b+ i+ 1 and µi = 0, thus sµ(γγγ) = 1. On the other

hand, inc(λ(i)) = (0, (`− 1)b+ 1, . . . , λi − 1, λi + 1, . . . , `b− 1, `b).

Theorem 4.6. Denote by di = λi − (`− 1)b− 1, then

Qi(z) = (−1)diz−ui/as((`−1)b+1,1di )(γγγ) (4.4)

Proof. By Lemma 4.2 we have

detA = sgn(λ) · aδ(γγγ) · zc
b−1∏
i=0

γ−`bi .

On the other hand, if the i-th column in A is replaced by a vector of ones, we have

detAi = sgn(λ) · zc−ui/a · det
(
γγγ−`bj , γγγ−`b+1

j , . . . , γγγ−λi−1j ,1, γγγ−λi+1
j , . . . , γγγ

−(`−1)b−1
j

)
= sgn(λ) · zc−ui/a ·

b−1∏
i=0

γ−`bi · det
(
1, γγγj , . . . , γγγ

`b−λi−1
j , γγγ`bj , γγγ

`b−λi+1
j , . . . , γγγb−1j

)
,

here γγγmj in the determinant means the corresponding column is of the form (γm0 , γ
m
1 , . . . , γ

m
b−1)T . Since it takes

di = λi − (`− 1)b− 1 transpositions to move the column γγγ`bj to the last, thus

detAi = (−1)di · sgn(λ) · zc−ui/as((`−1)b+1,1di )(γγγ) · aδ(γγγ) ·
b−1∏
i=0

γ−`bi ,

and we prove the theorem.

Corollary 4.7. In particular, when i = 0, we can simplify Q0(z) as

Q0(z) = (−1)b−1z−`/as((`−1)b+1,1b−1)(γγγ)

= (−1)b−1z−`/aeb(γγγ) · h(`−1)b(γγγ).

Moreover, when a = 1,

Qb−1(z) = z−`s((`−1)b+1)(γγγ)

= z−`h(`−1)b+1(γγγ).

Example 2. ui = dia/be+ 1. Next we consider the case where ui = dia/be+ 1. Using a similar argument as
in Lemma 2.3, we can show that

Lemma 4.8. Let λi = uib− ia, then λ = (λ0, . . . , λb−1) is a permutation of b, b+ 1, . . . , 2b− 1

The above lemma gives that λ(i) = b+ i, and µi = λ(b−1) − λ(i) − (b− i− 1) = 0, thus sµ(γγγ) = 1.

On the other hand, sgn(λ(i)) = (−1)λi+b · sgn(λ), and inc(λ(i)) = (0, b, b+ 1, . . . , λi − 1, λi + 1, . . . , 2b− 1).
Thus µi = (b, 1λi−b), and

Theorem 4.9. Let ui = dia/be+ 1, then

Qi(z) = (−1)λi+b · z−ui/a · s(b,1λi−b)(γγγ). (4.5)

In particular,
Q0(z) = z−1/ahb(γγγ).
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5. Extension to non-coprime pairs

In Sections 2 and 4, there are three major steps in our algebraic approach. First, we find b distinct solutions
to the equation z = tb · e−at, which allow us to convert the Appell relation (c.f. Theorem 1.4) to a system of
linear equations whose unknowns are Qi(z)’s for 0 ≤ i ≤ b − 1. Second, the system is non-degenerate, hence
Qi(z)’s form a unique solution of the system. And last, we compute the determinants and use Cramer’s rule to
solve for Qi(z).

Our method can be extended to the case when gcd(a, b) 6= 1 with some restrictions. In this section, we
briefly discuss this case and give some examples. Throughout this section, we assume gcd(a, b) = k > 1.

Let u = (u0, u1, . . .) be a non-decreasing periodic sequence with period b and height a. Note that the Appell
relation Eq.(2.3) still holds in this case, but we need to seek for new solutions ti(z).

Lemma 5.1. Let z = tbe−at. Then there are b solutions ti(z) of the form ti(z) = γai (z), where

γi(z) = z1/abωi exp

(
1

a
R
(ωai · a

b
z1/b

))
, (5.1)

and ω is a primitive ab-th root of unity. Explicitly,

ti(z) =
b

a
R
(ωai · a

b
z1/b

)
. (5.2)

The proof is similar to that of Lemma 2.2 and is omitted here.

