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Abstract

Vector parking functions are sequences of non-negative integers whose order statistics are bounded by a given
integer sequence u = (ug, u1,us,...). Using the theory of fractional power series and an analog of Newton-
Puiseux Theorem, we derive the exponential generating function for the number of u-parking functions when
u is periodic. Our method is to convert an Appell relation of Gonc¢arov polynomials to a system of linear
equations. Solving the system we obtain an explicit formula of the exponential generating function in terms
of Schur functions of certain fractional power series. In particular, we apply our methods to rational parking
functions for which the boundary is induced by a linear function with rational slope.
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1. Introduction

The notion of parking functions was introduced by Konheim and Weiss in the analysis of a well-known
computer algorithm: the hashing with linear probing. In [8] Konheim and Weiss gave a picturesque description of
parking functions via a parking process on a one-way street. There are several equivalent definitions for parking
functions. In this paper we adopt the one in terms of order statistics. For a sequence a = (ag, a1,...,a,-1), let
inc(a) = (a(y,aq),---,am-1)) be its non-decreasing rearrangement, that is, a(g) < a1y < --- < a(,—1), where
a;y is called the i-th order statistic of the sequence a.

Definition 1.1. An integer sequence a = (ag, a1, ...,a,—1) is a parking function if and only if its order statistics
satisfy the inequalities 0 < a(;) < i+ 1 for all 4.

The set of parking functions is an object lying in the center of combinatorics and appearing in many discrete
and algebraic structures. In addition to hashing and linear probing, they are also related to enumeration of
trees and forests, hyperplane arrangements, noncrossing partitions, monomial ideals, and combinatorial theory
of Macdonald polynomials, to list a few. See [22] for a survey on its history and some recent developments.
There are various generalizations in literature, for example, vector parking functions that depend on a vector u
[11, 19], G-parking functions related to the critical configurations of the sandpile model on a directed graph G
[15], parking functions on trees and directed graphs that generalize the parking process of Konheim and Weiss
[2, 7, 12], and parking sequences allowing cars of different sizes [4]. In this paper we are concerned with vector
parking functions.
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Definition 1.2. Let u = (ug, u1,...) be a sequence of non-decreasing positive integers. A u-parking function
of length n is a sequence a = (ag,a1,...,a,—1) € N" whose order statistics satisfy 0 < agy < u; for i =
0,1,...,n—1.

We denote by PF,,(u) the set of u-parking functions of length n and by PF;,(u) the cardinality of PF,, (u).
When u; = i + 1 for all i, we recover Definition 1.1 and the sequences in PF,(u) are referred to as classical
parking functions.

A sequence of polynomials from interpolation theory gives a natural algebraic tool to study u-parking
functions. Those polynomials are called Gonéarov polynomials, which are the basis of solutions to the Goncarov
interpolation problem in numerical analysis. The n-th Gonéarov polynomial g, (z;u) = g, (z;ug, ..., Up_1) is
a monic polynomial of degree n depending on the parameters ug, u1, ..., u,—1. The detailed description of the
algebraic and combinatorial theory of Gonc¢arov polynomials can be found in [11]. The main result connecting
u-parking functions and Gon¢arov polynomials is the following equation.

Theorem 1.3 ([11]).

PF,(u) = gn(0; —ug,y ..., —tp—1) = (=1)"gn(0;ug, ..., Up_1). (1.1)

In particular, when u is an arithmetic progression with u; = a + bi for some positive integers a and b,
PK,(u) = a(a + bn)"~1. For general u, the only formula available for computing PK,(u) is a determinantal
formula, which is not easy to evaluate. The goal of the present paper is to give an explicit formula of the
exponential generating function of PF,,(u) when u is a periodic sequence. Here a sequence u = (ug, ug,...) is
periodic with period k and height ¢ if there are positive integers k and ¢ such that ug < u; <+ <wup_1 <wug+/4
and u,, = ¢ + u,, whenever m = gk + r with 0 < r < k. Our analysis will start with an identity called the
Appell relation for Gon¢arov polynomials.

Theorem 1.4 ([11]). Appell relation.

tneunt

e =) gn(wsu) ——. (1.2)
n=0 '

We will combine Egs.(1.1) and (1.2) to get explicit generating functions of PF,,(u) for periodic u. The
idea is to use the theory of fractional power series and an analog of Newton-Puiseux Theorem. This method
was used previously in [10] to show the algebraicity of the (ordinary) generating functions of lattice paths
with periodic boundaries. In this paper we extend it to vector parking functions. In particular, our result
covers rational parking functions, which arose in the study of diagonal harmonic and combinatorial theory of
Macdonald polynomials. The notion of rational parking functions come from an encoding of parking functions
as labeled Dyck paths. Next we recall the necessary definitions and explain how to fit it into the notion of
vector parking functions.

For any sequence a = (ag,a1,...,an—1) € N7, inc(a) can be represented by a lattice path from (0,0) to
(n,n) with north step N and east step E. If inc(a) = (a(0), a1, - -, a(n-1)), the lattice path has E-steps from
(i,a(;)) to (i +1,a() for each i. The sequence a is a classical parking function if and only if the corresponding
lattice path is a Dyck path, which stays weakly below the diagonal y = x. To extend this representation to a
bijection to all parking functions, we assign each E-step in the Dyck path a label. If aj, = aj, =+ =a;, =1
for j1 < ja < --+ < jr we label the E-steps in the Dyck path at height ¢ as ji,7j2,...,jx from left to right.
Conversely, given a Dyck path whose E-steps are labeled by {0,1,...,n— 1} and the labels on each consecutive
run of E-steps are from small to large, we can recover the parking function by taking a; = ¢ whenever the
E-step with label j is at height i. Figure 1(a) gives an example of a labeled Dyck path and its corresponding
parking function.

From this encoding of parking functions Armstrong, Loehr, and Warrington introduced rational parking



(a) Labeled Dyck path for (b) Labeled Dyck path for the
the parking function (1,0,4,0,1) (4, 7)-parking function (2,0, 3,0, 1,2,0)

Figure 1: Parking function and rational parking function.

functions [1].

Definition 1.5. Let a and b be coprime positive integers. An (a,b)-Dyck path is a lattice path from (0,0) to
(b, a) with steps {N, E'} that stays weakly below the diagonal y = ax/b. An (a,b)-parking function of length b is
an (a,b)-Dyck path together with a labeling of the E-steps by the set {0,1,...,b— 1} such that labels increase
in each consecutive run of E-steps.

In [1] Armstrong, Loehr, and Warrington considered the Frobenius characteristic of parking functions under
an action of the symmetric group and showed the following theorem using representation theoretical method.

Theorem 1.6. When gcd(a,b) = 1, the number of (a,b)-parking functions of length b is a®~*.

