
PARKING FUNCTIONS ON DIRECTED GRAPHS AND SOME
DIRECTED TREES

WESTIN KING AND CATHERINE YAN

Abstract. Classical parking functions can be defined in terms of drivers with
preferred parking spaces searching a linear parking lot for an open parking spot.
We may consider this linear parking lot as a collection of n vertices (parking spots)
arranged in a directed path. We generalize this notion to allow for more com-
plicated “parking lots” and define parking functions on arbitrary directed graphs.
We then consider a relationship proved by Lackner and Panholzer between parking
functions on trees and “mapping digraphs” and we show that a similar relationship
holds when edge orientations are reversed.

1. Introduction

Parking functions were first defined by Konheim and Weiss [7] during their study
of the linear probing solution to collisions on hash tables. The authors described a
sequence of n drivers attempting to park randomly along a one-way street. If the
spot a driver attempts to park in is occupied, she drives to the next available spot
and parks. As we are interested in the number of ways such a procedure results in
all n drivers parking, we may consider the initial checked spot as a preferred parking
place, rather than a randomly chosen spot. Let s ∈ [n]n and consider a directed path
with vertex set [n] and edge orientations i→ i+ 1. One-by-one the drivers attempt
to park according to the following process:

1) Driver i begins at vertex si.
2) If the current vertex is unoccupied, the driver parks there. If it is occupied,

the driver drives to the next vertex, following edge orientation, and repeats
Step 2.

3) If she parks, the process continues with driver i + 1 attempting to park at
vertex si+1. Otherwise, the process terminates.

A sequence s such that all n drivers successfully park is called a classical parking
function of length n. With some consideration, one can see that as long as there is
no i such that too many drivers prefer a vertex from {i, i+ 1, i+ 2, . . . , n}, then all
drivers will park. This is formulated in an alternative definition of parking functions:
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Definition 1 (Parking Functions). A classical parking function of length n is a
sequence s ∈ [n]n such that for all i ∈ [n],

|{j : sj ≥ i}| ≤ n− i+ 1.

Additionally, we may consider the case when m ≤ n drivers attempt to park. We
call these (n,m)-parking functions and the definition is the same as in the classical
case for s ∈ [n]m.

It is well-known that there are (n+1)n−1 parking functions of length n, while there
are (n−m + 1)(n + 1)m−1 classical (n,m)-parking functions [10]. Classical parking
functions have appeared throughout combinatorics as chains in the noncrossing lat-
tice, in enumeration of hyperplane arrangements, in noncrossing partitions, and in
tree enumeration (see [4, 12, 13] as well as references herein).

Parking functions have seen many generalizations: G-parking functions [11], u-
parking functions [8], parking sequences [3], rational parking functions [1], and those
defined on tree-shaped parking lots [2, 9]. In this paper, we extend the “drivers
searching for a parking spot” analogy from the trees in [9] to general digraphs and
give a description that generalizes the set definition of the classical parking functions
in Section 2. In Sections 3 and 4, we closely follow the results of Lackner and
Panholzer [9] and show that many of their theorems have analogues when the edge
orientations of the tree and mapping digraphs are reversed. Finally, we conclude with
some new research directions and propose extensions to the concepts of increasing
and prime parking functions.

This paper is, in part, an expansion of Sections 2 and 4 of [5].

2. Parking Functions on Digraphs

One interpretation of classical parking functions is of drivers attempting to park
in a preferred spot along a street and parking in the first available spot they find
afterwards. We may extend this notion to general digraphs by allowing driver to
choose which out-edge to travel along. More formally,

Definition 2 (Parking Process). Pick n,m such that 0 ≤ m ≤ n. Let s ∈ [n]m and
D be a digraph with vertex set [n]. One-by-one m drivers attempt to park according
to the following process:

1) Driver i begins at vertex si.
2) If the current vertex is unoccupied, the driver parks there. If it is occupied,

the driver chooses a vertex in the neighborhood of the current one and drives
there.

3) The driver repeats step 2) until she either parks, and the next driver enters,
or is unable to find an available parking space, and the process terminates.
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Figure 1. A digraph with parking function s = (1, 1, 3, 2, 1).

