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Moments of Matching Statistics

Niraj Khare, Rudolph Lorentz and Catherine H. Yan

We show that for a large family of combinatorial statistics on per-
fect matchings, the moments can be expressed as a linear combi-
nation of double factorials with constant coefficients. This gives a
stronger analogous result of Chern, Diaconis, Kane and Rhoades
on statistics of set partitions, in which case the moments can be
expressed as linear combinations of shifted Bell numbers, but with
polynomial coefficients.
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1. Introduction

Recently Chern, Diaconis, Kane and Rhoades [8] found that for many combinatorial statistics on set
partitions of [n] = {1, 2, . . . , n}, the moments (mean, variance and higher moments) have simple
closed expressions as linear combinations of shifted Bell numbers, where the coefficients in the
linear combinations are polynomials in n. This allows one to derive exact formulas of the moments
based on data for small values of n. In particular, the method applies to the number of blocks, the
dimension index, the number of crossings, and the number of levels for set partitions. Combining
with a stochastic algorithm of Stam [15] for generating a random set partitions, Chern et al. [9]
established the limiting normality for the numbers of 2-crossings, dimension index, and the number
of levels.

The main goal of the present paper is to study the analogous results of [8] on the set of perfect
matchings on [2m]. A partial matching M on [n] is a partition in which every block has at most two
elements. If every block has exactly two elements, the matching is called a perfect matching. Denote
byM2m the set of all perfect matchings on [2m]. ThenM2m is a subset of Π(2m), the set of all set
partitions of [2m]. Hence the general approach in [8] applies to M2m. However, perfect matchings
are special partitions with uniform block sizes. This allows us to get stronger characterizations,
simpler formulas and more efficient algorithms. In particular, we will focus on the simple statistics
which count the appearance of patterns in perfect matchings and present closed expressions for
moments of crossings, nestings, and their variants.

Let us introduce necessary notations first. We represent a matching M on [2m] by a diagram
on the vertex set [2m] with arcs (i, j) whenever i < j and {i, j} is a block of M . For instance, the
matching M = {(1, 4), (2, 9), (3, 5), (6, 7), (8, 12), (10, 11)} is represented by the diagram in Figure 1.

For a matching M , the set of openers, denoted by O(M), is the set of left endpoints of the arcs in
the diagram of M . Similarly, the set of closers, denoted by C(M), is the set of right endpoints of the
arcs. For the matching in Figure 1, we have O(M) = {1, 2, 3, 6, 8, 10} and C(M) = {4, 5, 7, 9, 11, 12}.

The following definitions are adapted from the ones defined for set partitions in [8].
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t t t t t t t t t t t t
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Figure 1: The diagram of the matching M = {(1, 4), (2, 9), (3, 5), (6, 7), (8, 12), (10, 11)}

Definition 1.1. 1. A pattern P of length k is a partial matching P on [k] with a set of vertex-

disjoint pairs A(P ) ⊆
(

[k]
2

)
and a set C(P ) ⊆ [k − 1]. Let P := (P,A(P ), C(P )).

2. An occurrence of a pattern P of length k in M ∈ M2m is a tuple s := (t1, t2, · · · , tk) with
ti ∈ [2m] such that

(a) t1 < t2 < · · · < tk.

(b) (ti, tj) is an arc of M if (i, j) ∈ A(P ).

(c) ti+1 = ti + 1 whenever i ∈ C(P ).

Write s ∈P M if s is an occurrence of P in M .

Definition 1.2. A simple statistic is defined by a pattern P of length k and a valuation polynomial
Q ∈ Q[y1, y2, · · · , yk, n]. If M ∈ M2m and s = (x1, x2, · · · , xk) ∈P M , write Q(s) = Q|yi=xi,n=m.
Let

f(M) = fP ,Q(M) :=
∑
s∈PM

Q(s).

Let the degree of a simple statistic fP,Q, denoted d(f), be the sum of the length of P and the degree
of Q. A statistic is a finite Q-linear combination of simple statistics. The degree of a statistic
is defined to be the minimum over such representations of the maximum degree of any appearing
simple statistics.

Remarks.

1. In the above definition, C(P ) defines a set of consecutive elements.
2. The field Q can be replaced by any field K of characteristic zero. We use Q here because it is

the case in most combinatorial applications.
3. In [8] a pattern of set partitions also contains specified sets of first and last elements. This is

not necessary for matchings since the set of arcs of P uniquely determines O(P ) and C(P ).

Examples.

1. Number of arcs of M . For any matching of [2m], the number of arcs |M | equals m. It is trivial
to see that |M | is a simple statistic with pattern P of length two along with A(P ) = {(1, 2)},
C(P ) = ∅ and Q(y1, y2, n) = 1.

2. Sum of vertex indices in O(M) or C(M). For a matching M ∈M2m let

smin =
∑

i∈O(M)

i and smax =
∑

i∈C(M)

i.

Then both smin and smax are simple statistics with P of length 2 along with A(P ) = {(1, 2)},
C(P ) = ∅, and Qmin(y1, y2, n) = y1, Qmax(y1, y2, n) = y2.
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3. k-crossings, k-nestings, and k-alignments. Let k ≥ 2 be an integer. A set of k arcs {(it, jt) :

1 ≤ t ≤ k} in the diagram of M forms a k-crossing if i1 < i2 < · · · < ik < j1 < j2 < · · · < jk.

Similarly, it is a k-nesting if i1 < i2 < · · · < ik < jk < jk−1 < · · · < j1, and a k-alignment if

i1 < j1 < i2 < j2 < · · · < ik < jk.

Let crk, nek and alk be the number of k-crossings, k-nestings, and k-alignments of M . They

are simple statistics with patterns of length 2k and

A(P (crk)) = {(1, k + 1), (2, k + 2), . . . , (k, 2k)}
A(P (nek)) = {(1, 2k), (2, 2k − 1), . . . , (k, k + 1)}
A(P (alk)) = {(1, 2), (3, 4), . . . , (2k − 1, 2k)}.

For all of them, Q = 1 and C(P ) = ∅.
4. Dimension exponent. The dimension exponent d(λ) of a set partition λ arose from the study of

the character theory of upper-triangular matrices. See [8, §3.3] and references there. Explicitly,

d(λ) =

l∑
i=1

(Mi −mi + 1)− n,

where l is the number of blocks of λ, Mi and mi are the largest and smallest elements of the

ith block. Specialized to perfect matchings, the dimension exponent is the statistic obtained

by taking a linear combination of smax and smin, as

d(M) = smax(M)− smin(M)−m.