Note that when (a,b) = (n + 1,n) this recovers the result on classical parking functions: the number of
parking functions of length n is given by the famous Cayley’s formula (n + 1)?71,

For an (a,b)-Dyck path labeled as described above, define a sequence (zg,21,...,%p—1) by letting z; = ¢
whenever the E-step with label j is at height i. Figure 1(b) shows a (4, 7)-parking function, which corresponds
to the sequence (2,0,3,0,1,2,0). It is easy to see that a sequence (zg,x1,...,2s—1) corresponds to an (a,b)-
parking function if and only if the height of the i-th E-step is weakly below ia/b for 0 < i < b. Hence we can
extend the notion of (a, b)-parking functions to arbitrary lengths.

Definition 1.7. A sequence (xq,z1,...,%,—1) is an (a,b)-parking function of length n if and only if its order
statistics z(g) < x(1) < -+ < T(p_1) satisfy 0 < w(;) < da/b for all i = 0,1,...,n — 1. Given an (a,b)-parking
function x, denote by D(x) its corresponding labeled Dyck path.

Comparing to Definition 1.2, one sees that (a,b)-parking functions are exactly the vector parking functions
associated with the integer sequence u = (1 + |ia/b])i>o. If a is not a multiple of b, this sequence is not an
arithmetic progression. Nevertheless, it is periodic with period b and height a, to which our techniques apply.

The paper is organized as follows. We will describe the method and proofs for rational parking functions
first, since the results are most clear. In section 2 we prove that the equation z = t?e¢~% has b fractional power
series solutions. Then we convert Eq.(1.2) associated with the vector u = (1 + [ia/b]);>0 into a system of
linear equations, and we solve the system to get an explicit formula for the exponential generating functions of

IThe definition here is essentially the one given in [1], except that we change the orientation and put the labels on E-steps to
make the notation consistent with the rest of the paper.



PF,(u) in terms of the elementary symmetric functions of the fractional power series solutions. Section 3 gives
a combinatorial approach to enumerate the (a,b)-parking functions of length nb. In Section 4 we apply the
techniques of fractional power series to vector parking functions with general periodic boundaries and present
various applications. In Section 5 we discuss the cases when integers a, b are not relatively prime, and in Section
6 we extend the technique to eventually periodic u, i.e., u is periodic except for finitely many terms. We end
this paper with some open questions in Section 7.

For future use, we briefly recall the definition of Schur functions.

Let o = (a1, 09,...,0ap) € N with g > g > -+ > @, > 0. Let § = (n—1,n—2,...,1,0), then we can
write & = A+ § where \ is an integer partition of length no greater than n. Here we use the definition and
notation from [17, Section 1.7]. In particular, the length of an integer partition is the number of non-zero terms
in this partition. Let x = (x1,x2,...,x,) be a set of variables. Define the determinant

Qo (X) = axys(x) = det (237" 7) (1.3)
When A\ = 0,
as) = [ (@—=) (1.4)
1<i<j<n
is the Vandermonde determinant.
The Schur function is defined as
5A(%) = axys(x)/as(x). (15)

In particular, s(1xy(x) = e(z), the k-th elementary symmetric function of degree k, and s(y)(x) = h¢(x), the
complete homogeneous symmetric function of degree ¢. For more details on symmetric functions, we refer the
readers to [14, Chapter 1].

2. Rational parking functions: An algebraic approach

In this section, we give an algebraic approach to compute the exponential generating function of PF,(u),
where u; = |ia/b] + 1. This is done in three steps: First, we find a system of linear equations of generating
functions of PF),(u) using Appell relation. Next we simplify the equations using a generalization of Newton-
Puiseux Theorem that appeared in [10]. Lastly, by Cramer’s rule and computing the determinants for certain
matrices, we obtain explicit expression of the generating function in terms of symmetric functions.

Let PFy(u) = 1. Combining Theorems 1.3 and 1.4 and letting « = 0, we have

7unt

1= ZPF . (2.1)

Expanding the right-hand side with u; = |ia/b] 4+ 1, we get
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the above equation can be rewritten as

- 2" be the exponential generating function for PFj,,(u), then

b—1
> Qiz) e =1, (2.2)
=0

In [10, Lemma 4.1], the authors gave a generalization of the Newton-Puiseux Theorem on certain power
series.

Lemma 2.1. Let h(t) be a power series such that h(0) = 1. Then the equation
2z =t"h(t)
has k fractional power series solutions T, (z), 0 < m < k — 1 such that

70(z) = 2% + Z ciz'/k

i>2
and o
Tm(2) = wm k4 Zciw"”zl/k, 1<m<k-1,
i>2
where w is a primitive k-th root of unity.
This lemma guarantees that there exist b distinct solutions to(z), ..., t,_1(2) to z = t?-e~%*. Thus we obtain
b linear equations from Eq.(2.2):
e~ woto toe Ut e tg_le_"b*1t° Qo(2) 1
e ol tie~ vt T e Q1(2) 1
=1|.1. (2.3)
e~ uots—1 tb_le_ultb—l L tz:}e_“b—ltb—l Qb—l(z) 1
Denote the coeflicient matrix by
1 —ujt; b—1
A= (t e )z‘,jzo' (2.4)

If det(A) # 0, then by Cramer’s rule, Q;(z) = det A;/ det A, where A; is the matrix obtained by replacing the
i-th column of A by a column vector of ones. Note that our index starts from 0.

In order to find the determinants, we first simplify the matrix A by finding ¢;(2).

n
Following the notation in [18, Section 5.3, we denote R(x) = Z n”flil as the generating function for
n!
n>1
labeled rooted trees. Then

R(z) = zefi@), (2.5)
Moreover, fixing w as a primitive b-th root of unity, we let
) 1 ai
yi(z) = 24wt exp (aR(wbazl/b)). (2.6)

We have the following lemma.



Lemma 2.2. For 0<i<b—1, t;(z) = v(2)® are b solutions to z = t* - e~ .
Proof. Simplify the expression ~{":

%{z — Zl/bwia exp (R(wa; a,zl/b>>

_ L /byia R(wa;' azl/b) . (WM : azl/b)*l
b w-a
= —R(=——2?).
a ( b )
Since ged(a, b) = 1, {w : 0 <i < b— 1} are b distinct roots for ° = 1. Hence t;(z) are all distinct.

On the other hand, since R(x) = ze®(®) we can verify

b w¥.qa b b w¥.q
ER( Z1/b)> - exp < —a- aR(bzl/b)>

b\° w¥ . q w - aq b
= (2) (R0 e (- RES ) )

Hence t;(z) is a solution to z = t* - e~% for i = 0,1,...,b— 1. O

We remark that Lemma 2.2 agrees with Lemma 2.1. Just notice that ¢; can be obtained from ¢y by
substituting wz'/? for 2/, where w® is again a primitive b-th root of unity. The format in Lemma 2.2 allows
us to simplify the entries in the matrix A.

