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Abstract

In this paper we give simple bijective proofs that the number of fillings of layer polyominoes
with no northeast chains is the same as the number with no southeast chains. We consider 01-
fillings and N-fillings and prove the results for both strong chains where the smallest rectangle
containing the chain is also in the polyomino, and for regular chains where only the corners of
the smallest rectangle containing the chain are required to be in the polyomino.
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1 Introduction

Let G be a simple graph on [n] := {1, 2, . . . , n}. A graph can be represented by its set of edges
where the edge {i, j} is written (i, j) if i < j.

1 2 3 4 5 6 7 8

Figure 1: The graph on [7] with edges {(1, 3), (1, 5), (2, 4), (3, 6), (4, 7), (6, 8), (7, 8)}.

A crossing in G (or nesting) is a pair of edges (i1, j1) and (i2, j2) so that i1 < i2 < j1 < j2 (resp.,
i1 < i2 < j2 < j1). If we draw the vertices of G in increasing order on a line and draw the arcs
above the line (see Figure 1 for an example), crossings and nestings have a clear representation.
The number of crossings (nestings) in a graph G is denoted cros2(G) (resp., nest2(G)). A graph
with no crossings (nestings, respectively) is called noncrossing (nonnesting, respectively).

The enumeration of noncrossing graphs, as well as other similar noncrossing configurations such
as trees, forests, dissections, and partitions, have been studied in many research papers. Nonnesting
configurations receive less attention. Nevertheless, it is observed that in many combinatorial struc-
tures, there is a symmetry between noncrossing and nonnesting configurations. Two well-known
examples are set partitions and complete matchings. In particular, the following four structures:
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noncrossing and nonnesting partitions on the set [n], and noncrossing and nonnesting complete
matchings of [2n], are all counted by the n-th Catalan number

Cn =
1

n+ 1

(
2n

n

)
.

See Stanley [13, Exercise 6.19] for a detailed list of Catalan structures.
De Sainte-Catherine [5] improved the above result on matchings by showing that the statistics

nest2 and cros2 are equidistributed over all matchings of [2n]. Similar results have been found for
set partitions, linked partitions and permutations (see e.g. [1, 2, 3, 7, 8, 10]).

More recently Kasraoui [6] generalized these results to 01-fillings of moon polyominoes, which is
a set of connected square cells in Z2 that are convex and intersection-free. In the language of fillings
of polyominoes, crossings and nestings of graphs correspond to northeast and southeast chains of
length 2. Let ne(M) (resp. se(M)) be the number of northeast (resp. southeast) chains of length 2
in a filling M . Kasraoui showed that the joint statistic (ne, se) is symmetric over 01-fillings of moon
polyominoes with at most one non-zero entry per column. He further demonstrated that this joint
distribution is invariant under permutations of the rows of the underlying polyomino as long as
the permuted polyomino remains a moon polyomino. Phillipson, Yan and Yeh [9] extended these
results to layer polyominoes, which are obtained from moon polyominoes by arbitrary permutations
of the rows. It follows from [9] that when restricted to 01-fillings of layer polyominoes with at most
one non-zero entry per column, the number of fillings with no northeast chains equals the number
of fillings with no southeast chains.

It is known that even in Ferrers diagrams, the number of northeast and southeast chains of
length 2 are not equidistributed over arbitrary 01-fillings, see for example, [6, Section 6]. On the
other hand, there is a general result on fillings avoiding chains of length k. Considering fillings of a
moon polyomino with given row sums but no restriction on column sums, Rubey [12] showed that
the number of fillings with no northeast chains of length k is the same as those with no southeast
chains of length k, for all positive integer k, and for both N-fillings and 01-fillings. Rubey’s results
are proved by an adaption of jeu de taquin and promotion. A bijective proof for 01-fillings is given
by Poznanovic and Yan [11] by introducing the notion of almost-moon polyominoes. In addition,
for N-fillings on Ferrers diagrams with given row and column sums, a bijective proof is given by de
Mier [4]. All the proofs for the general case are quite technical.