When the maximum outdegree of a vertex in D is 1, the parking process is deter-
ministic. In the general case, however, drivers must “choose” which edge to take in
search of a parking spot. Our interest lies in the possibility of all drivers parking, so
we give the following definition as our parking function generalization:

Definition 3. For a sequence s ∈ [n]m and digraph D with vertex set [n], we say
that s is a parking function on D if it is possible for all of the m drivers to park
following the parking process. If s is a parking function on D, we call the pair (D, s)
an (n,m)-parking function.

Figure 1 gives an example of an (n, n)-parking function. Drivers 2 and 5 are the
only drivers who may make a choice of which edge to travel along and all drivers can
park as long as at least one of those drivers uses the edge (1, 4) during parking.

Definition 3 is clearly a generalization of the classical parking function case, but it
is sometimes difficult to apply practically, so we now consider an equivalent definition
that is more useful. For i, j ∈ [n], we say i �D j if and only if there exists a directed
path from i to j in D. By convention, we will say that i �D i, making �D a
quasiorder on the vertices of D. If we wish to consider when i 6= j, we say i ≺D j.
For vertex i, define the set of vertices reachable from i as

RD(i) = {j ∈ [n] : i �D j}.
Then for any A ⊆ [n] define the reachable set of A as

RD(A) =
⋃
i∈A

RD(i).

Theorem 1. Let D be a digraph with vertex set [n] and s ∈ [n]m. Let C =
{C1, . . . Cm} be the set of cars, indexed such that Ci prefers spot si. Then s is a
parking function on D if and only if for all A ⊆ C we have
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|A| ≤ |
⋃

si:Ci∈A

RD(si)|.

Proof. If we let B be the bipartite graph with vertex set C∪[n] where {Ci, j} ∈ E(B)
if and only if si �D j, then by Hall’s Theorem, we are claiming that s is a parking
function if and only if there exists a matching on B saturating C. If s is a parking
function, then park the drivers in some manner. Suppose Ci is parked on vi for each
i. Then, since we must have si �D vi, the edge {Ci, vi} is in B. These edges define
a matching that saturates C.

The other direction is not as clear because the parking process requires drivers
to park in the first empty spot they find. We use a matching M = {{Ci, vi}}mi=1 to
determine a (not necessarily unique) way of parking on D.

The iterative process is the same for each Ci, starting at i = 1. At step i, pick any
x with si �D x �D vi such that there exists a walk si = y0 → y1 → . . . → yk → x
such that the yj’s are spots occupied by cars in previous iterations. If no such y0
exists, then x = si. Park Ci in x and delete {Ci, vi} from M . If {Cj, x} ∈ M for
some j > i, then replace this edge with {Cj, vi}. Now repeat with Ci+1.

In each step, the vertex x is the first unoccupied vertex along some walk between
si and the vertex with which Ci is matched. At least one such x exists because, at
the start of step i, Ci is matched with a vertex which is not occupied by any car. At
the end of step i, we know the updated M is a matching saturating {C`}`>i because
we know sj �D vj = x from the edge {Cj, vj} and x �D vi by our choice of x. Thus,
sj �D vi, so the edge {Cj, vi} is in B. �

Rather than considering subsets of the drivers, we may reformulate the statement
in terms of the number of drivers wanting to park in various “regions” of the graph
(c.f. Definition 1).

Corollary 1. Let D be a digraph with vertex set [n] and s ∈ [n]m. Then s is a
parking function on D if and only if for all B ⊆ [n] we have

|{Ci : si ∈ RD(B)}| ≤ |RD(B)|.

Proof. Let s be a parking function on D and B ⊆ [n]. Let A = {Ci : si ∈ RD(B)}.
Because s is a parking function, we know |A| ≤ |

⋃
si:Ci∈A

RD(si)|, but also by the

definition of RD(B), we have
⋃

si:Ci∈A
RD(si) ⊆ RD(B).
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On the other hand, suppose for all B ⊆ [n] we have |{Ci : si ∈ RD(B)}| ≤ |RD(B)|,
let A ⊆ C, and B =

⋃
Ci∈A
{si}. By definition, RD(B) =

⋃
Ci∈A

RD(si), and so

|A| ≤ |{Ci : si ∈ RD(B)}| ≤ |RD(B)| = |
⋃
Ci∈A

RD(si)|,

thus s is a parking function. �

From this set definition, it is immediately obvious that the ordering of s does not
matter.