5. Blocks consisting of consecutive vertices. Another simple statistic is obtained by counting the

number of blocks that consists of consecutive vertices, i.e., arcs of the form (i, i + 1). It is

represented by the pattern P of length 2 with A(P ) = {(1, 2)} and C(P ) = {1}, and the

valuation polynomial Q = 1. Following [8] we denote this statistic by flevel.

Let T2m be the number of matchings on [2m], i.e., T2m = |M2m| = (2m− 1)(2m− 3) · · · 3 · 1 =

(2m−1)!!, the double factorial of 2m−1. By convention, set T0 = 1 and T2i = 0 for i < 0. In the next

section we give closed formulas for the aggregate
∑

M f(M) overM2m. We show that for a general

statistic f , the sum
∑

M f(M) can be expressed as a linear combination of {T2i : i ≥ 0} with finitely

many i and constant coefficients. In Section 3 we present closed expressions of higher moments of

statistics. Section 4 deals with simple statistics whose associated pattern is a perfect matching

with empty C(P ), and whose valuation function is a constant. In that case the coefficients in the

expression of higher moment can be obtained by a linear recurrence. As examples, we present results

for k-crossing, k-nesting, and k-alignment. In the last two sections, we compute higher moments

for statistics associated with crossings/nesting with consecutive left (right) endpoints, and with the

dimension exponent.

2. Aggregate of matching statistics

It is proved in [8] that for any statistic f of set partitions, the aggregate
∑

λ∈Π(n) f(λ) is a linear

combination of the shifted Bell numbers with polynomial coefficients. We show that when restricted

to matchings, the Bell numbers are replaced with the double factorials, and the coefficients are
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constants. Explicitly, for any statistic f , define

M(f, 2m) :=
∑

M∈M2m

f(M).

Clearly the expected value of f for a uniform random matching in M2m is given by E(f) =
M(f, 2m)/T2m.

Our main results are the following two theorems which give two general expressions forM(f, 2m).
One of the techniques used in proving the following results is the left compression of numbers cor-
responding to the set C(P ). It is interesting to note that a similar tool is commonly used for graphs
and hypergraphs to modify the set system without changing the matching number (for instance see
[1], [2], [5], [12] and [13]).

Theorem 2.1. Let fP ,Q be a simple statistic of degree N associated with pattern P and valuation
polynomial Q(s). Assume ` = |A(P )| and c = |C(P )|. Then

M(fP ,Q, 2m) = P (m)T2(m−`)(1)

where P (x) is a polynomial of degree no more than N − c. Equivalently for m ≥ `, M(f, 2m) can
be expressed as a linear combination of T2i’s with constant coefficients, i.e.,

M(fP ,Q, 2m) =

{
0 m < `∑
−`≤i≤N−`−c ciT2(m+i) m ≥ `(2)

with constants ci ∈ Q.

Proof. Assume that f = fP ,Q where the pattern P = (P,A(P ), C(P )) is of length k, and the
valuation polynomial Q is of degree N − k. Then

M(fP ,Q, 2m) =
∑

M∈M2m

fP ,Q(M) =
∑

M∈M2m

∑
s∈PM

Q(s)

=
∑

s∈([2m]

k )

Q(s)
∑

M∈M2m

s∈PM

1.

Fix an occurrence s = (t1, · · · tk) of P , the k − 2` singletons in s can be joint with vertices in
[2m]−s and form arbitrary matchings. So there are T2(m−`) perfect matchings on [2m] that contain
s. Hence s contributes T2(m−`) to the inner sum of M(fP ,Q, 2m) whenever it satisfies the condition
(c) of Definition 1. Otherwise it contributes 0. Therefore

M(fP ,Q, 2m) = T2(m−`)
∑

1≤t1<t2<···<tk≤2m
ti+1=ti+1 for i∈C(P )

Q(s).

To deal with the constraints caused by C(P ), we use the standard trick to compress numbers, as
did in [8]. We call i + 1 a follower if i ∈ C(P ). If j is the index of the i-th non-follower then let
yi = tj − j + i. Then the values of (t1, . . . , tk) are determined by (y1, . . . , yk−c), where c = |C(P )|
and Q can be viewed as a polynomial of y1, . . . , yk−c and m. Hence

M(fP ,Q, 2m) = T2(m−`)
∑

1≤y1<y2<···<yk−c≤2m−c
Q̃(y1, . . . , yk−c,m)(3)
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for some polynomial Q̃ of the same degree as Q. The summation yields a polynomial of m of degree
at most deg(Q) + k − c = N − c.

To see Equation (2), let gi(m) be a polynomial of m defined by gi(m) = T2(m−`+i)/T2(m−`).
Then gi is of degree i, and hence {gi(m)}∞i=0 form a basis of Q[m]. It follows that any polynomial
of degree k can be written as a linear combination of g0(m), . . . , gk(m). This implies Equation (2).

From Formula (3) we get the following simple form when Q is a constant.

Corollary 2.2. Let f be a simple statistic with pattern P of length k and the valuation function
Q = q ∈ Q. Then

M(f, 2m) = qT2(m−`)

(
2m− c
k − c

)
where ` = |A(P )| and c = |C(P )|.

We refer to Equation (1) as the polynomial form, which is a product of a polynomial and a T2i

for some i. Equation (2) is referred to as the linear form, which is a linear combination of T2i’s with
constant coefficients. For simple statistics both expresses contain N−c+1 undetermined coefficients.
Consequently, we have a polynomial form and a linear form for M(f, 2m) for an arbitrary statistic
f .

Theorem 2.3. For any statistic f of degree N , there is a positive integer L ≤ N
2 such that for all

m ≥ L,

M(f, 2m) = R(m)T2(m−L),(4)

where R(x) are polynomials of degree no more than N + L. Equivalently, we have the linear form

M(f, 2m) =
∑

−L≤i≤N
diT2(m+i) (m ≥ L)(5)

for some constants di ∈ Q.

Proof. Assume that

f =

t∑
i=1

rifP i,Qi

with ri ∈ Q. Then

M(f, 2m) =

t∑
i=1

riM(fP i,Qi
, 2m) =

t∑
i=1

riPi(m)T2(m−`i),

where `i = |A(Pi)| and degree of Pj(m) is no more than deg(fi) − ci ≤ N with ci = |C(Pi)|.
Combining likely terms of T2k yields the equation

M(f, 2m) =

L∑
j=0

Rj(m)T2(m−j),
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where Rj(m) is a polynomial of degree no more than N , and L = max(li) ≤ N
2 . Since T2(s+k) =

pk(s)T2s (if s ≥ 0) in which pk(s) is a polynomial of degree k, we get the polynomial form Equation
(4) for m ≥ L.