In this paper we present simple bijective proofs which show the equality between the numbers
of fillings avoiding northeast chains and those avoiding southeast chains. We consider both N- and
01-fillings over the more general family of polyominoes—layer polyominoes. For a layer polyomino,
there are two ways to extend the notion of 2-chains, the strong ones and the regular ones, whose
definitions, as well as other necessary notations, are given in Section 2. Section 3 has a bijection
between fillings of two layer polyominoes obtained from each other by swapping two adjacent rows.
This bijection implies the equation for regular chains. Furthermore, we characterize N-fillings with
given row and column sums and no ne-chains. (See Section 2 for definitions.) Section 4 deals with
strong chains. Using a framework with different operations, we prove three distinct results on the
number of fillings with no strong chains, as well as on the distribution of strong chains.
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2 Preliminaries

2.1 Polyominoes

A polyomino is a finite subset of Z2, where we regard an element of Z2 as a cell. A column of the
polyomino is a set of cells along a vertical line, a row is the set of cells along a horizontal line. As
convention we number rows top to bottom and columns left to right.

The polyomino is row (column) convex if the intersection with any horizontal (vertical) line is
convex. It is intersection–free if for any two rows the column coordinates of one are contained in
the column coordinates of the other. For example, the polyomino in Figure 2 is row–convex but
neither column–convex nor intersection–free.

1

2

3

1 2 3 4 5

Figure 2: A row-convex polyomino, which is neither intersection–free nor column–convex.

Definition 2.1. A layer polyomino is a row–convex, intersection–free polyomino. A moon poly-
omino is a column–convex layer polyomino.

Figure 3 shows examples of both types of polyominoes.

Figure 3: A layer and a moon polyomino.

2.2 Fillings and Chains

An N-filling of a polyomino is an assignment of the non-negative integers to the cells of the poly-
omino. A 01-filling of a polyomino is an assignment of the numbers 0 and 1 to the cells of the
polyomino. In figures zero entries in the polyomino are left empty.

The row sums of a filling of a polyomino is a vector ~r = (r1, . . . , rn) ∈ Nn so that ri is the sum of
the entries in the ith row of the polyomino. Column sums are defined analogously and represented
by a vector ~c.

For a polyomino P with n rows and m columns, given vectors ~r ∈ Nn and ~c ∈ Nm , we define
FN(P, ~r,~c) (resp. F01(P, ~r,~c) ) to be the collection of N-fillings (resp. 01-fillings) of P with row
sums ~r and column sums ~c. In addition, we define F01(P, ~r) to be the collection of 01-fillings of P
with row sums ~r and unrestricted column sums.
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Definition 2.2. Let P be a filling of a polyomino P. Two non-zero entries at (r1, c1) and (r2, c2) in
P form a regular northeast chain, or ne–chain, if r2 < r1, c1 < c2, and the cells (r1, c2) and (r2, c1)
are also contained in P. Similarly a regular southeast chain, or se–chain, has non-zero entries at
(r1, c2) and (r2, c1) while cells (r1, c1) and (r2, c2) are contained in P.

Definition 2.3. A strong northeast chain, or ne�–chain, in a filling P of a polyomino P, is a
ne–chain so that the smallest rectangle containing the entries is contained in the polyomino. More
precisely, the non-zero entries (r1, c1) and (r2, c2) in P form a ne�–chain if r2 < r1, c1 < c2, and all
the cells in the set {(r, c) | r2 < r < r1 and c1 < c < c2} are contained in P. We similarly define
strong southeast chains, or se�–chains.

2

1

(a) Both a ne–chain
and a ne�–chain

2

1

(b) A ne–chain, but not
a ne�–chain

Figure 4: Chains in a layer polyomino.

Figure 4 gives examples of the previous definitions. Note that strong and regular chains coincide
on moon polyominoes. As we will see that regular chains are a more natural generalization from
chains of moon polyominoes as Kasraoui’s [6] result on permuting rows in moon polyominoes
extends to regular chains.

Definition 2.4. A filling of a polyomino is said to avoid a chain if there are no occurrences of that
chain in the polyomino. For a polyomino P and a collection of fillings of P, F(P), let

Av(ne,F(P)) = {P ∈ F(P) | P has no ne–chains}.