From z = t? -e~ % we have e~t = pzl/e. A/;b where 7 is an a-th root of unity. Expanding both sides as
fractional power series and comparing the constant coefficient, we have n = 1. Hence et = 2/ . Y b and
consequently

- ) aj—u;b\b—1
A= (ZUJ/a Y J )i,j:o' (27)

Next, we claim that
Lemma 2.3. Let \; = u;b —ia, then A = (Mg, A1,..., \p—1) € Sy. Here &,, denotes the set of permutations of
{1,2,...,n}

Proof. Assume |ia/b] = j, then ia = jb+r where 0 < r < b. This gives \; = (j+1)b—ia=b—r. So0 < X; <b
for all 0 <4 < b. The values of \; are all distinct because they are in different congruence classes modulo b.
Hence )\ € G,,. O

Now we are ready to compute det A.

Proposition 2.4. Let A be the matriz defined in Eq.(2.4), then
b—1
det A =sgn(A) - 2% - as(7y) - H ;b
i=0

Here c = Zf;é u;/a, as(y) is as defined in Eq.(1.4), and sgn(\) is the sign of permutation A. That is, sgn(c) =
(=1)™ where m is the number of transpositions to map o to inc(o).



Proof. Using Eq.(2.7) and Lemma 2.3, we have

b—1
det A = det (z“a‘/a . ,ylflﬂuj‘b>
i,5=0

b—1

= Zc . det (’y':Aj)iJZO

b—1

=sgn(A) - 2° - det ('yi_l_j)i =0

b—1
_ b—1—7\b—1
=sgn(\) 2 [[2? - det (4071 )) L,
=0

b—1
=sgn(\) -2 as(y) - [ "
i=0
as desired. 0O

Using a similar idea, we compute det A4;.

Proposition 2.5. For 0 < i < b— 1, let A; be the matriz obtained by replacing the i-th column of A by a
column vector of ones, then

b—1
det A; = (=DM osgn(A) - 27 T 5" exn (1) - as(y)
§=0
where ¥y = (Yo, Y1, - - -, Yo—1) as defined in Eq.(2.6).

Proof. By definition,
det A; = det(ajk);;lzo

where a;, = 2l ~’y,;)‘j when k # ¢, and aj; = 1. Thus

b—1
det A; = (~1)M 1 sgn(h) - 277/ Tyt - det (4£9)) L
j=0

where (o, pt1, .- pto—1) = (b,b—1,...,b—=X\i+1,b—X; —1,...,0) = p+ & and p = (1), a partition with all
nonzero parts equal to one. By Eqgs.(1.3) and (1.5) we have

b—1
det A; = (=DM sgn(A) - 2 T s (1) - as(y)
=0

b—1
= (=DM sgn(A) 2 [ enn () - as(),
§=0
which proves the proposition. O

Combining Propositions 2.4 and 2.5, we find the generating function for (a,b)-parking functions of any
length.

Theorem 2.6. Assume a,b are two coprime positive integers and u is the sequence given by u; = |ia/b| + 1.

PFnill n
Let Qi(z) = Z(brbziz()')z . Then
n>0

Qi(z) = (=N Tz %ey (), (2.8)



where A; = w;b —ia and ¥y = (Yo,71,---,Y—1) s given by Eq.(2.6). Consequently, the exponential generating
function of PF,(u) can be computed by

Z PFn(u)%T = Z ziQi(zb).
n=0 ’ 0

Note that when b = 1, (a, b)-parking functions are u-parking functions where u is the arithmetic progression
with u; = 1 + ai. In this case Theorem 2.6 gives

S PE((1+ ai)izo)% — oxp (iR(az)) .

n>0

We can extract the value of PF, ((1+ai);>0) by the Lagrange inversion formula and hence recover the following
formula in [11, Corollary 5.5].

Corollary 2.7. Let u; = 1+ ai for a positive integer a. Then PF,(u) = (1 +an)"~ L.

Proof. Let g(z) = +R(az). Then R(x) = zexp(R(z)) implies g(z) = zexp(ag(z)). Applying a generalized

version of the Lagrange inversion formula, for example, see [18, Corollary 5.4.3] with G(z) = e®* and H(z) = €7,
we have

1 1

=" exp(g(2)) = ["H (g(2)) = ~[z"'|H'(2)G(2)" = —

- (2" exp((1 -+ an)2),

which gives PF,(u) = (14 an)" . .

When b > 1, we have the following special cases.

Corollary 2.8. Assumea=/{-b+r, whereb>1,>0 andr <b—1, then

b—1
Qo(z) = (=) Ve [ ] w (2.9)
i=0
and
Qp1(2) = (=127 le (v). (2.10)
Proof. Apply ug =1 and up—1 = a to Theorem 2.6. Note that \g = b and A\y_1 = 1. O

By simplifying the coefficient of z in Eq.(2.9), we obtain a new proof of Theorem 1.6.

Corollary 2.9. Let a,b be two positive integers such that ged(a,b) = 1.

(i) The number of (a,b)-parking functions of length b is a®~!.

1 /2b
(ii) The number of (a,b)-parking functions of length 2b is (2a)**~1 + 3 (b)a%_Q.

Proof. Using Formula (2.6), we have

b—1 . b1 )
1 wa 1 w®a
)= Lo (GRCEGE ) o (T ().



Let n = w*. Note that 7 is also a b-th primitive root of unity. Thus Z?;& (n")™ = b if n is a multiple of b, and
the sum is 0 otherwise. Hence

b—1 ai b—1 n— ai n
Sa(ee) - Spm (e

1=0n>1
’I’Ln71 b—1 . n
— Z ' (Zwazn> (7> Zn/b
n>1 : i=0
oy (9)“’ H
(kb)! b
E>1
b a (2a)2b—1 )
= b'Z+ 2! 2"+ Kz
where K is a formal power series of z. Therefore
ab—1 24)2b—1
Qo(z) = exp( A z+ ( (Q)b)! 22 +Kz3/a>

- 14 Ez + 1 (2a)?"~1 + 2 a?*=%) 22 4 higher powers of z
b! (2b)! 2\ b ’

which gives the desired results. O

Another special case is when a = 1. In this case we can simplify ~; as
vi(z) = 2% exp (R(aézl/b)) =b- R(%zl/b),
where the last equation follows from Eq.(2.5). Thus Theorem 2.6 has the form
Theorem 2.10. When a = 1, we have
Qi(z) = (=1)" 7"z lep ().
In particular,
Qo(z) = (—1)*¢ ‘1beR 21/) (2.11)
and

Qu-1( leR w 210, (2.12)

Computing the coefficients in Eq.(2.12) we get the following corollary.