Corollary 2. Let (D, s) be a parking function and σ ∈ Sm. Then the permuted
sequence sσ = (sσ(1), sσ(2), . . . , sσ(m)) is also a parking function on D.

Remark 1. The number of distinct RD(B) is the same as the number of filters of
the quasiorder �D, which is, in general, much less than 2n.

In the case of a classical parking function s, for any B ⊆ [n] with smallest element
b, we have that |RPn(B)| = |RPn(b)| = n + 1 − b. Thus, for i ∈ [n], |{j : sj ≥ i}| ≤
n + 1 − i, as in Definition 1. In addition, Corollary 1 generalizes the description of
parking functions given in [9], which we now consider as we turn our attention to
rooted trees with edges oriented away from the root.

3. Parking Functions on Source Trees

Lackner and Panholzer [9] and Butler, Graham, and Yan [2] independently gener-
alized the “drivers searching for a parking space” interpretations of parking functions
to rooted trees with edges oriented towards a root. In this section, we follow the enu-
merative discussion from [9] and show that several of their theorems have analogous
results when edge orientations are reversed.

If T is a rooted tree with vertex set [n] and edges oriented towards the root, we let

T̃ be the tree obtained by reversing the orientation of all the edges. In our pictures,
the root will be the top-most vertex. We call these sink and source trees, matching
whether the root is a sink or source vertex. Similarly, if Mf is the digraph obtained
from f : [n] → [n] by letting V (Mf ) = [n] with edge set E = {(i, f(i))}ni=1, we

let M̃f be the digraph obtained from Mf by reversing edge orientations. That is,

E(M̃f ) = {(f(i), i)}ni=1. We will call these mapping and inverse mapping digraphs,
respectively. We note that digraphs in each of thse familes have a single cycle on
each connected component Define the sets

Tn = {T : |V (T )| = n and T is a rooted sink tree},
Mn = {M : M is the mapping digraph of some f : [n]→ [n]}.
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We similarly define T̃n and M̃n for the source trees and inverse mapping digraphs.
Figure 2 gives an example of a source tree and an inverse mapping digraph along

with an s ∈ [7]7 that is a parking function on both.

3

6 1

2 7 4

5

s = (2, 3, 4, 1, 3, 5, 1)

3

6 1

2 7 45

Figure 2. A source tree and inverse mapping digraph with a common
parking function.

For source trees, because the indegree of a node is at most 1, for two distinct ver-
tices, u and v, the sets RT̃ (u) and RT̃ (v) are either disjoint or one contains the other.
Thus, the 2n inequalities in Corollary 1 reduce to only n independent inequalities.

We briefly introduce some notation out of convenience. We call u the parent of v if
the two are adjacent and u lies on the unique path between the root and v. Here, we

do not consider edge orientation. Further, for a vertex u of T̃ , let T̃u be the subtree
induced by the set RT̃ (u). Thus, Corollary 1 can be restated as:

Corollary 3. Let T̃ be a source tree and s ∈ [n]m. Then s is an (n,m)-parking

function on T̃ if and only if for all u ∈ [n] we have

|{i : si ∈ T̃u}| ≤ |T̃u|.
Additionally, for digraph D with vertex set [n], let

P (D,m) = |{(D, s) : s ∈ [n]m is a parking function on D}|.

We first study the extremal values of P (T̃ ,m).

Proposition 1. Let T̃ be a source tree, u a non-root vertex, v the parent of u, and

w such that v �T̃ w and w /∈ T̃u. Let T̃ ′ be the tree obtained by removing the edge

(v, u) and adding the edge (w, u). Then P (T̃ ,m) ≤ P (T̃ ′,m).