The linear form Equation (5) is obtained by expanding R(m) under the basis
{1, T2(m−L+1)/T2(m−L), . . . , T2(m+N)/T2(m−L)}.

Theorem 2.3 allows us to compute the closed formula of M(f, 2m) whenever we know the
exactly values of M(f, 2m) for a set of L+N + 1 values of m ≥ L. To a specific statistic, usually
we would use the combinatorial structure to get a better bound on the degree of the polynomial
R(m) in (4) , or equivalently, the number of terms in (5).

Example 2.1. The statistics smin and smax are simple statistics of degree 3 with ` = 1 and c = 0.
By Theorem 2.1 and Formula (3),

M(smax, 2m) = T2(m−1)

∑
1≤t1<t2≤2m

t2 =
2m(2m+ 1)(2m− 1)

3
T2(m−1) =

1

3
T2(m+2) − T2(m+1).

Similarly

M(smin, 2m) = T2(m−1)

∑
1≤t1<t2≤2m

t1 =

(
2m+ 1

3

)
T2(m−1) =

1

6
T2(m+2) −

1

2
T2(m+1)

Example 2.2. Let f be the simple statistic associated to P of length 3 with A(P ) = {(1, 3)}, and
C(P ) = 2. That is, an occurrence of P is an arc on non-consecutive vertices. Assume Q(t1, t2, t3,m) =
t3. Then by (3)

M(f, 2m) = T2(m−1)

∑
1≤t1<t2≤2m−1

(t2 + 1) = T2(m−1)

(
2

(
2m

3

)
+

(
2m− 1

2

))
=

(2m− 2)(2m− 1)(4m+ 3)

6
T2(m−1)

=
1

3
T2(m+2) −

3

2
T2(m+1) −

1

2
T2m.

3. Higher Moments of Simple statistics

In order to compute higher moments, it is necessary to consider products of statistics. The next
theorem establishes that Q-linear combination of statistics and product of statistics are in fact
statistics. This allows us to compute the higher moments E(f r), or equivalently, M(f r, 2m) =
E(f r)T2m for any statistic f . Theorem 3.1, Definition 3.1 and Lemma 3.2 are analogues to the ones
in [8], which can be proved in the same way and hence the proofs are skipped.

Theorem 3.1. Let S be the set of all statistics thought of as functions f : ∪mM2m → Q. Then
S is closed under the operations of pointwise scaling, addition and multiplication. Thus, if f1, f2

∈ S and a ∈ Q, then there exist matching statistics ga, g+ and g∗ so that for all matching M ,

af1(M) = ga(M),

f1(M) + f2(M) = g+(M),

f1(M)f2(M) = g∗(M).
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Furthermore, d(ga) ≤ d(f1), d(g+) ≤ max{d(f1), d(f2)} and d(g∗) ≤ d(f1) + d(f2).

To use Theorem 3.1 we need a notion of merge of two patterns.

Definition 3.1. Let P 1, P 2 and P 3 be patterns of length k1, k2 and k3 respectively. The pattern
P 3 is called a merge of P 1 and P 2 if there are two strictly increasing functions h1 : [k1] → [k3],
h2 : [k2]→ [k3] such that

(1) h1[k1] ∪ h2[k2] = [k3],
(2) (i, j) ∈ A(P3) if and only if (i, j) = (h1(i′), h1(j′)) or (i, j) = (h2(i′), h2(j′)) for some (i′, j′)

in A(P1) or A(P2) respectively,
(3) i ∈ C(P3) if and only if there exists either a j ∈ C(P1) with i = h1(j) and i+ 1 = h1(j + 1) or

a j′ ∈ C(P2) with i = h2(j′) and i+ 1 = h2(j′ + 1).
A merge is denoted as (h1, h2) : P 1, P 2 → P 3. Similarly one defines the merges (h1, . . . , hr) :
P 1, · · · , P r → P for any positive integer r ≥ 2.

Lemma 3.2. Let P 1, P 2 be patterns. For any matching M there is a one-to-one correspondence:

(6) {(s1, s2) : s1 ∈P 1
M, s2 ∈P 2

M} ↔ {P 3, s3 ∈P 3
M, and (h1, h2) : P 1, P 2 → P 3}.

The above results enable us to compute the aggregate for a product of statistics, as

M(fP 1,Q1
fP 2,Q2

, 2m) =
∑

M∈M2m

∑
P3

∑
s3∈P3

M

∑
(h1,h2)

Q1(h1(s1))Q2(h2(s2)).

=
∑
P3

M(fP 3,Q̃
, 2m)

where

Q̃(s3) =
∑

(h1,h2)

Q1(h1(s1))Q2(h2(s2)).

Consequently, for any statistic f and positive integer r, f r can be written as a linear combination
of simple statistics, and hence M(f r, 2m) can be expressed as a linear combination of T2k’s with
constant coefficients.

Theorem 3.3. For any statistic f of degree N and positive integer r, we have

M(f r, 2m) =
∑
I≤i≤J

diT2(m+i) whenever m ≥ I(7)

where I and J are constants bounded by I ≥ − rN
2 and J ≤ rN .

Proof. Assume

f =

t∑
i=1

rifP i,Qi

with ri ∈ Q. Let P̃ be a merge (h1, h2, . . . , hr) : (P i1 , P i2 , . . . , P ir) → P where each P ij ∈
{P 1, . . . , P t}, and Q̃(s) = Qi1(h1(s1))Qi2(h2(s2)) · · ·Qir(hr(sr)). Assume P̃ = (P̃ , A(P̃ ), C(P̃ )) is
of length k̃ with ˜̀ arcs and c̃ = |C(P̃ )|. Let fP̃ ,Q̃ be a simple statistic associated with the pattern P̃

and polynomial Q̃. Then M(f r, 2m) is a sum of linear multiples of terms of the form M(fP̃ ,Q̃, 2m).
By Theorem 2.3 each such a term can be expressed as a linear combination of T2(m+i)’s with
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constant coefficients, where the lower bound of i is −deg(fP̃ ,Q̃)

2 ≥ − rN
2 , and the upper bound is

deg(fP̃ ,Q̃) ≤ rN .

Corollary 3.4. Let fP ,1 be simple statistic for which the pattern P is of length k with ` = |A(P )|,
c = |C(P )|, and the unit valuation function. Then we have

M(f rP ,1, 2m) =
∑

−r`≤i≤rk−`−c
ciT2(m+i)(8)

for some constants ci ∈ Q and m ≥ r`.