From z = tbe−at, we have e−ti = ηz1/aγ−bi , where η is an a-th root of unity. By comparing the constant
term on both sides, we obtain η = ωib for i = 0, 1, . . . , b− 1. Thus we can simplify the matrix A in Eq.(2.4) as

A =
(
zuj/a · ωibujγaj−ujbi

)b−1
i,j=0

. (5.3)

Theorem 5.2. Let Qi(z) =
∑
n≥0

PFbn+i(u)

(bn+ i)!
· zn for 0 ≤ i ≤ b − 1 be the generating functions for u-parking

functions. If detA 6= 0, then
Qi(z) = detAi/detA,

where A =
(
zuj/a · ωibujγaj−ujbi

)b−1
i,j=0

, and Ai is the matrix obtained from A by replacing the i-th column by a

column vector of ones.

It is not easy to compute the determinants of A or Ai for general u. However, in some special cases we
can derive nice formulas. One of such cases is when ui = u for all 0 ≤ i ≤ b − 1. Then we can simplify the
determinant as

detA = det
(
zu/a · ωibuγaj−ubi

)b−1
i,j=0

= zbu/a · det
(
γaj−ubi

)b−1
i,j=0

= zbu/a ·
b−1∏
i=0

γ−ubi det
(
γaji
)b−1
i,j=0

= zbu/a ·
b−1∏
i=0

γ−ubi · det
(
tji
)b−1
i,j=0

= (−1)b(b−1)/2zbu/a ·
b−1∏
i=0

γ−ubi · aδ(t).
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Note that in the last two steps, we use ti = γai . In this case det(A) 6= 0, so Theorem 5.2 applies with

detAi = det
(
aj`
)b−1
j,`=0

where aj` = zu/a · ωjbuγa`−ubj when ` 6= i and aji = 1. If we further assume u is a multiple of k, then

detAi = z(b−1)u/a ·
b−1∏
i=0

γ−ubi · det


1 γa0 · · · γ

(i−1)a
0 γub0 γ

(i+1)a
0 · · · γ

(b−1)a
0

...
...

. . .
...

...
...

. . .
...

1 γab−1 · · · γ
(i−1)a
b−1 γubb−1 γ

(i+1)a
b−1 · · · γ

(b−1)a
b−1


= (−1)b(b−1)/2+N(i) · z(b−1)u/a ·

b−1∏
i=0

γ−ubi · aδ(γγγ) · sµ(γγγ).

Here N(i) = |{j : i < j ≤ b− 1 and ja < ub}| and µ(i) is the partition such that the decreasing rearrangement
of (a, . . . , (i− 1)a, ub, . . . , (b− 1)a) can be written as δ + µ(i).

Combining the above equations, we have

Corollary 5.3. Let ui = u be a multiple of k for i = 0, 1, . . . , b − 1, and let u be the non-decreasing sequence
of period b and height a with initial terms u, u, . . . , u︸ ︷︷ ︸

b

. Then

Qi(z) = (−1)N(i) · z−u/a ·
sµ(i)(γγγ)aδ(γγγ)

aδ(t)
. (5.4)

In particular, if ui = a for i = 0, 1, . . . , b − 1. Then ia − uib = (i − b)a for 0 ≤ i ≤ b − 1. Moreover,
N(i) = b− i− 1, and

detAi = (−1)b−i−1zb−1
b−1∏
i=0

t−bi · eb−i(t)aδ(t).

Thus we have

Theorem 5.4. Let u = (a, . . . , a, 2a, . . . , 2a, 3a, . . . , 3a, . . .) be a sequence of period b and height a, denote by
Qi(z) the generating functions of {PFnb+i(u) : n ≥ 0}. Then

Qi(z) = (−1)b−i−1z−1eb−i(t).

By computing the coefficients of Qb−1(z), we have

Corollary 5.5. Let u = (a, . . . , a, 2a, . . . , 2a, 3a, . . . , 3a, . . .) be a sequence of period b and height a. Then

PFmb+b−1(u) = a(m+1)b−1 · (m+ 1)(m+1)b−2.