We define sets Av(se,F(P)), Av(ne�,F(P)), and Av(se�,F(P)) similarly. Also we define av(ne,F(P))
to be the cardinality of the set Av(ne,F(P)) and similarly av(se,F(P)), av(ne�,F(P)), and
av(se�,F(P)).

3 Regular Chains in Layer Polyominoes

In this section we prove several results about regular chains in fillings of layer polyominoes. For
both 01- and N- fillings we prove that an arbitrary permutation of the rows preserves the numbers
of fillings with either no ne–chains or no se–chains. Further, for N-fillings we give necessary and
sufficient conditions with which N–fillings exist with given row and column sums, and prove that
under those conditions, the filling with no ne-chains (reps, se-chains) is unique.

In [9], the authors showed in fillings of layer polyominoes with at most 1 non-zero entry per
column, the joint distribution (ne, se) is unaffected by an arbitrary permutation of rows. However, if
we consider 01-fillings with fixed row and column sums in N∗, then the symmetry of (ne, se) may not
hold. Moreover, for a layer polyomino L and σ ∈ Sn it is no longer true that av(ne,F01(L, ~r,~c)) =

4



av(ne,F01(σ(L), σ(~r),~c)). For example for row sums ~r = (1, 2) and column sums ~c = (1, 2), there
is only one possible filling of a 2 × 2 rectangle, Figure 5(a), and this filling has one ne–chain. On
the other hand, transposing the rows gives σ(~r) = (2, 1), but there is only one 01-filling with row
sums σ(~r) and column sums ~c, which is given in Figure 5(b) and has no ne–chains.

1

1 1

(a) Row sums (1, 2)

1 1

1

(b) Row sums (2, 1)

Figure 5: Fillings with fixed row sums and column sums

Our first result states that the number of fillings with no ne–chain is preserved under permuta-
tions of rows if we only fix row sums, but have no restrictions on column sums.

Theorem 3.1. Let L be a layer polyomino with rows R1, . . . , Rn from top to bottom and ~r ∈ Nn.
For a permutation σ ∈ Sn, let L′ = σ(L) be the polyomino with rows Rσ(1), . . . , Rσ(n) and ~r′ =
σ(~r) = (rσ(1), . . . , rσ(n)). Let F be either N- or 01-fillings. Then

av(ne,F(L, ~r)) = av(ne,F(L′, ~r′)),

and
av(se,F(L, ~r)) = av(se,F(L′, ~r′)).

Proof. Any permutation can be obtained using a transposition of two adjacent rows, so we will
show that permuting two consecutive rows preserves the number of fillings with no ne–chains. The
case for se-chains is similar.

Let Ri and Ri+1 be two consecutive rows, L ∈ Av(ne,F(L, ~r)) and let R be the largest rectangle
contained in Ri ∪Ri+1. Construct L′ from L by

1. exchanging Ri and Ri+1 with their fillings,

2. fixing the empty columns of R, and

3. reversing the filling of each row of R′, where R′ is the rectangle consisting of all the nonempty
columns of R.

Then L′ ∈ Av(ne,F(L′, ~r′)) as the above operations preserve fillings on L−R, the empty columns
of R, and changes the row sum from ~r to σ(~r). This guarantees that no new ne–chains are created
involving cells outside of R. Additionally R will still not have ne–chains as flipping both the rows
and columns preserves this property. Figure 6 shows an example of this process, the cells are labeled
for clarity and the rectangle R is boxed. In this example we flip rows 2 and 3, and shade the cells
that we do not reverse.

Corollary 3.2. For a layer polyomino L with n rows and ~r ∈ Nn, let F be either 01- or N- fillings.
Then

av(ne,F(L, ~r)) = av(se,F(L, ~r)).
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Figure 6: An example of the process in Theorem 3.1.

Proof. Let L̃ be the polyomino obtained by reversing the rows of L, that is, L̃ = σ(L) where
σ = n · · · 21. For L ∈ F(L, ~r), let L̃ be obtained from L by reversing the rows of L together with
their fillings. Then L̃ ∈ F(L̃, σ(~r)). It is clear that L has no se-chains if and only if L̃ has no
ne-chains. Hence

av(se,F(L, ~r)) = av(ne,F(L̃, σ(~r))) = av(ne,F(L, ~r)).
The last equation follows from Theorem 3.1.