Proof. Since Q = 1, the degree of f is k. Let P̃ be a merge of r copies of P with length k̃, ˜̀ arcs
and c̃ consecutive pairs. Then k ≤ k̃ ≤ rk, ` ≤ ˜̀≤ r` and c ≤ c̃ ≤ rc. Formula (8) is obtained by
applying the linear form (2) to simple statistic P̃ and summing over all such P̃ .

In addition, there is a summation form for M(f rP ,1, 2m), which can be useful when the combi-
natorial structure is easy to analyze.

Proposition 3.5. Assume the pattern P has length k with ` = |A(P )|, c = |C(P )| and Q = 1.
Then

M(f rP ,1, 2m) =
∑
k̃,˜̀,c̃

c
(r)

k̃,˜̀,c̃
T2(m−˜̀)

(
2m− c̃
k̃ − c̃

)
(9)

with nonnegative integer coefficients c
(r)

k̃,˜̀,c̃
, where k ≤ k̃ ≤ kr, ` ≤ ˜̀ ≤ `r, and c ≤ c̃ ≤ cr. The

coefficient c
(r)

k̃,˜̀,c̃
counts the number of ways to merge r copies of P to patterns with k̃ vertices, ˜̀

arcs and c̃ consecutive pairs of vertices.

The advantage of Formula (9) is that the coefficients have clear combinatorial meanings. In
application, we can use some simple combinatorial constraints to limit the number of nonzero
coefficients, and hence obtain a tighter bound on the number of undetermined coefficients when we
transform the sum M(f r, 2m) to the polynomial form or the linear form. Then we could find the
undetermined coefficients by using data of M(f r, 2m) with small values of m.

4. Patterns with constant valuation and empty C(P )

For simple statistics with constant valuation, empty C(P ), and k = 2`, the polynomial form of
M(f r, 2m) gives a simple formula whose coefficients satisfy a linear recurrence. In the following we
simply assume Q = 1, since for the case Q = q ∈ Q, M(f rP ,q, 2m) = qrM(fP ,1, 2m).

Theorem 4.1. Let f be a simple statistic defined by a pattern P of length k = 2` with the valuation
function Q = 1, ` = |A(P )| and C(P ) = ∅. Then the r-th moment of f can be written as

M(f r, 2m) =

(r−1)`∑
i=0

c
(r)
i

(
2m

2(`+ i)

)
T2(m−`−i),(10)

for some constants c
(r)
i .
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Proof. For any merge P̃ of r copies of P , the pattern associated to P̃ would have length 2˜̀ if it has
˜̀ arcs, and C(P̃ ) = ∅ always. Let c

(r)
i be the number of such merges with ˜̀= i+ ` arcs. Then they

contribute c
(r)
i

(
2m

2(`+i)

)
T2(m−`−i) to the sum M(f r, 2m). Summing over all i from 0 to (r − 1)`, we

get the formula (10).

Example We explain Theorem 4.1 by computing the second moment of cr2, the number 2-crossings

in a matching. Since r = 2 and ` = 2, by (10) we obtain

M((cr2(M))2, 2m) = c0

(
2m

4

)
T2(m−2) + c1

(
2m

6

)
T2(m−3) + c2

(
2m

8

)
T2(m−4),

where ci is the number of patterns P3 with i+ 2 arcs that can be obtained as merges of two copies

P1 = P2 = P (cr2).

• For i = 0, there is only one possible merge, namely P1 = P2 = P3. Hence c0 = 1.

• For i = 1, assume P3 is a pattern of length 6 obtained by merging P1 and P2. First observe

that if P3 has two 2-crossings, then there are exactly two ways to define h1 and h2. If P3

has three 2-crossings, then there are 6 ways to define h1 and h2. There are three P3 with

cr2(P3) = 2, namely, {(1, 3), (2, 5), (4, 6)}, {(1, 4), (2, 6), (3, 5)}, and {(1, 5), (2, 4), (3, 6)}, and

one with cr2(P3) = 3, namely, {(1, 4), (2, 5), (3, 6)}. Putting together we have c1 = 12.

• For i = 2, note that if a merge (h1, h2) : P1, P2 → P3 has 4 arcs, then h1(P1) and h2(P2) must

be disjoint. This gives c2 =
(

8
4

)
= 70.

Combining the above cases, we have

M((cr2(M))2, 2m) =

(
2m

4

)
T2m−4 + 12

(
2m

6

)
T2m−6 + 70

(
2m

8

)
T2m−8.(11)

Even for simple statistics as described in Theorem 4.1, getting the coefficients c
(r)
i ’s by analyzing

combinatorial structures can be tedious and time consuming. Instead, we could take advantage of

the special form of M(f r, 2m) and the fact that for any positive integers
(
a
b

)
= 0 if b > a (or by

defining T2k = 0 whenever k < 0). Explicitly, for ` ≤ m ≤ `r, Equation (10) becomes

M(f r, 2`) = c
(r)
0 T0

M(f r, 2`+ 2) = c
(r)
0

(
2`+ 2

2`

)
T2 + c

(r)
1 T0,

M(f r, 2`+ 4) = c
(r)
0

(
2`+ 4

2`

)
T4 + c

(r)
1

(
2`+ 4

2`+ 2

)
T2 + c

(r)
2 T0

· · · · · · · · ·

M(f r, 2`r) = c
(r)
0

(
2`r

2`

)
T2(r−1)` + c

(r)
1

(
2`r

2`+ 2

)
T2(r−1)`−2 + · · ·+ c

(r)
(r−1)`T0.

This is a triangular system of linear equations on the unknowns c
(r)
0 , . . . , c

(r)
(r−1)`, with T0 = 1 on

the diagonals. Hence the values of M(f r, 2m) for ` ≤ m ≤ `r determine all the coefficients by the

following recurrence of c
(r)
i .
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Proposition 4.2. Let fP ,1 be a simple statistic with unit valuation function. Assume the pattern

P has length 2` with ` arcs and empty C(P ). If M(f r, 2m) is known for ` ≤ m ≤ `r, then the

coefficients {c(r)
i : 0 ≤ i ≤ (r − 1)`} can be obtained by the linear recurrence

c
(r)
0 = M(f r, 2`)

c
(r)
i = M(f r, 2(`+ i))−

i−1∑
j=0

c
(r)
j

(
2(`+ i)

2(`+ j)

)
T2(i−j) for 0 < i ≤ (r − 1)`.

For example, with the aid of a computer program we can easily get M((cr2(M))2, 4) = 1,

M((cr2(M))2, 6) = 27, and M((cr2(M))2, 8) = 616, which give the coefficients in Equation (11).