Corollary 2.11. When a = 1, that is, when u = (1,1,...,1,2,2,...,2,3,...), the number of (1,b)-parking
functions of length nb+ b — 1 is given by

PFEupip-1(u) = (n+ 1)"T0=2,
Proof. Expanding Eq.(2.12) we obtain

Qp-1(2) = z7'b- ;; ] <w 1/b>n

n—1

b—1
Z*lb . E n Zn/b § wni
nlbm '

=0

n>1




Note that when b Jn, Zf éw = 0, thus the only non-zero terms will be when b|n, in which case w™ = 1. So
we have

Q1(2) = *bZ ,bnb b

n>1
nb—1

= b)) Tznb)! o

n>1

:bz nb+b "

nb+b—1
b-
an—Fl )(nb+b—1)!

ZTL

_ Z (n+ 1)”b+b722n
2 (mb+b—1)!

Comparing the coefficients of z™, we obtain the desired result. O

Theorem 2.10 and Corollary 2.11 recover the work of Blake and Konheim [3, Section 2], who considered a
computer storage problem similar to that of the classical parking functions, except that each address (parking
space) is capable of holding % items.

3. Rational parking functions: A combinatorial approach

In this section, we give a combinatorial proof for the cardinality of PF,;(u) for u; = [ia/b] + 1. Again
assume a, b are positive integers with ged(a,b) = 1. From Section 1 we see that PF,;(u) counts the number of
certain labeled (a, b)-Dyck paths. We adapt the techniques in lattice path counting and consider how the labels
would contribute. In particular, we use the well-known cycle lemma; see [9] for a survey and many related
references.

For convenience, we will use PF),;, to denote the number of (a, b)-parking functions of length nb. Moreover,
denote by [n] the set {1,2,...,n} and [n]y the set {0,1,2,...,n}.

First we present a purely combinatorial proof of Theorem 1.6, which is an extension of Pollak’s classical proof
for the formula (n + 1)"~! for classical parking functions; see [16]. This proof for rational parking functions,
written in terms of cosets in the group (Z/aZ)®, was presented in [21, Section 3.1.2] and used in [20, Section
2.4]. For completeness, we include the proof here again.

A combinatorial proof of Theorem 1.6. We build a bijection ¢ : PFy(u) — [a — 1]57! as follows.

For any (a,b)-parking function ¢ = (c1,ca,...,¢) € PFp(u), let ¢(c) be its difference sequence d =
(di,da,...,dp_1), where d; = ¢;11 — ¢; mod a. Clearly ¢(c) is in the set [a — 1]57*

To see ¢ is a bijection, we prove that for any sequence d € [a — 1}8_1, there is a unique integer £ mod a
such that (k,k+di,k+dy +da,...,k+di+ - +dp—1) mod ais an (a,b)-parking function.

To show the existence of k, we use the following construction. Given a sequence d € [a — 1]8_1, consider
the sequence ¢ = (cp,c1,...,cp—1) where ¢g = 0 and ¢; = E;‘:o d; mod a. Let c(; be its i-th order statistic.
Since ged(a,b) = 1, the numbers {c;) —ia/b : 0 < i < b — 1} are all distinct. Let i be the index that
maximizes c(;y — ia/b, and let £ = c(;). Note that if {c(;) : ¢4y —ia/b > 0} = 0, then £ = 0. We claim that
c—l=(co—¥t,c1—¥,...,cp—1—{) mod ais an (a,b)-parking function, that is, k = —¢ mod a.

10



Figure 2: A graphical explanation of the proof.

For j < i, we have ¢(j) — £ = c(jy +a—{ mod a and the order statistic for ¢ — £ is then (0 = c¢;y — £, c(i11) —
b.ooicpor)y —bicoy+a—L,...ciy+a—1L) = (Cl(o)v c’(l), e c/(b_l)). In formula,

OT\ ey +a—t, ifb—i<j<b—1.

Now let’s check the condition that ¢{;) < ja/b.

(i) The case 0 < j <b—1i—1. Since c;) —ia/b > c(i4;) — (i + j)a/b by our choice of i, we have c(;1 ;) — £ =
Cli+j) — €5 < ja/b, that is c’(j) < jb/a.

(ii) The case b —i < j <b—1. Using ¢y —ia/b > c;—p) — (i — B)a/b, we have c’(j) = Cli—(b—j)) T a—L€ <
ciy — (b—jla/b+a—L=a—(b—ja/b= ja/b.

Thus the sequence ¢ — £ is an (a, b)-parking function as desired.

Figure 2 gives a graphical explanation of the above proof: The lattice path from (0, 0) to (b,a) corresponds
to the order statistics inc(c). Given any lattice path from (0,0) to (b,a), find the peak that is furthest from
the diagonal y = ax/b. Starting from that vertex and cyclically permute the lattice path, we would obtain an
(a,b)-Dyck path that is fully under the diagonal.

Finally we show the uniqueness of the cyclic shift by proof of contradiction. Assume that in addition to
the above ¢ — ¢, there is another p # ¢ mod a such that ¢ — p is also an (a,b)-parking functions. Assume
that inc(c — ¢) = ™1™t ... (a — 1)™a=1 i.e., it contains m; many ¢ for ¢ = 0,...,a — 1. Then the inequalities
c’(j) < ja/b are equivalent to the system

Z{;émt >gb/a for0<j<a-1
S0y my = b

Since ¢ — p is a cyclic shift of ¢ — ¢, the order statistics inc(c — p) is of the form 0717+ ... (¢ — 1 —¢)™e=1(a —
i)™ ... (a — 1)™i~1 for some i # 0. Hence we would have m; +m;11 + -+ mqe_1 > (a — 7)b/a. Combining
with S0 my; > ib/a, we obtain ¢~ m; > b, a contradiction. O

Next we generalize this argument to get a recurrence for PF;.
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Theorem 3.1. For any integer n > 1 and ged(a,b) =1 we have

nb 1
PFy=(na)™ '+ Y (-1F. (Z b g b) <3 PPy PFiyp. (3.1)
C1te ot lp=n 10,£20, ..., Lk
0;>1,k>2

Proof. Consider the map ¢ : PFnp(u) — [na — 1]5°"! as follows: Given an (a,b)-parking function ¢ =
(cosC1y-evyCnp—1) € PFnp(u), ¢(c) is the difference sequence d = (dy,ds,...,dpp—1) where d; = ¢; — ¢;—1
mod na.