The proof is similar to that of Corollary 2.11 and is omitted here.

Remark 5.6. Note that in Corollary 5.5, u = a · (1, . . . , 1, 2, . . . , 2, 3, . . . , 3, . . .). In [11, Corollary 5.6], Kung
and Yan showed that if u = kv for an integer k, then PFn(u) = kn PFn(v). Thus Corollary 5.5 can be derived
from the homogeneity of PFn(u) and Corollary 2.11. This formula is also mentioned by Gaydarov and Hopkins
in [6, Section 5] without a proof.
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6. Eventually periodic boundaries

In this section we will give an example where the vector u is eventually periodic, that is, u can be written
as the concatenation w0,u

′, where w0 = (w0, w0, . . . , wr−1) is a finite initial non-decreasing sequence of length
r ≥ 1, u′ = (u0, u1, . . .) is a periodic sequence, and wr−1 ≤ u0. We will show that in general, the idea of the
previous discussion still works. But Eq.(2.2) would become

b−1∑
i=0

Qi(z) · ti+re−uit = 1−
r−1∑
i=0

ai ·
tie−wit

i!
(6.1)

for some integers a0, . . . , ar−1, where again z = tb · e−at if u′ is of period b and height a. Then again we just
need b distinct solutions of z = tb · e−at to convert Eq.(6.1) to a linear system and solve it by computing certain
determinants. The difference here is the right hand side of Eq.(6.1) contains a finite summation. So the solution
would be a linear sum of r Schur functions.

We will illustrate the process via the following example, and interested readers can extend it to general
cases.

Let ` be a positive integer and let the vector u be (1, `+ 1, . . . , `+ 1︸ ︷︷ ︸
b

, 2`+ 1, . . . , 2`+ 1︸ ︷︷ ︸
b

, 3`+ 1, . . .), that is,

un =

{
1, if n = 0,

(k + 1)`+ 1, if n = 1 + kb+ i for k ≥ 0, 0 ≤ i ≤ b− 1.

Although one can view u as a periodic sequence of length b and height `, with initial terms (1, `+ 1, ...`+ 1),
we would single out the very first term and treat it as “eventually periodic” with first period (`+1, ..., `+1). An
advantage of doing so is that we do not need to worry about whether b and ` are coprime or not. We also remark
that this sequence has appeared in the literature: the boundary u and its corresponding Dyck paths yield a
solution to the generalized tennis ball problem; see [10, Section 5] for details and references. Enumeration of
PFn = PFn(u) can be considered as a “labeled” version of that problem. Interested readers can also choose
u to be (1, 1, `+ 1, . . . , `+ 1︸ ︷︷ ︸

b

, 2`+ 1, . . . , 2`+ 1︸ ︷︷ ︸
b

, 3`+ 1, . . .), so that the vector is not periodic. The calculations

will be similar to the ones below, but the terms may look more complicated.

Note that PF0 = 1. Then Appell’s relation implies∑
k≥0

b−1∑
i=0

PF1+kb+i
t1+kb+ie−(1+(k+1)`)t

(1 + kb+ i)!
= 1− e−t

If we write z = tbe−t, then

1− e−t =
b−1∑
i=0

∑
k≥0

PF1+kb+i
zk

(1 + kb+ i)!
t1+ie−(1+`)t

=

b−1∑
i=0

Qi(z)t
1+ie−(1+`)t,

where

Qi(z) =
∑
k≥0

PF1+kb+i

(1 + kb+ i)!
zk.

Let t0, . . . , tb−1 be the b distinct solutions to z = tbe−t given by Lemma 2.2, that is,

ti = b ·R
(ωi
b
z1/b

)
.
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Then the generating functions Qi(z)’s satisfy the system of linear equations(
tj+1
i e−(`+1)ti

)b−1
i,j=0

·
(
Qi(z)

)b−1
i=0

=

(
1− e−ti

)b−1
i=0

.

Since e−t = zt−b, we can rewrite the above equation as

(
z`+1 · tj+1−(`+1)b

i

)b−1
i,j=0

·
(
Qi(z)

)b−1
i=0

=

(
1− zt−bi

)b−1
i=0

.