Using Proposition 4.2, we provide explicit formulas of the second and third moments of k-

crossings, k-nestings, and k-alignments for some small values of k. (The first moment is given by

Corollary 2.2.). Note that the statistics cr2(M) and ne2(M) have the same distribution [10] over

M2m. In fact, there is a bijection φ on M2m such that cr2(M) = ne2(φ(M)), e.g., see [14]. Thus,

for any positive r, M((cr2)r, 2m) = M((ne2)r, 2m).

The second moment of crk for 2 ≤ k ≤ 5.

M((cr2(M))2, 2m) = M((ne2(M))2, 2m) =

(
2m

4

)
T2m−4 + 12

(
2m

6

)
T2m−6 + 70

(
2m

8

)
T2m−8.

M((cr3(M))2, 2m) = M((ne3(M))2, 2m)

=

(
2m

6

)
T2m−6 + 20

(
2m

8

)
T2m−8 + 180

(
2m

10

)
T2m−10 + 924

(
2m

12

)
T2m−12.

M((cr4(M))2, 2m) = M((ne4(M))2, 2m)

=

(
2m

8

)
T2m−8 + 30

(
2m

10

)
T2m−10 + 378

(
2m

12

)
T2m−12

+ 2800

(
2m

14

)
T2m−14 + 12870

(
2m

16

)
T2m−16.

M((cr5(M))2, 2m) = M((ne5(M))2, 2m)

=

(
2m

10

)
T2m−10 + 42

(
2m

12

)
T2m−12 + 700

(
2m

14

)
T2m−14 + 6864

(
2m

16

)
T2m−16

+ 44100

(
2m

18

)
T2m−18 + 184756

(
2m

20

)
T2m−20.

The third moment of cr2, cr3 and ne3.
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M((cr2(M))3, 2m) = M((ne2(M))3, 2m)

=

(
2m

4

)
T2m−4 + 42

(
2m

6

)
T2m−6 + 762

(
2m

8

)
T2m−8

+ 7560

(
2m

10

)
T2m−10 + 34650

(
2m

12

)
T2m−12.

M((cr3(M))3, 2m) =

(
2m

6

)
T2m−6 + 84

(
2m

8

)
T2m−8 + 2520

(
2m

10

)
T2m−10 + 45372

(
2m

12

)
T2m−12

+ 552636

(
2m

14

)
T2m−14 + 4324320

(
2m

16

)
T2m−16 + 17153136

(
2m

18

)
T2m−18,

and

M((ne3(M))3, 2m) =

(
2m

6

)
T2m−6 + 84

(
2m

8

)
T2m−8 + 2520

(
2m

10

)
T2m−10 + 45468

(
2m

12

)
T2m−12

+ 552960

(
2m

14

)
T2m−14 + 4324320

(
2m

16

)
T2m−16 + 17153136

(
2m

18

)
T2m−18.

The small moments of al2, al3.

M((al2(M))2, 2m) =

(
2m

4

)
T2m−4 + 14

(
2m

6

)
T2m−6 + 70

(
2m

8

)
T2m−8.

M((al2(M))3, 2m) =

(
2m

4

)
T2m−4 + 48

(
2m

6

)
T2m−6 + 930

(
2m

8

)
T2m−8

+ 8820

(
2m

10

)
T2m−10 + 34650

(
2m

12

)
T2m−12.

M((al3(M))2, 2m) =

(
2m

6

)
T2m−6 + 24

(
2m

8

)
T2m−8 + 238

(
2m

10

)
T2m−10 + 924

(
2m

12

)
T2m−12.

We observe from the above formulas that the third moments of cr3 and ne3 are different. Hence

the numbers of 3-crossings and 3-nestings have different distributions. On the other hand, the

second moments of k-crossings and k-nestings coincide for 2 ≤ k ≤ 5. The next theorem establishes

that the second moment of k-crossings and k-nestings for matchings in M2m are always the same.

Theorem 4.3. For any positive integer k ≥ 2, the second moment of k-crossings equals the second

moment of k-nestings over the set M2m.

We need the following two lemmas.
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Lemma 4.4. Let m and n be non-negative integers. Let x0, x, y0 and y be non-negative integers.
Then the following identity holds:

∑
x0+x=m
y0+y=n

(
x0 + y0

x0

)(
x+ y

x

)(
x0 + x+ y0 + y

x+ x0

)
= (m+ n+ 1)

(
m+ n

m

)2

.(12)

Proof. We use the identity(
x+ y

x

)(
m+ n− x− y

m− x

)
=

(x+ y)!(m+ n− x− y)!

x!y!(m− x)!(n− y)!
=

(
m+ n

m

)(
m

x

)(
n

y

)
/

(
m+ n

x+ y

)
.

The left side of Equation (12) equals(
n+m

m

) m∑
x=0

n∑
y=0

(
x+ y

x

)(
m+ n− x− y

m− x

)

=

(
m+ n

m

)2 m∑
x=0

n∑
y=0

(
m

x

)(
n

y

)
/

(
m+ n

x+ y

)

=

(
m+ n

m

)2 m+n∑
k=0

1(
m+n
k

) ∑
x+y=k

(
m

x

)(
n

y

)

=

(
m+ n

m

)2 m+n∑
k=0

1(
m+n
k

) · (m+ n

k

)

= (m+ n+ 1)

(
m+ n

m

)2

.

Lemma 4.5. Let m and n be non-negative integers. Let x0, x, y0 and y be non-negative integers.
Then the following identity holds:

∑
x0+x=m
y0+y=n

(
x0 + y0

x0

)2(2x+ 2y

2x

)
= (m+ n+ 1)

(
m+ n

m

)2

.(13)

Proof. The above identity follows immediately from a slightly general identity, proved by Andrews
and Paule in [3, Identity (2.2)] using computer algebra:

bM/2c∑
i=0

bN/2c∑
j=0

(
i+ j

j

)2(M +N − 2i− 2j

N − 2j

)
=

(bM+N+1
2 c)!(bM+N+2

2 c)!
(bM2 c)!(b

M+1
2 c)!(b

N
2 c)!(b

N+1
2 c)!

.

One simply lets M = 2m and N = 2n to get (13).