By a similar proof as the previous one, it is straightforward to check that given d € [na — 1]6“’_1, we can

construct a sequence ¢ = (¢, c1, ..., Cnp—1) Where ¢g = 0 and ¢; = Z;:o d;. Then there exists an ¢ > 0 such
that ¢ — ¢ is an (a, b)-parking function of length nb — 1. Thus ¢ is surjective.

However, this map is not injective. Without loss of generality, assume ¢ € PF,;(u) whose difference sequence
is d. Then using a similar argument, we can verify that the sequence c—j mod na is an (a, b)-parking function
with the same difference sequence d if and only if there is an index 0 < j < nb — 1 such that c(;) = ja/b. And
since ged(a,b) = 1, this only happens when j is a multiple of b.

We can also give a graphical explanation of this argument. Let ¢ € PF,,;(u), and let D(c) be its correspond-
ing labeled Dyck path. By definition, D(c) is weakly below the line y = ax/b. If D(c) touches the diagonal
at an internal point (kb, ka) for some 0 < k < n, we can decompose D into two sub-path: D; from (0,0) to
(kb, ka), and D from (kb, ka) to (nb,na). Then the Dyck path D’ = (D, D1) obtained by attaching the initial
point of D; to the end point of Ds is also an (a,b)-Dyck path. On the other hand, keeping the labels on D;
and Ds unchanged, we can check that ¢’ obtained from D’ has the same difference sequence as that of c.

In other words, given one difference sequence d € [na— 1]6‘b_1, and let ¢ be a pre-image of d under the map ¢.

If D(c) touches the diagonal y = ax/b exactly k—1 times at some internal points, then D(c) can be decomposed
into sub-paths D;, Ds, ..., Dy, and any cyclic permutation D;, D;41,...,D;_1 with labels unchanged will also
recover a parking function in ¢~!(d). Thus |¢~(d)| = k and we only need one element from each pre-image to
compute |¢(PFpp)|.

Let S C [n — 1] and denote by Ag the number of parking functions whose Dyck paths hits y = ax/b only
at the internal points (s;b, s;a) for all s; € S. Note that |S| = k — 1 implies that the corresponding Dyck path
can be decomposed into k segments, each is a shorter (a,b)-Dyck path. Denote by Bg the number of parking
functions whose corresponding Dyck paths hits y = ax/b at least at the internal points (s;b, s;a) for all s; € S.
Then by Principle of Inclusion-Exclusion, we have

BT:ZAS

SCT

and

Ag = Z(_l)\T\—ISIBT_

T2S

On the other hand, if T' = {¢1,t2,...,tx—1}, then any Dyck path D € Br hits y = ax/b at least at the points
(t;b,t;a). Since there are nb many horizontal steps in D, if we denote by ¢;b the number of horizontal steps
between the points (t;—1b,t;—1a) and (¢;b,t;a) where ¢y = 0 and ¢y, = n, then ({1, s, ..., ¢x) is a positive integer
composition of n. Since there are (Zlb:%ifkb) many ways to choose a labeling of D, and there are PFy,p--- PFy,p
many parking functions with the given decomposition. We have that

nb
By = "PFE, ,---PF,p.
T <€1b7 . ka) bt e

12



[hus
A
(na)"b_1 = E c

SC[n—1] I51+1
1
= Z . (_1)\T\—|S|BT
5Cn—1] |51 +1 T2S
Z B Z( DITI=18]
T
TC[n—1] [51+1

k
(k) 1 —1)k
Using the identity Z(—l)kﬂ ( ) - = (=1) , we can simplify the above equation as
i=0

nb—1 _ |T|
na
(na) Z |T| + 1

TC[n—
- 1 nb
1)kt PFy,y - PF,
]g Z k (Elb ,Ekb> b b
where ¢ ranges over all positive integer compositions of n. This simplifies to Eq.(3.1). O

Note that when n = 2 the above formula simplifies to Corollary 2.9(ii).
PFy,

nb—1
Define the generating functions P(z) = Z z™ and let F (x) = Z M 2", Multiplying
n>1

£ (nb)! (nb)!
2" /(nb)! and summing over n > 1 in Eq.(3.1), we get
(=D 77 5= PFes o
P(z) = F(x)—!—z 3 U (&b)!xz
k>2 i=10,>1
= P+ Sl

Thus we obtain the following theorem.

Theorem 3.2. Let PFy = 1. Then we have 1 + P(x) = exp(F(x)), that is,

PF.,
> e e

n>1

(na)nbil nb

by "

We remark that Eq.(3.2) is equivalent to Eq.(2.9) by noticing that 1 + P(z) = Qo(z") and

1
(na)™=t b (nb)"*=1 rax\nb b 1 ax
Fla)=S" 24 gme 2 7<7) — ( ) — -V R,
(z) Z (nb)! v a Z (nb)! b a a Z @ b )
n>1 n>1 1=0
where w is a primitive b-th root of unity and R(x g A ll .

n>1

Using a similar idea, we can consider the number of (a,b)-parking functions whose corresponding lattice
paths do not touch the line y = ax/b except at the endpoints.

13



Definition 3.3. A prime (a,b)-parking function of length nb is an integer sequence (ag, a1, . .., anp—1) such that
the ith order statistic satisfies a(y =0 and 0 < a(;y <ia/b for i =1,...,nb— 1.

Theorem 3.4. Denote by PPF,;, the number of prime (a,b)-parking functions of length nb, then

PPEw = [PFa| - ;(_1)k (&b,ﬁzgjl.). . ,Ekb) Py PPy Pl (3:3)
where the sum is over all compositions of n with at least two parts. As a consequence, let Q(x) = Z P(];;‘Tb z"
be its generating function. Then b "
x
Q) = 1+ (P()x)

Proof. This follows easily by considering the parking functions whose corresponding Dyck paths touches the
diagonal y = a/b - x and using the Inclusion-Exclusion Principle. O

The combinatorial method described in this section provides a different approach to study rational parking
functions. We expect to extend the lattice path counting techniques to study parking functions whose underlying
paths end at a given point, carry various weight, or have a piecewise linear boundary.

4. Vector parking functions with a periodic boundary

Notice that Eq.(2.3) does not depend on explicit u values, so it holds for any periodic boundary u with
period b and height a. In this section, we show that when ged(a,b) = 1, we can still compute the determinant
in a similar way and solve the system.

Throughout this section, assume ged(a,b) = 1.

Lemma 4.1. Let 1 <ug <uy < -+ <wup_1. Then for 0 <i < b—1, the numbers \; = u;b — ia are distinct.