Next we give necessary and sufficient conditions when N–fillings of layer polyominoes exist with
given row and column sums. We also show that when such fillings do exist there is a unique one
with no ne–chains. First we show the result for rectangles, then extend to Ferrers diagrams and
finally to layer polyominoes by transforming N-fillings of a layer polyomino to those of a Ferrers
diagram with permutations of the rows and columns.

Lemma 3.3. Let R be an n ×m rectangle, ~r ∈ Nn and ~c ∈ Nm. Then N-fillings of R with row
sums ~r and column sums ~c exist if and only if

n∑
i=1

ri =
m∑
j=1

cj . (1)

Further, if ~r and ~c satisfy (1) then there is a unique filling of R with no ne–chains (reps.
se–chains).

Proof. The necessity of (1) is clear. To prove sufficiency we use a greedy algorithm, implemented
inductively. Let R, ~r and ~c be as in the statement and satisfy (1). If n = 1 we can fill cell (1, i)
with ci; similarly if m = 1 we fill cell (i, 1) with ri.

In general, we have three cases to consider: r1 = c1, r1 < c1, and r1 > c1; however, the last
two cases are similar. If r1 = c1, fill cell (1, 1) with r1, cells (1, i), (j, 1) with 0 for 1 < i ≤ m and
1 < j ≤ n, and reduce the problem to an (n− 1)× (m− 1) rectangle.

Assume r1 < c1. Then we fill cell (1, 1) with r1, fill cell (1, i) with 0 for 1 < i ≤ m, and
reduce the problem to an (n − 1) × m rectangle with row sums (r2, . . . , rn) and column sums
(c1 − r1, c2, . . . , cm). Continuing this process inductively produces a filling R with no ne–chains.

If fij is the entry in the (i, j) cell of the above constructed R, then each non-zero fij has the

property that either
∑i

`=1 f`j = cj or
∑j

`=1 fi` = ri.
Now we show that the filling R is the unique one with no ne-chains. Let R′ be a different filling

in FN(R, ~r,~c) with entries f ′ij in cell (i, j). Find a cell i, j with minimal indices such that f ′ij 6= fij .
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Then we must have 0 ≤ f ′ij < fij and hence

i∑
`=1

f ′`j <cj and

j∑
`=1

f ′i` <ri. (2)

Therefore there exist non-zero entries fkj 6= 0 with i+ 1 ≤ k ≤ n and fi` 6= 0 with j + 1 ≤ ` ≤ m,
which means the entries fkj and fil form a ne–chain in R′.

Now we extend this result to Ferrers diagrams. The conditions for a Ferrers diagram are slightly
more complex than for rectangles.

Theorem 3.4. Given a Ferrers diagram T with n rows and m columns, vectors ~r ∈ Nn and ~c ∈ Nm,
an N-filling of T , with row sums ~r and column sums ~c, exists if and only if the following conditions
hold:

n∑
i=1

ri =
m∑
j=1

cj , (3)

∑
i∈S

ri ≤
∑

j:∃i∈S((i,j)∈T )
cj , ∀S ⊆ [n], (4)

Further, if ~r and ~c satisfy (3) and (4) then the filling of T with no ne–chains (se–chains) is unique.

Proof. Partition the Ferrers diagram into a collection of rectangles R1,R2, . . . ,Rk, where Ri is the
union of the ith shortest rows, see Figure 7(a). Starting with the rectangle R1, fill R1 using the
greedy algorithm in the preceding proof from lower right to upper left, until all the cells of R1 are
filled. By condition (4) this is possible, and in the resulting filling all the rows of R1 are saturated,
i.e., the row sum of each row in R1 equals the desired row sum given by ~r, and the column sums
of R1 are no more than ~c.

Subtract the column sums in R1 from the corresponding entries of ~c to get ~c′. One checks
that the conditions (3) and (4) still hold for the Ferrers diagram T \ R1 with the row sums ~r′ and
column sums ~c′, where ~r′ is the restriction of ~r to the rows in T \R1. Then we continue inductively
until we reach the last rectangle Rk, which is filled and the row sums and columns sums are both
saturate, by Lemma 3.3. Figure 7(b) shows an example with row sums (2, 6, 3, 4, 1, 2) and column
sums (6, 5, 1, 3, 1, 2).