Proof of Theorem 4.3. By Theorem 4.1 it is sufficient to show that the number of ways to merge
two k-crossings is the same as the number of ways to merge two k-nestings to matchings with
exactly 2k − i arcs. We would give explicit formulas for such numbers and compare them.
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(1) Merging two k-crossings A and B to get matchings with 2k − i arcs. It means that there
are i arcs from A that coincide with i arcs from B. Listing the arcs by their left endpoints from
left to right. Assume that M is the matching obtained by merging A and B, where the arcs
e1 < e2 < · · · < ei of A coincide with the arcs f1 < f2 < · · · < fi of B, and they correspond to arcs
m1 < m2 < · · · < mi of M . In the k-crossing A, let x0 = e1−1, xj = ej+1−ej−1 for j = 1, . . . , i−1
and xi = k − ei. Then xi ∈ N and x0 + x1 + · · ·+ xi = k − i. Similarly define y0, y1, . . . , yi for the
k-crossing B. We have the following observation in M .

1. Before the left endpoint of arc m1, there are x0 + y0 left endpoints, where x0 coming from A
and y0 coming from B.

2. For each j = 1, . . . , i − 1, between the left endpoints of arcs mj and mj+1 there are xj + yj
left-endpoints, where xj coming from A and yj coming from B.

3. Between the left endpoint of mi and the right endpoint of m1, there are xi left endpoints and
x0 right endpoints coming from A, and yi left endpoints and y0 right endpoints coming from
B.

4. For each j = 1, . . . , i − 1, between the right endpoints of mj and mj+1 there are xj right
endpoints coming from A and yj right endpoints coming from B.

5. After the right endpoint of mi, there are xi right endpoints coming from A and yi right
endpoints coming from B.

Then the number of ways to merge A and B to matchings with 2k − i arcs is given by

ccrk,2 =
∑

x0+·+xi=k−i
y0+···+yi=k−i

i−1∏
j=0

(
xj + yj
yj

)
·
(
xi + x0 + yi + y0

xi + x0

)
·

i∏
j=1

(
xi + yi
xi

)

=
∑

x0+·+xi=k−i
y0+···+yi=k−i

i−1∏
j=1

(
xj + yj
xj

)2

·
(
x0 + y0

x0

)(
xi + yi
xi

)(
xi + x0 + yi + y0

xi + x0

)
.(14)

(2) Merging two k-nestings to get matchings with 2k − i arcs. Similar to the argument above,
we have the formula

cnek,2 =
∑

x0+·+xi=k−i
y0+···+yi=k−i

i−1∏
j=0

(
xj + yj
yj

)
·
(

2xi + 2yi
2xi

)
·
i−1∏
j=0

(
xi + yi
xi

)

=
∑

x0+·+xi=k−i
y0+···+yi=k−i

i−1∏
j=0

(
xj + yj
xj

)2

·
(

2xi + 2yi
2xi

)
.(15)

Comparing formulas (14) and (15), we see that it is sufficient to show that the following two
sums are equal for any nonnegative integers m and n:

∑
x0+xi=m
y0+yi=n

(
x0 + y0

x0

)(
xi + yi
xi

)(
x0 + xi + y0 + yi

xi + x0

)
=

∑
x0+xi=m
y0+yi=n

(
x0 + y0

x0

)2(2xi + 2yi
2xi

)
.(16)

This equation follows from Lemma 4.4 and Lemma 4.5. Summing over all possible values of
x1, . . . , xi−1, y1, . . . , yi−1, we obtain the equation ccrk,2 = cnek,2.
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5. Crossings and nesting with neighboring vertices

For simple statistics with Q = 1 but nonempty C(P ), we can use either the linear form (8) or the
polynomial form (9) to compute M(f r, 2m). In general the linear form is simpler. But in certain
cases we can use the combinatorial properties of the pattern to reduce the number of unknown
coefficients in the polynomial form.

Example 5.1. Consider the level statistic, flevel(M), which counts the number of blocks of M
that consist of two consecutive integers. The pattern P is given by a matching P of length 2 with
A(P ) = (1, 2), C(P ) = {1}, and Q = 1. Any merge of r copies of P must contain arcs of the form
(i, i+ 1) only. For fixed k lying between 1 and r, there is a unique such pattern with k arcs, i.e. the
alignment of k arcs, and the number of merges can be described as the number of surjective maps
from [r] to [k] and is given by S(r, k)k!, where S(r, k) is the Stirling number of the second kind and
counts the number of partitions of an n-set into k blocks. Hence

M((flevel(M))r, 2m) =

r∑
k=1

k!S(r, k)

(
2m− k
k

)
T2(m−k).

Our next example is on k-crossings and k-nestings with consecutive left or right endpoints.
Nestings with consecutive left endpoints, called neighboring nestings, were introduced by Stoimenow
[17] in the study of regular linearized chord diagrams, and matchings with no neighboring nestings
were further investigated in [4, 6, 11]. In [7] Chen, Fan, and Zhao presented generating functions
for partial matchings with no neighboring alignments or neighboring nestings. Here we consider
simple statistics that counts the occurrences of neighboring crossings/nestings.

Definition 5.1. The pattern left-k-crossing, denoted by P (Lcrk), is the matching P of length 2k
with k arcs, defined by

A(P (Lcrk)) = {(1, k + 1), (2, k + 2), . . . , (k, 2k)},

with C(P (Lcrk)) = {1, 2, . . . , k − 1}. The pattern right-k-crossing, P (Rcrk), is the matching of
length 2k with A(P (Rcrk)) = A(P (Lcrk)) and C(P (Rcrk)) = {k + 1, k + 2, . . . , 2k − 1}. Similarly,
the left-k-nesting and right-k-nesting are matchings of length 2K with

A(P (Lnek)) = A(P (Rnek)) = {(1, 2k), (2, 2k − 1), . . . , (k, k + 1)}

and C(P (Lnek)) = {1, 2, . . . , k − 1}, C(P (Rnek)) = {k + 1, k + 2, . . . , 2k − 1}.

Let Lcrk, Rcrk, Lnek and Rnek be the simple statistics that count the numbers of left-k-
crossings, right-k-crossings, left-k-nestings, and right-k-nestings, respectively. In other words, they
all have the unit valuation.

Reversing the diagram of a matching (i.e., reflecting through a vertical mirror placed at the
right of the diagram), the left and right endpoints are exchanged. Hence Lcrk and Rcrk have the
same distribution over M2m, so do Lnek and Rnek.

Proposition 5.1. There is an involution φ on M2m such that Rcrk(M) = Rnek(φ(M)).

Proof. In [14, Theorem 1.2] it is proved that there is an involution φ : Πn → Πn exchanging the
numbers of 2-crossings and 2-netsings. We will use the same map φ but restricted to the setM2m.
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In general this map φ does not exchange the number of k-crossings to that of k-nestings for k ≥ 3.
However, we show that φ exchanges the numbers of right-k-crossings and right-k-nestings for all
positive integers k ≥ 2. For completeness, we describe the construction of φ for perfect matchings.