Proof. 1t follows from the fact that A;’s are in different congruence classes modulo b, O

Lemma 4.2. Denote inc(A\) = (o), ..., Ap—1)) and let c = Zg;é u;/a. Then

b—1
det A = sgn(\) - 2° - 5,(7) -as(y) - [[ % ", (4.1)
=0

Herey = (yo,...,7-1) s given by Eq.(2.6), sx(x) is as defined in Eq.(1.5), and p = (po, - - ., p—1) s a partition
where p; = Ap—1) — Ay — (b—1i—1).

14



Proof. Rewrite z = t? - e=% as e~ = 21/29~" then

b—1

det A = det (z“j/a '%—A])
i,j=0

b—1

i,j=0

= sgn(A) - 2° - det (’y#\(j))

i

= 2°-det (’yi_Aj)
b—1
1,j=0

b—1
sgn) -2 [0 - et )0
=0

b—1
c —Ab-1
=sgn(A) - 2% s, (9) -as(y) - [[ % O
1=0

Note that by Lemma 4.1, A;11) > Ag) and Ap_1) — A > b— ¢ — 1. It implies that u; > ;11 and
pi = Ap—1) — A@) — (b—14 —1) > 0. Thus s, () is well-defined. O
Next we consider det A;.

Consider \® = (\g,...,\i_1,0, Ai+17A%,,1)7 and let inc(A\()) = ()\(()i),)\gi)7...,)\éi_)1). Note that since
ged(a,b) = 1, we have u;b — ia # 0. Thus /\y) with 0 < j <b—1 are all distinct.

Lemma 4.3.

b—1 .
; i/ -0
det A; = Sgn()\(l)) cpmml 8,0 (7) - as(y) - H’Yj " (4.2)
§=0
here p() = (p(()i),,ugi), . v:“z(f—)l) is the partition with parts u§i) = )\,(f_) — )\gi) —(b-75-1).
Proof. Replacing the i-th column of A by 1, we get
ZUO/GV(;AO e 1 . e Zubfl/aryoiib_l
Zug/a,y*Ao R zub—l/ary_ b—1
det A; = det ! !
ZUO/a’y;f/\lo e 1 e Zubfl/arybii)\lb_l
X ENON -
— sgn(A(l)) . Zc—uq‘,/a . det, (,-YZ J )?jio
=1 ) OO
_ @)y . ye—ui/a T~ 1. o1 mA ol
=sgn(A'") -z 1_[1%- 'det (v, ! )k,j:O.
j:

By a similar argument as in the proof of Lemma 4.1 we obtain the desired result. O

Combining Lemmas 4.2 and 4.3 we have

Theorem 4.4. For 0 <i<b—1,

b—1
Ql(z) = Sgn()\) ~sgn()\(i)) . qui/a .
7=0

7{\(b71> *Aéi,)l ) Sp ) ('7)
J Su(')')

Next we look at some examples of Theorem 4.4.
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Example 1. u; = |ia/b] +¢. Consider the parking functions whose corresponding lattice paths are weakly
below the line y = a/b- x + ¢ — 1, that is, u-parking functions with u; = |ia/b] + ¢ for some integer ¢ > 1.

The proof of the following lemma is similar to that of Lemma 2.3 and is omitted here. Interested readers
can fill the details themselves.

Lemma 4.5. The entries \; = u;b — ia form a permutation of the numbers (( —1)b+1,(( —1)b+2,...,¢b.
Using the notation in Theorem 4.4, we have A\;y = b —b+i+ 1 and p; = 0, thus s,(y) = 1. On the other

hand, inc(A()) = (0,( = )b+ 1,..., 0 —1,\; +1,...,0b—1,0b).

Theorem 4.6. Denote by d; = \; — (£ — 1)b— 1, then

Qi(z) = (_1)diZ_ui/as((e—1)b+1,1di)(’Y) (4.4)
Proof. By Lemma 4.2 we have
b—1
det A =sgn(A) - as(y) - 2°¢ H v,
i=0
On the other hand, if the i-th column in A is replaced by a vector of ones, we have
det A; = sgn(A) - 267%/% . det ('yj_%,'yj_%ﬂ, e ,'yj_’\i_l, 1,'yj_/\i+1, e ,'yj_(e_l)b_l)
b—1
= Sgn()‘) ! ZC_Ui/a : H ’7;41) - det (17’)']'7 cee 7’Y§b_)\i_17’y§bv7§b_)\i+lv oo 37?71) )
i=0

here 47" in the determinant means the corresponding column is of the form (Yo, A, .. )T Since it takes

d; = X\; — (¢ — 1)b — 1 transpositions to move the column 'yfb to the last, thus

b—1
det A; = (—1)% - sgn(X) - 2578 (1141 10y (Y) - as(7) - H %,
i=0

and we prove the theorem. O

Corollary 4.7. In particular, when i = 0, we can simplify Qo(z) as
Qo(2) = (=)' 275 1ypr1,10-1) ()
= (1)t (y) - hie—1y(7)-
Moreover, when a =1,
Qu-1(2) = 2 s(u—1)p41) (1)
= 2" hyp—1yp1 (7).
Example 2. u; = [ia/b] + 1. Next we consider the case where u; = [ia/b] + 1. Using a similar argument as
in Lemma 2.3, we can show that

Lemma 4.8. Let \; = u;b — ia, then A = (Ao, ..., \p—1) is a permutation of b,b+1,...,2b—1

The above lemma gives that Ay = b+, and p; = Ap—1) — Ay — (b —i — 1) =0, thus s,(y) = 1.

On the other hand, sgn(A() = (=1)** . sgn(\), and inc(A?D) = (0,b,b+1,..., A — 1, \; +1,...,2b—1).
Thus u; = (b,1*7?), and
Theorem 4.9. Let u; = [ia/b| + 1, then
Qi(z) = (1Nt gmui/a S(p,1% -0y (7)- (4.5)

In particular,



5. Extension to non-coprime pairs

In Sections 2 and 4, there are three major steps in our algebraic approach. First, we find b distinct solutions
to the equation z = ¥ - e~ which allow us to convert the Appell relation (c.f. Theorem 1.4) to a system of
linear equations whose unknowns are Q;(z)’s for 0 < ¢ < b — 1. Second, the system is non-degenerate, hence
Qi(z)’s form a unique solution of the system. And last, we compute the determinants and use Cramer’s rule to
solve for Q;(2).

Our method can be extended to the case when ged(a,b) # 1 with some restrictions. In this section, we
briefly discuss this case and give some examples. Throughout this section, we assume ged(a,b) =k > 1.

Let u = (up, u1, - . .) be a non-decreasing periodic sequence with period b and height a. Note that the Appell
relation Eq.(2.3) still holds in this case, but we need to seek for new solutions #;(z).