This filling has no ne–chains as if a column is saturated in Ri, that column will remain empty
in each subsequent Rj , j > i. Additionally, the filling is unique by the same argument as in the
proof of Lemma 3.3.

Note that if the Ferrers diagram is aligned at the top and the left as in English notation, (e.g,
Figure 7(b)), then condition (4) is equivalent to the following set of inequalities: for each i such
that the row Ri of T is the top row of some rectangle Rj ,

n∑
j=i

ri ≤
∑

j:(i,j)∈F
cj .
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(a) A description of how to fill
a Ferrer’s shape with no ne-
chains
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(b) An example with no ne–
chains

Figure 7

In addition, conditions (3) and (4) imply that

∀T ⊆ [m],
∑
j∈T

cj ≤
∑

i:∃j∈T ((i,j)∈F)
ri (5)

Theorem 3.5. Let L be a layer polyomino with rows R1, . . . , Rn from top to bottom, m columns,
~r ∈ Nn, and ~c ∈ Nm. Let L′ = σ(L) be the polyomino with rows Rσ(1), . . . , Rσ(n) and ~r′ = σ(~r) =
(rσ(1), . . . , rσ(n)). Then

av(ne,FN(L, ~r,~c)) = av(ne,FN(L′, ~r′,~c))
and

av(se,FN(L, ~r,~c)) = av(se,FN(L′, ~r′,~c)).

Proof. Proceeding in a manner similar to Theorem 3.1, we will show that we can permute any two
adjacent rows while preserving the number of fillings with no ne–chains.

Let Ri and Ri+1 be two consecutive rows, L ∈ Av(ne,FN(L, ~r,~c)) and R be the largest rectangle
contained in Ri ∪ Ri+1. Let σ = (i, i + 1) be a transposition. Define L′ to be a filling of σ(L) by
the following operations.

1. Exchange Ri and Ri+1 with their fillings.

2. Refill the rectangle R with the unique filling with no ne–chains (Lemma 3.3), preserving the
row and column sums of R.

We claim that the filling L′ has no ne–chains. It is clear that any entry outside R does not change,
and R contains no ne–chains. Let α be a non-zero entry in column cl outside R. Assume α forms
a ne–chain with entry β 6= 0 in R.

• If cl ∩ R 6= ∅, then in L there exists a nonzero entry in the same column as β’s. This entry
forms a ne-chain with α in L.

• If cl ∩ R = ∅, then β is in the longer row of Ri, Ri+1. Hence in the filling L there exists a
nonzero entry in the longer row of R, which forms a ne-chain with α.
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In either case we have a ne-chain in L, which is a contradiction.

Corollary 3.6. Given a layer polyomino L with n rows and m columns, vectors ~r ∈ Nn and
~c ∈ Nm, FN(L, ~r,~c) is nonempty if and only if conditions (3) and (4) hold. Further, if ~r and ~c
satisfy (3) and (4) then the filling of L with no ne–chains (se–chains) is unique.

Proof. Given L, rearrange the rows of L from large to small to get a polyomino L1. Then L1 can be
viewed as a layer polyomino rotated 90◦. Apply column permutations to transform L1 to a Ferrers
diagram L2. By Theorem 3.5,

av(ne,FN(L, ~r,~c)) = av(ne,FN(L2, ~r′, ~c′)), (6)

where ~r′ and ~c′ are obtained from ~r,~c in the same way when one permutes the rows and columns.
From Theorem 3.4 the formula in (6) is non-zero if and only if conditions (3) and (4) hold, in which
case the filling is unique.

4 Strong Chains in Layer Polyominoes

In this section we study strong chains as defined in Definition 2.3. We begin by introducing a
framework for a bijection on fillings of layer polyominoes. We’ll use this framework to prove three
distinct results. The first is the equality of numbers of 01-fillings with no strong northeast chains
and those with no strong southeast chains. The second shows the symmetry of (ne�, se�) when
the column sum is restricted to {0, 1}. The final result extends the first to N-fillings, with the
additional condition that both row and column sums are fixed.