First every matching M in M2m can be uniquely represented as a Dyck path of length 2m
with labeled down steps. To wit, one replaces each i ∈ O(M) with an up step U = (1, 1), and
each i ∈ C(P ) with a down step D = (1,−1). This defines a Dyck path from (0, 0) to (2m, 0). Let
C(P ) = {j1, j2, . . . , jm}<. The height of the k-th down step is hk if it is a step from (jk − 1, hk) to
(jk, hk − 1). Assume that (ik, jk) is an arc of M . Label the k-th down step by γk if

γk − 1 = |{i ∈ O(M) : i < ik, (i, j) ∈M, and j > jk}|.

Then 1 ≤ γk ≤ hk for all k. In addition, cr2(M) =
∑m

i=1(hk− γk) and ne2(M) =
∑k

i=1(γk− 1). For
example, for the matching M in Figure 1, the corresponding Dyck path is given by the sequence
UUUDDUDUDUDD with C(P ) = {4, 5, 7, 9, 11, 12}. The height and γk at each down step is

Down step 4 5 7 9 11 12

height hk 3 2 2 2 2 1

γk 1 2 2 1 2 1

One checks easily that cr2(M) = ne2(M) = 3.

A key observation is that such labeled Dyck paths encode right-k-crossings and right-k-nestings.
The arcs (i1, j1), . . . , (ik, jk) of M form a right-k-crossing if and only if j1 < j2 < · · · < jk are
consecutive integers in C(M), (hence their heights are consecutive integers from large to small),
and their labels satisfy γ1 ≤ γ2 ≤ · · · ≤ γk. These arcs form a right-k-nesting if and only if
j1 < j2 < · · · < jk are consecutive integers in C(M), and their labels satisfy γ1 > γ2 > · · · > γk.

The involution φ maps a labeled Dyck path with labels (γi)
m
i=1 to the same Dyck path with

labels (hi − γi + 1)mi=1. Clearly it exchanges right-k-crossings with right k-nestings.

Corollary 5.2. For any positive integers r, m ≥ 2 and 2 ≤ k ≤ m, following equations hold:

(17) M(Lcrrk, 2m) = M(Rcrrk, 2m) = M(Rnerk, 2m) = M(Lnerk, 2m)

Our purpose is to compute the r-th moments of Lcrk. We will combine the polynomial form
(9) and the linear form (8). Note that if P̃ is a merge of r copies of P (Lcrk) with ˜̀ arcs, then P̃
has length 2˜̀. Let c̃ = |C(P̃ )|. Clearly k − 1 ≤ c̃ ≤ r(k − 1). Hence by Prop. 3.5 M(Lcrrk, 2m) can
be expressed as

M(Lcrrk, 2m) =

rk∑
˜̀=k

r(k−1)∑
c̃=k−1

c
(r)
˜̀,c̃

(
2m− c̃
2˜̀− c̃

)
T2(m−˜̀),(18)

for some constants c
(r)
˜̀,c̃

.

It is easy to see that when 2m− c ≥ 0,(
2m− c
2`− c

)
T2(m−`) = (2(m− `)− 1)!!

(2(m− `) + 1)(2(m− `) + 2) · · · (2m− c)
(2`− c)!

=

{
P (m)T2m−c if c is even
Q(m)T2m−c+1 if c is odd,

(19)
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where P (x) is a polynomial of degree `− c
2 , and Q(x) is a polynomial of degree `− c+1

2 . Therefore,(
2m−c
2`−c

)
T2(m−`) is a linear combination with constant coefficients of terms T2(m+i), where − c

2 ≤ i ≤
`− c. Combining with Formula (18), we have

Theorem 5.3. For any positive integer r and m ≥ r(k − 1)/2, there is a closed formula

M(Lcrrk, 2m) =
∑
I≤i≤J

djT2(m+j),

where I and J are constants such that I ≥ −r(k − 1)/2 and J ≤ (r − 1)k + 1.

As an example, we compute the 2nd and 3rd moments of the number of occurrence for the
pattern P (Lcr2), which has length 4, ` = 2 and c = 1. We start with the polynomial form (18),
and simplify the double summation by analyzing the combinatorial structures. For example, the
following simple constraints would reduce the number of unknown c˜̀,c̃ in (18) by half.

Proposition 5.4. 1. If ˜̀= k, then c̃ = k − 1 and c
(r)
k,k−1 = 1.

2. If ˜̀= rk, then c̃ = r(k − 1), and c
(r)
rk,r(k−1) =

( r(1+k)
1+k,1+k,...,1+k

)
.

3. c′ ≥ (k−1)˜̀

k .

4. c′ ≤ ˜̀− 1.

Proof. If ˜̀ = k, then all r copies of P (Lcrk) coincide with P̃ . There is only one way to get such a
merge. If ˜̀ = rk, then the r copies of P (Lcrk) use disjoint set of arcs. A merge of r independent
copies of P (Lcrk) is obtained by shuffling the vertices of each copy into a sequence, where for each
copy the first two vertices are consecutive in the shuffling. Using the same trick as in the proof of
Theorem 2.1, we obtain

( r(1+k)
1+k,1+k,...,1+k

)
many merges. For item 3, note that the arcs of P̃ are unions

of the r copies of P (Lcrk). For any merge s = (h1, h2, . . . , hr) : P (Lcrk)
r → P̃ , the left-endpoints

of P̃ are formed by consecutive segments of vertices of length at least k, in each segment all but the
last vertex must be in C(P̃ ). Item (4) is because in any pattern there is at least one left endpoint
that are not in C(P̃ ).

Proposition 5.5. Let m be a positive integer. We have the following two equivalent formulas for
the second moment of Lcr2.

M(Lcr2
2, 2m) =

(
2m− 1

3

)
T2m−4 + 2

(
2m− 2

4

)
T2m−6 + 20

(
2m− 2

6

)
T2m−8(20)

and

M((Lcr2)2, 2m) = −1

6
T2(m−1) +

1

4
T2m −

1

6
T2(m+1) +

1

36
T2(m+2).(21)

The second equation is true when m ≥ 1.

Proof. Here we have k = 2, c = 1, and r = 2. For a merge P̃ of two copies of Lcr2, the number of
arcs ˜̀ ranges from 2 to 4.
If ˜̀= 2, by item 1 of Proposition 5.4, c̃ = 2− 1 = 1, and the coefficient is 1.
If ˜̀= 3, by item 3 of Proposition 5.4, c̃ ≥ 3/2. Hence the only possible value of c̃ is 2.
If ˜̀= 4, by item 2 of Proposition 5.4, c̃ = 2 and the coefficient is

(
6

3,3

)
= 20.
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Therefore

M(Lcr2
2, 2m) =

(
2m− 1

3

)
T2m−4 + c3,2

(
2m− 2

4

)
T2m−6 + 20

(
2m− 2

6

)
T2m−8(22)

for some constants c3,2. Using the data M(Lcr2
2, 6) = 12 we get formula (20).