Lemma 5.1. Let z = tPe~%. Then there are b solutions t;(z) of the form t;(z) = v2(z), where

1. _,w%.q
Yi(z) = /et zexp(aR(bm), (5.1)

and w is a primitive ab-th root of unity. Explicitly,

() = CR(EO), (5.2)

The proof is similar to that of Lemma 2.2 and is omitted here.
From z = t’e~ %, we have e = nzl/“'y;b, where 7 is an a-th root of unity. By comparing the constant
term on both sides, we obtain 7 = w® for i = 0,1,...,b— 1. Thus we can simplify the matrix A in Eq.(2.4) as

b—1

A= (z'u,j/(l . wibu,,ﬁ” u;b )i,j:o' (5.3)
Pan—H n . . . .
Theorem 5.2. Let Q;(z Z n+i - 2" for 0 < i < b—1 be the generating functions for u-parking
n
n>0
functions. If det A # 0, then
QZ(Z) = det Ai/det 147

where A = (z“]’/“ R fyaj ujb)?;io, and A; is the matriz obtained from A by replacing the i-th column by a

column vector of ones.

It is not easy to compute the determinants of A or A; for general u. However, in some special cases we
can derive nice formulas. One of such cases is when w; = u for all 0 < ¢ < b — 1. Then we can simplify the
determinant as

b—1

det A = det (z"/a w’b“fy;l] ub)Z o

_Zbu/a det( aj— U«b)i’jlo

_Zbu/a'H’yZ ubdet )l] 0

b—1

_Zbu/all—[,yz ub . det (t])z] o
=0

b—1

— (_1)b(b—1)/22bu/a . H ,y;ub . a(;(t).

=0
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Note that in the last two steps, we use t; = . In this case det(A4) # 0, so Theorem 5.2 applies with

det A; = det (ajg);io

where a;; = 2%/ . (yibu at=ub when ¢ # i and a i = 1. If we further assume u is a multiple of k, then
j Y j p )
i—1 i+1 b—1
b1 AT S L SR e
det A; = (b~ Du/a. H v det | : . :
i=0 i—1 i+1 b—1
' Logpy oo 3l gy 0 e e

b—1
_ (71)b(b71)/2+N(’L) . Z(bfl)u/a . H %_Ub . ag('y) . S#(’Y).
=0

Here N(i) = |{j :i < j <b—1and ja < ub}| and u is the partition such that the decreasing rearrangement
of (a,...,(i —1)a,ub,...,(b—1)a) can be written as § + u(¥).

Combining the above equations, we have

Corollary 5.3. Let u; = u be a multiple of k for i =0,1,...,b— 1, and let u be the non-decreasing sequence

of period b and height a with initial terms u,u,...,u. Then

—_———
b
D —uja Suo (as(y)
i(2) = (—1)N@ . pmwfa T 00T 5.4
Qi(=) = (1) G (4)
In particular, if u; = a for ¢ = 0,1,...,b — 1. Then ia — u;b = (i — b)a for 0 < i < b — 1. Moreover,
N@)=b—1i—1, and
b—1
det A; = (=1)" T [ 670 epmilt)as(t).
i=0

Thus we have

Theorem 5.4. Let u = (a,...,a,2a,...,2a,3a,...,3a,...) be a sequence of period b and height a, denote by
Qi(z) the generating functions of {PFppti(u): n > 0}. Then

QZ(Z) = (—1)b_i_12’_leb_i(t).

By computing the coefficients of Qp—1(z), we have

Corollary 5.5. Letu = (a,...,a,2a,...,2a,3a,...,3a,...) be a sequence of period b and height a. Then

PFppyp-1(u) = a0 (m 4 1) (miDe=2,

The proof is similar to that of Corollary 2.11 and is omitted here.

Remark 5.6. Note that in Corollary 5.5, u=a-(1,...,1,2,...,2,3,...,3,...). In [11, Corollary 5.6], Kung
and Yan showed that if u = kv for an integer k, then PF,,(u) = k™ PF,(v). Thus Corollary 5.5 can be derived
from the homogeneity of PF, (u) and Corollary 2.11. This formula is also mentioned by Gaydarov and Hopkins
in [6, Section 5] without a proof.
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6. Eventually periodic boundaries

In this section we will give an example where the vector u is eventually periodic, that is, u can be written
as the concatenation wy, u’, where wg = (wo, wo, ..., w,_1) is a finite initial non-decreasing sequence of length
r>1,u = (ug,u1,...) is a periodic sequence, and w,_1 < ug. We will show that in general, the idea of the
previous discussion still works. But Eq.(2.2) would become

b—1
R W
=0

—at

tz —w;t

(6.1)

for some integers ag, . ..,a,_1, where again z = t* - e if u’ is of period b and height a. Then again we just
need b distinct solutions of z = t* - e~ to convert Eq.(6.1) to a linear system and solve it by computing certain
determinants. The difference here is the right hand side of Eq.(6.1) contains a finite summation. So the solution
would be a linear sum of 7 Schur functions.

We will illustrate the process via the following example, and interested readers can extend it to general
cases.

Let ¢ be a positive integer and let the vector u be (1,£+1,...,0+1,20+1,...,204+1,3¢+1,...), that is,

1, ifn=0
Uy =
(k+1)0+1, ifn=1-+kb+ifork>00<i<b—1.

Although one can view u as a periodic sequence of length b and height ¢, with initial terms (1,4 1,...64+ 1),
we would single out the very first term and treat it as “eventually periodic” with first period (¢+1,...,£+1). An
advantage of doing so is that we do not need to worry about whether b and ¢ are coprime or not. We also remark
that this sequence has appeared in the literature: the boundary u and its corresponding Dyck paths yield a
solution to the generalized tennis ball problem; see [10, Section 5] for details and references. Enumeration of
PF, = PF,(u) can be considered as a “labeled” version of that problem. Interested readers can also choose
utobe (1,1,+1,...,04+1,20+1,...,20+1,3¢+1,...), so that the vector is not periodic. The calculations

b b
will be similar to the ones below, but the terms may look more complicated.

Note that PFy = 1. Then Appell’s relation implies

AAkbtip—(1+(k+1)0)t

PF i - =1- e_t

;}; PHRHTT O b+ 4))

If we write z = t’e™?, then
b—1 Zk
1— — PF 7471514’7;67(14’@)15
- o;;o PR kb + )
b—1
= Y Quan e,

=0

where

_ PFyykpri g
@ilz) _kz>0 (1+kb+i)

Let tg,...,t,—1 be the b distinct solutions to z = t’e~* given by Lemma 2.2, that is,

t; = b~R(%zl/b).
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Then the generating functions Q;(z)’s satisfy the system of linear equations
b—1

b—1 b—1
(terle(ZJrl)ti) . (Qz(z)> = <1 — eti> .
i,j=0 i=0 i=0
t_

Since et = 27", we can rewrite the above equation as

. b—1 b—1 b—1
(o) o) = ()
i,j=0 =0 =0

Denote this equation as BQ = 13, then
b—1 -
1—(e4+1)b i\ b—
det B = 200 TT ;D des (1)L
i=0

b—1
_ (_1)b(b—1)/2 Db as(t) - Ht;—(f-&-l)b.