For a polyomino P, let F(P) be either N- or 01-fillings of P. Let f be an invertible operation
so that for any n × m rectangle R, f induces a bijection f : F(R) → F(R). Let L be a layer
polyomino with n rows, define ρf : F(L) → F(L) recursively as follows. If L is a rectangle then
ρf = f , otherwise for L ∈ F(L),

1. Let R1, . . . ,Rk be the maximal blocks of the consecutive shortest rows, B0, . . . ,Bk be the
layer polyominoes between each Ri, and L1 be the maximal rectangle in L containing each
Ri. See Figure 8 for an illustration of these sets. Let L1 be the filling of L restricted to L1.

B0

B1

Bk−1

Bk

R1

Rk

L1

Figure 8: An example of the sets from step 1 of ρf .
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2. Apply f to L1.

3. For each i, apply f−1 to the current filling in Bi ∩ L1.

4. For each i, apply ρf to the current filling in Bi.
The resulting filling of L is ρf (L).

Proposition 4.1. The map ρf is a well-defined bijection. Additionally, if f preserves row (column)
sums, so does ρf .

Proof. By construction ρf does not modify the shape of L, thus ρf is well defined. The map ρf
can be inverted by performing each step in reverse, thus ρf is a bijection.

If f preserves row (column) sums, then in each step of ρf , the row (column) sums are preserved.
Therefore, ρf preserves row (column) sums.

Example 4.2. For an n × m rectangle R, define the map f1 : F01(R) → F01(R) so that for
R ∈ F01(R), f1(R) leaves empty columns unchanged and reverses each row of R in the nonempty
columns. Figure 9 gives an example of f1. Clearly f1 preserves row sums.

f1


1

1
2 3 4

1
5

1
6 7 8

1
9 10

1
11

1
12 13

1
14 15

1

 =

1

1
2 34

1
5

1
67 8

1
910

1
11

1
12 13

1
1415

1

Figure 9: An example of the map f1.

Proposition 4.3. The map ρf1 is a bijection from the set F01(L, ~r) to itself satisfying (ρf1)−1 =
ρf−1

1
= ρf1.

Proof. By definition f1 = f−11 on 01-fillings of any rectangle. Let L be a layer polyomino with n
rows, ~r ∈ Nn, and L ∈ F01(L, ~r), we need to show ρf1(ρf1(L)) = L. It is clearly true when L is a
rectangle.

Let Ri, Bj and L1 be as in the definition of ρf1 . Ignoring empty columns of L1, the map ρf1
reverses fillings in each Ri, so applying ρf1 twice leaves fillings in each Ri unaffected.

Each Bj is a layer polyomino. Applying f1 to L1 and then to Bj ∩L1 only changes the location
of the empty columns of L in Bj , but does not affect the fillings in the nonempty columns of Bj .
Applying ρf1 on Bj will not touch the empty columns. Now when we apply the ρf1 to the whole
polyomino L again, steps 2 and 3 will move the empty columns in Bj back to their original places,
while step 4 will map the current filling on Bj back to L on Bj , by the inductive hypothesis.

For a 01-filling L of a layer polyomino L, Figure 10 shows one iteration of the map ρf1 and the
final result. The cells in the polyomino are labeled so one can observe where each cell ends up.

Theorem 4.4. For a layer polyomino L with n rows and ~r ∈ Nn,

av(ne�,F01(L, ~r)) = av(se�,F01(L, ~r)).
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(b) First iteration of ρf1
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(c) Result of ρf1(L)

Figure 10: A demonstration of the map ρf1 .

Proof. Let f1 be as defined in Example 4.2. For an n×m rectangle R and ~r ∈ Nn the restriction
f1 : Av(ne�,F01(R, ~r))→ Av(se�,F01(R, ~r)) is clearly well defined. For a layer polyomino L with
n rows and ~r ∈ Nn, we show that the restriction ρf1 : Av(ne�,F01(L, ~r)) → Av(se�,F01(L, ~r)) is
also well defined. That is, if L has no ne�-chains, then ρf1 has no se�-chains.