Proof. To clarify which tree we are considering, we denote by x′ the vertex in T̃ ′ with

label x. Let (T̃ , s) be an (n,m)-parking function. By Corollary 1, we must check

|{i : si ∈ T̃ ′x′}| ≤ |T̃ ′x′| for all x ∈ V (T̃ ′). By the construction of T̃ ′, |{i : si ∈ T̃ ′y′}| =
|{i : si ∈ T̃y}| and |T̃ ′y′| = |T̃y| for all y′ not satisfying v′ ≺T̃ ′ y′ �T̃ ′ w′.
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Therefore, let y′ be a vertex satisfying v′ ≺T̃ ′ y′ �T̃ ′ w′. We thus have:

|{i : si ∈ T̃ ′y′}| = |{i : si ∈ T̃y}|+ |{i : si ∈ T̃u}|

≤ |T̃y|+ |T̃u|

= |T̃ ′y′ |.
�

As a result, we obtain an upper and lower bound on P (T̃ ,m).

Corollary 4. The number of (n,m)-parking functions is maximized when T̃ is a path

and minimized when T̃ is a star, meaning

m∑
i=0

(
m

i

)
(n− 1)m−i ≤ P (T̃ ,m) ≤ (n−m+ 1)(n+ 1)m−1.

Proof. For a path, the parking functions, up to vertex labeling, are classical parking
functions, and thus number (n−m+ 1)(n+ 1)m−1.

On a star, for 0 ≤ i ≤ m, when i drivers prefer the root, there are
(
n−1
m−i

)
ways to

choose the preferred non-root vertices,
(
m
i

)
ways to place the drivers preferring the

root in s, and (m− i)! ways to order the drivers preferring non-roots in s. �

In the case of sink trees, the maximum and minimum number of parking functions
also occur on paths and stars, respectively. From [9], we have

nm +

(
m

2

)
(n− 1)m−1 ≤ P (T,m) ≤ (n−m+ 1)(n+ 1)m−1.

If T is a star, it is not immediately clear for an arbitrary choice of (n,m) which of

P (T,m) and P (T̃ ,m) is larger. However, we can say after inspecting the formulae
that if m is 0 or 1 then the two are equal and if n ≥ 3 then P (T, 3) is larger. What
happens when 3 < m < n remains open, but we can determine which is larger when
m = n for all T .

Theorem 2. Let T ∈ Tn. Then
P (T, n) ≤ P (T̃ , n)

with equality if and only if T is a path.

Proof. Let (T, s) be a parking function on sink tree T . We give a process to determine
an involution τ ∈ Sn such that τ(s) = (τ(s1), τ(s2), . . . , τ(sn)) is a parking function

on the source tree T̃ . Park cars on T following the parking procedure, highlighting
an edge if it is used by a driver after failing to park at her preferred spot. Since T
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is a sink tree, each vertex has outdegree at most 1, so parking is deterministic. We
define τ by individually considering the components connected by highlighted edges.
So without loss of generality, we may assume that every edge in T is highlighted.

We define a collection of length ≥ 2 “paths” in T , one for each leaf, whose vertices
form a partition of the vertices of T . The purpose of these “paths” is to identify a
section of the tree where we can “flip” the edge orientations and driver preferences
and still guarantee each driver a spot to park.

Let {vi}, for 1 ≤ i ≤ k be the leaves of T indexed such that vi < vi+1. We
recursively define the sets Pi: the set Pi is the smallest set of vertices of the path
between vi and the root such that no vertices from Pj, j < i, are in Pi, there are |Pi|
drivers preferring Pi, and all vertices of Pi are connected to vi through vertices in
{Pj}ij=1. For example, on the left tree of Figure 3, we have sets P1 = {1, 2, 3, 5} and
P2 = {4, 6}. Two drivers prefer the leaf {1}, three drivers prefer the vertices {1, 2},
four drivers prefer {1, 2, 3} and {1, 2, 3, 5}, so the latter is P1. When determining P2,
we skip over vertices in previously-chosen paths, in this case the vertex labeled 5.