Denote this equation as B ~Q = ~D, then

detB = z(`+1)b
b−1∏
i=0

t
1−(`+1)b
i det

(
tji
)b−1
i,j=0

= (−1)b(b−1)/2 · z(`+1)b · aδ(t) ·
b−1∏
i=0

t
1−(`+1)b
i .

On the other hand, replacing the i-th column of B by the column vector ~D and denoting the resulting matrix
by Bi, we have

detBi = det


z`+1t

1−(`+1)b
0 z`+1t

2−(`+1)b
0 · · · 1 · · · z`+1t−`b0

...
...

. . .
...

. . .
...

z`+1t
1−(`+1)b
b−1 z`+1t

2−(`+1)b
b−1 · · · 1 · · · z`+1t−`bb−1



− det


z`+1t

1−(`+1)b
0 z`+1t

2−(`+1)b
0 · · · zt−b0 · · · z`+1t−`b0

...
...

. . .
...

. . .
...

z`+1t
1−(`+1)b
b−1 z`+1t

2−(`+1)b
b−1 · · · zt−bb−1 · · · z`+1t−`bb−1


Let B

(0)
i and B

(1)
i be the two matrices in the above formula. We calculate their determinants.

detB
(0)
i = z(b−1)(`+1)

b−1∏
j=0

t
1−(`+1)b
j det


1 t0 · · · t

(`+1)b−1
0 · · · tb−10

...
...

. . .
...

. . .
...

1 tb−1 · · · t
(`+1)b−1
b−1 · · · tb−1b−1



= (−1)b−i−1z(b−1)(`+1)
b−1∏
j=0

t
1−(`+1)b
j det


1 t0 · · · ti−10 ti+1

0 · · · tb−10 t
(`+1)b−1
0

...
...

. . .
...

...
. . .

...
...

1 tb−1 · · · ti−1b−1 ti+1
b−1 · · · tb−1b−1 t

(`+1)b−1
b−1


= (−1)b−i−1 · (−1)b(b−1)/2 · z(b−1)(`+1)

b−1∏
j=0

t
1−(`+1)b
j s(`b,1b−i−1)(t)aδ(t).

Similarly,

detB
(1)
i = z(b−1)(`+1)+1

b−1∏
j=0

t
1−(`+1)b
j det

1 t0 · · · t`b−10 · · · tb−10
...

...
. . .

...
. . .

...

1 tb−1 · · · t`b−1b−1 · · · tb−1b−1



= (−1)b−i−1z(b−1)(`+1)+1
b−1∏
j=0

t
1−(`+1)b
j det

1 t0 · · · ti−10 ti+1
0 · · · tb−10 t`b−10

...
...

. . .
...

...
. . .

...
...

1 tb−1 · · · ti−1b−1 ti+1
b−1 · · · tb−1b−1 t`b−1b−1
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= (−1)b−i−1 · (−1)b(b−1)/2 · z(b−1)(`+1)+1
b−1∏
j=0

t
1−(`+1)b
j s((`−1)b,1b−i−1)(t)aδ(t),

if ` > 1. When ` = 1, detBi = 0 if 0 ≤ i < b− 1, and

detB
(1)
b−1 = (−1)b−i−1 · (−1)b(b−1)/2 · z(b−1)(`+1)+1

b−1∏
j=0

t
1−(`+1)b
j aδ(t).

In conclusion,

(i) When ` > 1,

Qi(z) =
detBi
detB

= (−1)b−i−1
(
z−(`+1)s(`b,1b−i−1)(t)− z−`s((`−1)b,1b−i−1)(t)

)
(6.2)

In particular, when i = b− 1

Qb−1(z) = z−(`+1)h`b(t)− z−`h(`−1)b(t).