We proceed by induction on the number of rows of L. If L has only one row or is a rectangle,
then the claim is true. In general, let L ∈ Av(ne�,F01(L, ~r)) and Ri, Bj , L1 and L1 be as in the
definition of ρf1 . Within L1, there are no ne�-chains so that f1(L1) has no se�-chains. For any
nonempty cell α in some Ri the cells to the upper left and lower right of α are empty in f1(L1).
Since f1 fixes empty columns, the empty cells will remain empty in the final filling ρf1(L). Thus α
forms no se�-chains in ρf1(L).

For cells in Bj for some j, as observed before, applying f1 to L1 and then to L1 ∩ Bj will not
change the filling L∩Bj in the nonempty columns of Bj . Hence there are no ne�-chains after steps
2 and 3. By induction, applying ρf1 to Bj yields a filling with no se�-chains.

Therefore, ρf1(Av(ne�,F01(L, ~r))) ⊆ Av(se�,F01(L, ~r)), and hence

av(ne�,F01(L, ~r)) ≤ av(se�,F01(L, ~r)).
The reverse direction is proved similarly. In conclusion, ρf1 is a bijection from Av(ne�,F01(L, ~r)
to Av(se�,F01(L, ~r)).

If one fixes both row sum ~r and column sum ~c, then av(ne�,F01(L, ~r,~c)) may not equal
av(se�,F01(L, ~r,~c)), as shown in the polyomino in Figure 11 with ~r = (1, 1, 2) and ~c = (1, 2, 1). It
is easy to check that av(ne�,F01(L, ~r,~c)) = 0 and av(se�,F01(L, ~r,~c)) = 1.

1 1

1

1

1 1

1

1

Figure 11: Fillings with ~r = (1, 1, 2) and ~c = (1, 2, 1).

The following theorem was first proved by Phillipson, Yan and Yeh [9] by induction on the
generating functions. Now we give a bijective proof by using the map ρf1 . In the statement of
Theorem 4.5 statistics ne� and se� represent the numbers of strong ne- and se-chains.
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Theorem 4.5. For a layer polyomino L with n rows and m columns, ~r ∈ Nn and ~c ∈ {0, 1}m, the
map ρf1 restricted to F01(L, ~r,~c) is a bijection that maps F01(L, ~r,~c) to itself and carries the statis-
tics (ne�, se�) to (se�,ne�), where f1 is defined as in Example 4.2. Consequently, the distribution
of the joint statistic (ne�, se�) is symmetric in F01(L, ~r,~c).

Proof. For an n ×m rectangle R, ~r ∈ Nn, and ~c ∈ {0, 1}m, the restriction of f1 to F01(R, ~r,~c) is
well defined as f1 fixes empty columns, and hence preserves the column sums when ~c ∈ {0, 1}m.
Also, f1 exchanges ne� and se�-chains in R.

We will show that ρf1 exchanges the numbers of ne� and se�-chains for fillings in F01(L, ~r,~c).
Again we proceed by induction. The claim is obvious if L has only one row or is a rectangle.
Assume it is true for all layer polyominoes with less than n rows. For L ∈ F01(L, ~r,~c) set Ri, Bj
and L1, L1 to be as in the definition of ρf1 .

First we show that each ne�-chain (resp, se�–chain) of L1 not completely contained in some Bi
has a corresponding se�-chain (resp, ne�–chain) in ρf1(L). Explicitly, let entries at cells α, β be
such a ne�-chain, where the columns of α, β are the kth1 and kth2 nonempty columns of L1, counting
from left, then Step 2 of ρf1 maps them to a se�-chain with 1-cells γ and δ, in the kth1 and kth2
nonempty columns of f1(L1), counting from right. We have three cases.

1. Both α and β are contained in (possibly different) Ri’s.

2. One of α, β is contained in Ri, and the other is in Bj .

3. The cell α is in Bi and β in Bj , with i 6= j.

For Case 1, γ and δ are in the same Ri as α and β, respectively, and are not changed further
by steps 3,4 of ρf1 . Thus (γ, δ) remains a se�-chain.

For Case 2, without loss of generality, assume α ∈ Ri and β ∈ Bj . Then γ ∈ Ri and will not
be changed further. The cell δ may be changed in Steps 3 and 4 of ρf1 . However, the operations
on both steps 3 and 4 preserve the column sum, hence in the final filling there is a unique 1-cell in
Bj that lies in the same column as δ. It forms a se�-chain with γ.