6

5

43

2

1

p = (1, 4, 4, 2, 1, 3)

−→

6

5

43

2

1

τ(p) = (5, 6, 6, 3, 5, 2)

Figure 3. Constructing a parking function on T̃ from one on T . τ = (15)(23)(46)

The collection {Pi}ki=1 must partition the vertices of T . Suppose it does not and
let v /∈ Pi for any i be such that v is the only vertex in Tv, the subtree rooted at
v, with this property. The vertex v is not a leaf of T , as all leaves are in the sets
{Pi}ki=1 by construction, and thus is the terminus of at least one edge, (u, v). Since
none of the “paths” corresponding to leaves of Tv contain v and because all cars can
park, all cars preferring spots w �T u can park without occupying v. This means
the edge (u, v) is not used by any driver after failing to park in her preferred spot,
which contradicts our assumption that this was true of all edges. Therefore, such a
v can not exist.

For each i, let ni = |Pi| and label the elements of Pi by wi,j such that wi,1 = vi �T
wi,2 �T . . . �T wi,ni

. Finally, we define τ(wi,j) = wi,ni+1−j. This reverses the driver
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preference along the “path” so that when the edge orientation is flipped for T̃ , the
drivers may park as they did on T .

We can recover the Pi from (T̃ , τ(s)) using the exact same method. Thus, we can
invert the process. On the right tree of Figure 3, zero drivers prefer {1}, one driver
prefers {1, 2}, two drivers prefer {1, 2, 3}, and four drivers {1, 2, 3, 5}, so this is P1.
For P2, no drivers prefer {4}, we skip over 5 as it is already in P1, and two drivers
prefer {4, 6}.

If T is not a directed path, then this process is not surjective because the parking

function in which all n drivers prefer the root of T̃ is not obtainable in this manner
as at least one driver prefers each leaf vertex. �

Define the following for n ≥ 1:

Fn,m =
∑
T∈Tn

P (T,m), and Mn,m =
∑

M∈Mn

P (M,m).

Similarly, define F̃n,m and M̃n,m for source trees and inverse mappings. Summing
over all T ∈ Tn gives us

Corollary 5. For n ≥ 1,

Fn,n ≤ F̃n,n,

with equality only when n ∈ {1, 2}.

As we previously mentioned, when m < n, the result of Theorem 2 does not
necessarily hold. For the tree in Figure 4, P (T, 2) = 15, as any sequence except

(4, 4) parks. However, P (T̃ , 2) = 14 as neither (1, 1) nor (2, 2) are parking functions.

4

3

1 2

Figure 4. A tree for which P (T, 2) > P (T̃ , 2).

Remark 2. The extremal values for P (M̃f ,m) are less interesting than the corre-

sponding values on trees. When M̃f is a cycle, P (M̃f ,m) is maximal (as all nm

sequences can park) and is minimal when f = id. Thus

m! ≤ P (M̃f ,m) ≤ nm.

In fact, the same is true for P (MF ,m).
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4. Comparing P (T̃ ,m) and P (M̃f ,m).

Lackner and Panholzer [9] proved n · Fn,m = Mn,m. In fact, this relationship still
holds when the edge orientations are reversed. We prove the claim when m = n, then
we will show the more general case. While the overall idea of the proofs are similar
to their counterparts in [9], there are some technical differences in dealing with the
source trees. Because, on sink trees, the spot in which each driver parked was well-
defined, the authors of [9] were able to identify edges in the digraphs that were not
used during parking and thus could be freely manipulated. In our case, as the drivers
no longer necessarily have a unique walk along which to search for a parking spot,
we must instead identify edges that are not necessary for some successful parking.
This is simple enough on trees using the characterization of Corollary 1, but it is
not immediately clear for inverse mapping digraphs. So, we first prove that at least
one cycle edge on each component of an inverse mapping digraph is not needed for
parking.

Lemma 1. Let (M̃f , s) be a parking function. Then there exists at least one edge in

each cycle of M̃f that can be deleted such that all drivers can still park.

Proof. We induct on the number of vertices in a cycle. Let (M̃f , s) be an (n, n)-
parking function. Without loss of generality, we may assume there is only one com-

ponent of M̃f and thus a unique cycle in the graph. If only one vertex is in the
cycle, then there is an edge of the form (u, u) which is useless for parking and may
be deleted.