Alternatively, any formula of the form (22) is a linear combination of T2(m−1), T2m, T2(m+1) and

T2(m+2). One can find the coefficients by solving a linear system with M(Lcr2
2, 2m) = 0, 1, 12, 155

for m = 1, 2, 3, 4. The result is Formula (21).

Proposition 5.6. Let m be a positive integer. The third moment of left-2-crossing is

M(Lcr3
2(M), 2m) =

(
2m− 1

3

)
T2m−4 + 6

(
2m− 2

4

)
T2m−6 + 60

(
2m− 2

6

)
T2m−8

+ 6

(
2m− 3

5

)
T2m−8 + 210

(
2m− 3

7

)
T2m−10 +

(
9

3, 3, 3

)(
2m− 3

9

)
T2m−12.

Alternatively, we have

M(Lcr3
2(M), 2m) =

1

4
T2(m−1) −

5

24
T2m +

11

120
T2(m+1) −

1

24
T2(m+2) +

1

216
T2(m+3),

for m ≥ 2. For m = 1, M(Lcr3
2(M), 2) = 0.

Proof. Here we have k = 2, c = 1 and r = 3. For a merge P̃ of three copies of Lcr2, the number of

arcs ˜̀ ranges from 2 to 6. Using Proposition 5.4, we have that only the following pairs of (˜̀, c̃) are

possible: (2, 1), (3, 2), (4, 2), (4, 3), (5, 3) and (6, 3). In addition, c2,1 = 1 and c6,3 =
(

9
3,3,3

)
. Hence

M(Lcr3
2(M), 2m) =

(
2m− 1

3

)
T2m−4 + c3,2

(
2m− 2

4

)
T2m−6 + c4,2

(
2m− 2

6

)
T2m−8

+c4,3

(
2m− 3

5

)
T2m−8 + c5,3

(
2m− 3

7

)
T2m−10 +

(
9

3, 3, 3

)(
2m− 3

9

)
T2m−12.(23)

The coefficients c3,2, c4,2, c4,3 and c5,3 can be obtained by counting the number of corresponding

merges. But our purpose is to avoid too much details on combinatorial structures and rely on the

data available. One way to get the ci,j ’s is to use the value of M(Lcr3
2(M), 2m) for m = 3, 4, 5, 6 to

establish a system of linear equations. Using a computer programming we have

m 1 2 3 4 5 6

M(Lcr3
2(M), 2m) 0 1 16 261 4536 85533

These data yield c3,2 = 6, c4,2 = 60, c4,3 = 6 and c5,3 = 210.

Alternatively, with the equation (23) we could turn to the linear form. Applying Formula (19)

to the above equation, we have that for m ≥ 2,

M(Lcr3
2(M), 2m) = c−1T2(m−1) + c0T2m + c1T2(m+1) + c2T2(m+2) + c3T2(m+3)
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for some constants c−1, c0, c1, c2, c3. Using the values of M(Lcr3
2(M), 2m) for m = 2, . . . , 6 and

Maple, we get

c−1 =
1

4
, c0 = − 5

24
, c1 =

11

120
, c2 = − 1

24
, c3 =

1

216
.

6. The dimension exponent in matchings

We finish this paper by giving a closed formula for the moments of the dimension exponent d(M).
Recall that for M ∈ M2m, d(M) = smax(M) − smin(M) − m. By definition, d(M) is a linear
combination of simple statistics smax and smin, for both of which Q is not a constant.

First we show that there is a pattern such that d(M) counts the occurrence of this pattern.

Proposition 6.1. Let T be a partial matching of length 3 with A(T ) = {(1, 3)} and C(T ) = ∅.
Then for any M ∈M2m, d(M) = fT ,1.

Proof. By definition

d(M) =
∑

(i,j)∈M

(j − i+ 1)− 2m =
∑

(i,j)∈M

(j − i− 1).

Hence d(M) counts the number of triples i < t < j where (i, j) is an arc of M . It is exactly the
simple statistic associated to the pattern T = (T,A(T ), C(T )) and Q = 1.

Now that d(M) can be expressed by a simple statistic with Q = 1, we can use Proposition 3.5
to compute its higher moments. For any pattern P that is a merge of r copies of T , if P has length
k and ` arcs, (C(P ) = ∅), then 1 ≤ ` ≤ r, and 2` ≤ k ≤ 2`+ r. Hence

M(d(M)r, 2m) =

r∑
`=1

r∑
i=0

c
(r)
`,i

(
2m

2`+ i

)
T2(m−`),(24)

where c
(r)
`,i is the number of ways to merge r copies of T to a pattern with ` arcs and total length

2`+ i. Note that for m ≥ `,(
2m

2`+ i

)
T2(m−`) = (2(m− `)− 1)!!

(2m)(2m− 1) · · · (2m− 2`+ 1)

((2`+ i)!

·(2m− 2`)(2m− 2`− 1) · · · (2m− 2`− i+ 1)

= T2m ·R(m),(25)

where R(m) is a polynomial of m of degree i+`. Note that R(m) has factors 2m(2m−2) · · · (2m−2`),
hence (25) is also true for 0 ≤ m < `. Thus we can write

(
2m

2`+i

)
T2(m−`) as a linear combination of

T2m, T2(m+1), . . . , T2(m+i+`). Summing over `, i = 1, . . . , r, we get

Theorem 6.2. For any positive m and r,

M(d(M)r, 2m) =

2r∑
j=0

djT2(m+j)
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for some constants dj ∈ Q.

For example, when r = 1, using either Corollary 2.3 or the Example 1 in section 2, we have

M(d(M), 2m) =

(
2m

3

)
T2(m−1),

which can also be expressed as

M(d(M), 2m) =
1

2
T2m − T2(m+1) +

1

6
T2(m+2).

When r = 2, we have

M(d(M)2, 2m) =

(
2m

3

)
T2(m−1)+2

(
2m

4

)
T2(m−1)+2

(
2m

4

)
T2(m−2)+16

(
2m

5

)
T2(m−2)+20

(
2m

6

)
T2(m−2),

which equals

M(d(M)2, 2m) =
1

4
T2m −

8

3
T2(m+1) +

5

2
T2(m+2) −

8

15
T2(m+3) +

1

36
T2(m+4)

for all m ≥ 1.
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