For Case 3, we have γ ∈ Bi and δ ∈ Bj . By the same argument as in Case 2, after steps 3 and
4 there is a unique 1-cell in Bi that lies in the same column as γ, and a unique 1-cell in Bj that lies
in the same column as δ. These two 1-cells form a se�-chain.

Applying the same argument in reverse, we conclude that the ne�-chains (se�-chains) of L that
are not completely in some Bi are in one-to-one correspondence with the se�-chains (ne�-chains)
of ρf1(L) not completely in some Bi.

Finally we look at the strong chains inside Bi for some i. As observed before, steps 2 and 3 of ρf1
do not change the filling on the nonempty columns of Bi. Hence after these two steps, the number
of strong chains in each Bi doesn’t change. When one applies step 4, by inductive hypothesis, ρf1
on Bi is a bijection that maps the statistics (ne�, se�) of fillings of Bi to the statistics (se�, ne�) on
Bi.

Theorem 4.5 follows from combining all the above cases.

The final result is an analog of Theorem 4.4 on N-fillings. We show that over N–fillings of layer
polyominoes with fixed row and column sums, the number of fillings with no ne�–chains is the
same as that with no se�–chains.
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Theorem 4.6. For a layer polyomino L with n rows and m columns, ~r ∈ Nn, and ~c ∈ Nm,

av(ne�,FN(L, ~r,~c)) = av(se�,FN(L, ~r,~c)).

Proof. For an n×m rectangle R, ~r ∈ Nn and ~c ∈ Nm, define the map

f2 : Av(ne,FN(R,~r,~c))→ Av(se,FN(R,~r,~c))

that maps the unique filling of R with no ne-chains to the unique filling with no se-chains, as in
Lemma 3.3. For a layer polyomino L with row sums ~r and column sums ~c, we show the restriction
ρf2 : Av(ne�,FN(L, ~r,~c))→ Av(se�,FN(L, ~r,~c)) is also well defined.

The proof is again by induction and analogous to that of Theorem 4.4. Let L ∈ Av(ne�,FN(L, ~r,~c))
and Ri, Bj and L1, L1 be as in the definition of ρf2 . Step 2 of ρf2 maps the filling L1 to one with
no se�-chains. For any nonempty cell α in some Ri, the columns to the upper right and lower left
are empty. Since f2 preserves column sums, these areas will remain empty in ρf2(L).

For each Bi, we claim that after steps 2 and 3 of ρf2 , the filling on Bi contains no ne�-chains.
To see this, note that by definition of f2, there is no ne�-chain inside L1 ∩ Bi. Clearly there is no
ne�-chains containing two cells in Bi \ L1. If there exists a ne�-chain on Bi containing cells α, β
with α 6∈ L1 and β ∈ L1, since both operations in steps 2 and 3 preserve the row sums of L1 ∩ Bi,
there must be a nonempty cell in L that lies in the same row as β in L1 ∩ Bi. Such a cell and α
form a ne�-chain in L, a contradiction.

Thus ρf2 is well defined and is an injection from Av(ne�,FN(L, ~r,~c)) to Av(se�,FN(L, ~r,~c)).
The reverse inclusion is similarly proved, which implies Theorem 4.6.

Remarks

1. Unlike 01-fillings, for general L, Av(ne�,FN(L, ~r,~c)) contains more than one element.

2. In general it’s not true that for a given f , (ρf )−1 = ρf−1 . However, this is the case for the f1
and f2 we used. It’s unclear what conditions on f would guarantee this, but it’s an interesting
occurrence.

3. It is natural to ask if we can flip adjacent rows while preserving the number of ne�–chains in
layer polyominoes. The answer is no. Consider the polyominoes in Figure 12 with row and
column sums (1, 1, 1). The left polyomino has 2 fillings with no ne�–chains whereas the right

(a) (b)

Figure 12: Layer polyominoes with one row flipped.

has only 1. In fact, this example shows that the joint distribution of (ne�, se�) is dependent
on the order of the rows in layer polyominoes.
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