Now suppose the cycle has length r > 1. Furthermore, suppose without loss of
generality that the vertices of the cycle are labeled by [r], f(r) = 1, and f(i) = i+ 1
for i ∈ [r − 1]. Let M be the graph obtained by deleting all cycle edges. Define for
1 ≤ i ≤ r, Vi := |RM(i)| and αi := |{j : sj ∈ RM(i)}|. These are the numbers of
vertices in and drivers preferring the subtree induced by the vertex i along with all

i �M̃f
v for v non-cycle vertices in M̃f .

If αi < Vi for all i ∈ [r], then there are strictly fewer than n drivers attempting to

park, contradicting the assumption that (M̃f , s) is an (n, n)-parking function. Hence,

we know αi ≥ Vi for some i. Since s is a parking function on M̃f , at least one driver
prefers i (otherwise, too many drivers prefer non-cycle vertices). We construct an
(n−1, n−1)-parking function by contracting the edge (i, i−1) to identify the vertices
i− 1 and i as a single vertex (with label i− 1) to form the digraph M ′, deleting the
first instance of i from s, and changing all others to i − 1 to form the sequence s′.
For non-cycle vertex v, |RM̃f

(v)| = |RM ′(v)|, as are the number of drivers preferring

each set. If v is instead a cycle vertex, then n = |RM̃f
(v)| = |RM ′(v)| + 1, while n

drivers prefer RM̃f
(v) and n − 1 drivers prefer RM ′(v). Thus, (M ′, s′) is a parking
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function with r−1 vertices in the cycle. By the inductive hypothesis, there exists an

edge e that can be deleted from M ′. We claim this same edge in M̃f is not necessary
for parking via s.

Let T be the digraph obtained by deleting e from M̃f and T ′ be obtained by
deleting e from M ′. Since (T ′, s′) is a parking function, we know for any v ∈ T ′, we
have |{j : s′j ∈ RT ′(v)}| ≤ |RT ′(v)|. We now check the vertices of T to determine if
(T, s) is a parking function.

Case 1: i− 1 ≺T v. We have

|{j : sj ∈ RT (v)}| = |{j : sj ∈ RT ′(v)| ≤ |RT ′(v)| = |RT (v)|.
Case 2: v ≺T i. Then,

|{j : sj ∈ RT (v)}| = |{j : sj ∈ RT ′(v)|+ 1 ≤ |RT ′(v)|+ 1 = |RT (v)|.
Case 3: v = i gives

|{j : sj ∈ RT (i)}| = |{j : sj ∈ RT ′(i− 1)|+ 1 ≤ |RT ′(i− 1)|+ 1 = |RT (i)|.
Case 4: v = i− 1. Using the fact that −αi ≤ −Vi, we know

|{j : sj ∈ RT (i− 1)}| = |{j : sj ∈ RT ′(i− 1)|+ 1− αi
≤ |RT ′(i− 1)|+ 1− Vi
= (|RT (i− 1)|+ Vi − 1) + 1− Vi
= |RT (i− 1)|.

Case 5: all other v. Since v is not a cycle vertex in M̃f and s is a parking function

on M̃f , the deleting of e does not affect the reachable set of v. Thus,

|{j : sj ∈ RT (v)}| = |{j : sj ∈ RM̃f
(v)}| ≤ |RM̃f

(v)| = |RT (v)|.

So (T, s) is indeed a parking function and we know the edge e is not necessary for

parking on M̃f . �

Figure 5 gives an example of the contraction to M ′ with i = 3. We identify a

deletable e on M ′, which gives a deletable e on M̃f .
We now use Lemma 1 to prove

Theorem 3. For n ≥ 1, we have the relationship

n · F̃n,n = M̃n,n.