=0

On the other hand, replacing the i-th column of B by the column vector D and denoting the resulting matrix
by B;, we have

1—(e4+1)b 2—(0+1)b _
Z€+1t0 ( + ) Z£+1t0 ( + ) .. 1 .. Z[+1t0 b
det B; =det : : .o . :
241 1-(+D)b pp12—(e+1)b £41,—0b
27, 27Ty 1 2T
1— (41 2—(£+1 — _
z”lto (£+1)b z”lto (e+1)6 ztob z”lto £b
—det : : . : . :
041, 1-(+1)b g1 2—(e+1)b b . 0+1;,—0b
25 FARR zty 74 AR T

Let BZ-(O) and Bgl) be the two matrices in the above formula. We calculate their determinants.

04+1)b— _
b1 1 tO t(() +1)b—1 tg 1
(0) _ _(b=1)(£+1 1—(L+1)b
det B{" = 2= VED T ¢; det | 1 : : S
j=0 £41)b—1 -
J 1 tpq - tl(ajl ) tg,}
- 1ty - té—l t6+1 tg—l t(()é+1)b71
_ (71)1)4712(1)71)(“1) Ht}—(@rl)b det : : : :
Jj=0 i—1 i+1 b—1 L (e+1)b—1
Lotpy - t;)—l tZ—l ety
b—1
= (71)17*1*1 . (71)b(b71)/2 . ,(0=1)(e+1) H t;_(é-‘rl)bS(gb’lb—i—l)(t)a(s(t).
7=0
Similarly,
- 1ty - tgb—l tg_l
(1) _ _(b—1)(¢+1)+1 1-(e4+1)b
det B; = =D+ Htj det . : ) :
Jj=0 1 ty_q - tgb:ll tgj
. Doty
= (-1 TR TT 17 det o
= I S
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b—1
_ (_l)bfifl . (_l)b(bfl)/2 . Z(bfl)(l+1)+1 H t;—(@-i—l)bs

=0

((e—=1)b,10-i-1)(t)as(t),
if¢>1 When £ =1,det B; =0if 0 <i<b— 1, and

b—1
det Bl(;l—)l _ (_1)b—i—1 . (_l)b(b—l)/Q (=1 (+1)+1 Ht;f(lJrl)ba&(t)'

j=0
In conclusion,
(i) When ¢ > 1,
det Bi
Qi) = i B
= (—l)bilil(Zi(eJrl)S(gb)lb—i—l)(t) — 2’7[(9((@_1)()’117—7‘,—1)(13)) (62)

In particular, when ¢ =6 —1
Qu—1(2) = 27 DRy (t) — 2 hp_1yp(t).
(ii) When ¢ =1,

(1)t D g iy (b),  H0<i<b—2,

Qi(2) = { 2D py(8) — 278, ifi=0b-1 (63)

We remark that although Eqs.(6.2) and (6.3) contain negative powers of z, they are indeed formal power
series of z. As an example, consider b = 2 and £ = 1. Then

Qo(z) = —2_28(271)(13) = —Z_2t(]t1(t() +11)
Qi(2) = 27 2ha(t) — 27t =272t 4+ toty +13) — 271

where t; = 2R((—1)"2"/2/2) = (—1)"2"/2e%/2, Let

Then to + t; = 2G(z) and tot; = —zexp(G(z)). Hence we can rewrite Qo(z) and Q1(z) as

Q= = e (jo+n).
2:71G(2) exp(G2)),

and

Ql(z) = Z_Q(to + t1)2 — Z_2t0t1 — Z_l
4272G(2)* + 2 Lexp(G(2)) — 271

7. Concluding remarks and open questions

In [11], Kung and Yan found the relation between Gonéarov polynomials and u-parking functions.

PF,(u) = g,(0; —ug, ..., —tp—1) = (=1)"gn(0;ug, ..., up_1). (7.1)
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The parameters ug, . .., u,_1 for Goncarov polynomials can take any real values, for which the most simple
and useful case is when u is given by a linear function, i.e., u; = a + ib for some real constants a,b. However,
Eq.(7.1) only holds when u is an integer sequence. One natural question is to ask whether we can have an
explicit relation between rational parking functions and Gonéarov polynomials with non-integral but linear u?
In [13], the authors introduced generalized Goncarov polynomials by replacing the differentiation operator with
a delta operator. One direction of solving this problem is to find an appropriate delta operator or a variation of
the generalized Gonc¢arov polynomials that work in the rational case. For more details of Gon¢arov polynomials
and delta operators, we refer the readers to [13].

In our work, when the generating function can be expressed in terms of elementary symmetric functions, we
can derive nice enumerative formulas on (a, b)-parking functions of certain lengths by computing the coefficients.
However, for the more general case of Schur functions we can hardly simplify the coefficients. In particular,
when the generating functions are expressed as complete homogeneous symmetric functions, such as in the
examples in Section 4, we would like to find some interpretations of the coefficients. For example, let a = 1 and
b= 2 in Theorem 4.9, then Qo(2) = 2=+ (7§ +7% +7071)- In this case, v; = 2R((—1)'21/2/2). Using the formula

n>k (n_k)' n'
we can simplify z71(72 +1?) as
9 1 p2/L 12 o _ L 1y
2 (pt+n) = 4= R(§Z )+R(7§Z )
= 2 Z 2)nl <(2Zl/2) (=32 )
n>2
B 2n)2”_2(2n—1)! 1yon—1 2"
RS ol L
o < ;1 (2n — 2)! 3) (2n)!

2n—2

n
= 4 n—1
Z on - (2n —2)!°

= 2 Z n+12” 1'2”.

n>0

However, the term 2~ 'vyyy1 can not be simplified easily. It is also interesting to find combinatorial meanings of
these coefficients, which may help us to find combinatorial proofs of the results appeared in Section 4.

There are many elegant g-analogues for classical parking functions. For example, the following two results
are proved by Foata and Riordan [5]. Given a classical parking function ¢ = (g, c1,...,cn—1), let tie(c) = {i :
0<i<n-—1and ¢; = ¢4+1}. Then we have a g-analogue of Caylay’s formula:

Z qtie(c) _ (q + n)n—l.

ccPF,

Similarly, if Z(c) is the number of zeros in ¢, then

> 79 =qlg+n)"!

ceEPF,

Can we extend these results to rational parking functions? In particular, can we have a g-analogue of the
generating functions in terms of the symmetric functions?
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