(ii) When ` = 1,

Qi(z) =

{
(−1)b−i−1z−(`+1)s(b,1b−i−1)(t), if 0 ≤ i ≤ b− 2,

z−(`+1)hb(t)− z−`, if i = b− 1
(6.3)

We remark that although Eqs.(6.2) and (6.3) contain negative powers of z, they are indeed formal power
series of z. As an example, consider b = 2 and ` = 1. Then

Q0(z) = −z−2s(2,1)(t) = −z−2t0t1(t0 + t1)

Q1(z) = z−2h2(t)− z−1 = z−2(t20 + t0t1 + t21)− z−1.

where ti = 2R((−1)iz1/2/2) = (−1)iz1/2eti/2. Let

G(z) =
∑
m≥1

m2m−1

(2m)!
zm.

Then t0 + t1 = 2G(z) and t0t1 = −z exp(G(z)). Hence we can rewrite Q0(z) and Q1(z) as

Q0(z) = = z−1(t0 + t1) exp

(
1

2
(t0 + t1)

)
,

= 2z−1G(z) exp(G(z)),

and

Q1(z) = z−2(t0 + t1)2 − z−2t0t1 − z−1

= 4z−2G(z)2 + z−1 exp(G(z))− z−1.

7. Concluding remarks and open questions

In [11], Kung and Yan found the relation between Gončarov polynomials and u-parking functions.

PFn(u) = gn(0;−u0, . . . ,−un−1) = (−1)ngn(0;u0, . . . , un−1). (7.1)
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The parameters u0, . . . , un−1 for Gončarov polynomials can take any real values, for which the most simple
and useful case is when u is given by a linear function, i.e., ui = a + ib for some real constants a, b. However,
Eq.(7.1) only holds when u is an integer sequence. One natural question is to ask whether we can have an
explicit relation between rational parking functions and Gončarov polynomials with non-integral but linear u?
In [13], the authors introduced generalized Gončarov polynomials by replacing the differentiation operator with
a delta operator. One direction of solving this problem is to find an appropriate delta operator or a variation of
the generalized Gončarov polynomials that work in the rational case. For more details of Gončarov polynomials
and delta operators, we refer the readers to [13].

In our work, when the generating function can be expressed in terms of elementary symmetric functions, we
can derive nice enumerative formulas on (a, b)-parking functions of certain lengths by computing the coefficients.
However, for the more general case of Schur functions we can hardly simplify the coefficients. In particular,
when the generating functions are expressed as complete homogeneous symmetric functions, such as in the
examples in Section 4, we would like to find some interpretations of the coefficients. For example, let a = 1 and
b = 2 in Theorem 4.9, then Q0(z) = z−1(γ20 +γ21 +γ0γ1). In this case, γi = 2R

(
(−1)iz1/2/2

)
. Using the formula

Rk(z) = k ·
∑
n≥k

nn−k · (n− 1)!

(n− k)!
· x

n

n!

we can simplify z−1(γ20 + γ21) as

z−1(γ20 + γ21) = 4z−1
(
R2
(1

2
z1/2

)
+R2

(
− 1

2
z1/2

))
= 4z−1 · 2 ·

∑
n≥2

nn−2 · (n− 1)!

(n− 2)!n!

((1

2
z1/2

)n
+
(
− 1

2
z1/2

)n)

= 4z−1
(

2
∑
n≥1

(2n)2n−2(2n− 1)!

(2n− 2)!

(1

2

)2n−1 zn

(2n)!

)

= 4
∑
n≥1

n2n−2

2n · (2n− 2)!
zn−1

= 2 ·
∑
n≥0

(n+ 1)2n−1

(2n)!
· zn.

However, the term z−1γ0γ1 can not be simplified easily. It is also interesting to find combinatorial meanings of
these coefficients, which may help us to find combinatorial proofs of the results appeared in Section 4.

There are many elegant q-analogues for classical parking functions. For example, the following two results
are proved by Foata and Riordan [5]. Given a classical parking function c = (c0, c1, . . . , cn−1), let tie(c) = {i :
0 ≤ i < n− 1 and ci = ci+1}. Then we have a q-analogue of Caylay’s formula:∑

c∈PFn

qtie(c) = (q + n)n−1.

Similarly, if Z(c) is the number of zeros in c, then∑
c∈PFn

qZ(c) = q(q + n)n−1.

Can we extend these results to rational parking functions? In particular, can we have a q-analogue of the
generating functions in terms of the symmetric functions?
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