Construction of the bijection. Let (T̃ , s) be a parking function for source tree T̃ , and

pick v ∈ V (T̃ ). We define a bijection ψ such that ψ
(

(T̃ , s, v)
)

= (M̃f , s) for some
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4

3

2

1

5

67

e
e

s = (1, 1, 2, 2, 3, 3, 3)

←→

s′ = (1, 1, 2, 2, 2, 2)

4

2

1

5

67

Figure 5. Identifying a deletable edge e by contracting (3, 2).

appropriate inverse mapping digraph M̃f , constructed by identifying edges in T̃ that
can be manipulated without affecting the ability of the cars to park. The sequence
s will not change.

Let (u,w) be an edge in T̃ . If |{i : si ∈ T̃w}| = |T̃w|, then for any successful
parking, no car may cross (u,w) as otherwise too many cars would attempt to park

in the subtree T̃w. Additionally, at least one driver must prefer w, as one driver must
park in w and no driver may use the edge (u,w). These two observations will allow

us to select edges to manipulate in T̃ .

Consider the path root(T̃ ) = v1 → v2 → . . . → vk = v for some k ≥ 1. We first
identify the edges that are freely manipulatable, then we use the order of s to choose

a subset of those. For 1 ≤ i ≤ k, let vi ∈ A if and only if |{j : sj ∈ T̃vi}| = |T̃vi|.
Since T̃v1 = T̃ , A is nonempty. By the second observation above, all vi ∈ A appear as
preferences in s. The edge (vi−1, vi) is not used by any driver, so we may manipulate
it (even delete it) without affecting parking. Next, for the vi ∈ A, we define the rank
d(vi) to be the index of the first appearance of vi in s. We now let B ⊆ A be given
by the elements {vi : ∀j < i, d(vj) < d(vi)}. That is, the elements of B are those in A

that appear in s after their ancestors from A. Note that B 6= ∅ as root(T̃ ) = v1 ∈ B.

Consider the unique sequence {vij}
|B|
j=1 such that vij ∈ B and ij < ij+1. For j > 1,

remove the edge (vij−1, vij) and add the edge (vij−1, vi(j−1)
). Finally, add the edge

(v, vi|B|) (if v is the root, this will be a loop as then v = v1). The resulting graph

is an inverse mapping digraph, M̃f , where f(i) is the unique j such that (j, i) is an
edge. In particular, the edges that were manipulated and the one that was added

are {(f(vij), vij)}
|B|
j=1. �

Figure 6 gives an example of ψ. In it, A = {1, 3, 4, 5} and B = {1, 3, 5}, with
vi1 = 3, vi2 = 1, and vi3 = 5.
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3

6 1

2 7 4

5

s = (2, 3, 4, 1, 3, 5, 1), v = 5

−→

3

6 1

2 7 4

5

Figure 6. Turning a source tree into an inverse mapping digraph.

Remark 3. In each component, the cycle vertex appearing in B has the highest
rank of all other cycle vertices in that component. Further, if an edge was necessary

for parking on T̃ , it is still necessary for parking on M̃f .

For the inverse, we know by Lemma 1 that at least one edge in each cycle of the
graph is not necessary for parking. We let the set Â be the set of vertices in the cycles

of M̃f that are the terminal vertices of an edge that is not necessary for parking.

Define B̂ ⊆ Â as the set of vertices which have the highest rank in each cycle. By

Remark 3, if (M̃f , s) = ψ
(

(T̃ , s, v)
)

, we know B = B̂. Label these elements of B̂ by

{bi}|B̂|i=1 such that d(b1) < d(b2) < . . . < d(b|B̂|). For 1 ≤ i ≤ |B̂| − 1, remove the edge

(f(bi), bi) and add the edge (f(bi), bi+1). Finally, delete the edge
(
f(b|B̂|), b|B̂|

)
and

mark f(b|B̂|). The resulting tree is T̃ , so ψ−1
(

(M̃f , s)
)

= (T̃ , s, f(b|B̂|)).

As promised, we can extend this result to (n,m)-parking functions.

Theorem 4. Let n ∈ N and 0 ≤ m ≤ n. Then

n · F̃n,m = M̃n,m.

Proof. Let s ∈ [n]m be a parking function on T̃ ∈ T̃n, and let v ∈ V (T̃ ). Our goal
is to extend s to s′ ∈ [n]n in a reversible manner, then apply ψ. We must do so in
a way that is not affected by the change in edges caused by ψ, which suggests we

avoid using edges along the path root(T̃ )→ v.
To this end, drivers choose to park as follows. We recursively define {Ai}mi=1 so

that A1 = {s1} and in general Ai are the spots that driver i could park at so that
the remaining drivers may successfully park, given the first i− 1 drivers are parked.
Let Bi ⊆ Ai be the vertices of Ai that are reachable from si by utilizing a minimal

number of edges in the path root(T̃ ) → v. From there, driver i parks at the vertex
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with label min(Bi). Once driver i is parked, we construct Ai+1 and continue until all
drivers have parked.

Let {xi}n−mi=1 be the unoccupied spaces after the drivers have parked in this manner,
ordered in an increasing manner. We then define s′ as follows:

s′i =

{
si if i ≤ m

xj if i = m+ j

Then, we apply ψ to (T̃ , s′, v). Since s′ does not change under ψ and is a parking

function, s is also a parking function on the resulting mapping digraph M̃f . In order

to reverse, we must be able to extend s to s′ on M̃f . Because the edges on the

path between root(T̃ ) and v become the cycle edges, drivers park as defined in the
first paragraph, but instead of utilizing a minimal number of path edges, they use a
minimal number of cycle edges. �

5. Concluding Remarks and Future Research

In this paper, we gave several equivalent characterizations of an extension of the
“drivers searching for a parking space” description of parking functions to digraphs.
Additionally, we follow the work of Lackner and Panholzer to show many of their
results on trees with edges oriented towards a root still hold when the edge orientation
is reversed. Furthermore, we showed that source trees never had fewer (n, n)-parking
functions than sink trees.

We propose here some generalizations of on other notions of classical parking
functions. Prime parking functions were defined by Gessel [12] and can be understood
as classical parking functions for which every edge in the path is necessary for parking.
More formally,

Definition 4. A classical parking function s ∈ [n]n is prime if, for all 2 ≤ i ≤ n, we
have

|{j : sj ≥ i}| < n− i+ 1.

So let us say

Definition 5. A parking function (D, s) is called prime if, for every A ⊆ [n] such
that RD(A) 6= [n], we have

|{Ci : si ∈ RD(A)}| < |RD(A)|.
In fact, the parking functions for which every edge is used by a driver after failing

to park at her desired spot described in the proof of Theorem 2 are prime parking
functions. See [6] for more about prime parking functions on sink trees.

Another type of interesting parking function are the increasing parking functions,
those for which si ≤ si+1 for all i. For the classical case, the set of increasing parking
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functions is counted by the famous Catalan numbers and is easily shown to be in
bijection with Dyck paths of semilength n. We follow the terminology of [2] and
call the generalization on digraphs parking distributions, to focus on the distribution
of driver preference rather than the ordering of the sequence. Here, f(i) may be
understood as the number of drivers preferring vertex i.

Definition 6. Let f : [n]→ [m]0 such that
∑n

i=1 f(i) = m. Then we say (D, f) is a
parking distribution if for all A ⊆ [n], we have∑

i∈RD(A)

f(i) ≤ |RD(A)|.

We present several avenues for future research:

(1) We are interested in exact counts of P (D,m) on specific digraphs or sums

over families of digraphs. In particular, we do not know F̃n,m.
(2) We are also interested in a formula more specific than that given in Theorem

2, describing the relationship between P (T, n) and P (T̃ , n).

(3) As noted, it is possible for some m < n and T to have P (T,m) > P (T̃ ,m).
We ask for a characterization of when this occurs.

(4) Both the path that classical parking functions are defined on and sink trees
as a family support interesting numbers of parking functions. Are there other
digraphs or families of digraphs which are associated with particularly nice
numbers of (prime) parking functions or parking distributions?

(5) We ask how one may extend several of the statistics defined on classical
parking functions, such as the number of “lucky” drivers, those who park in
their preferred spot, or the “total displacement”, the distance driven by all
drivers. In general, the locations in which drivers park is not well-defined,
but perhaps we could get around this by considering a maximum or minimum
over all successful parking outcomes.
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