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1 Introduction

A branching process is a mathematical description of the growth of a population for which the
individual produces offsprings according to stochastic laws. A typical process is of the following
form. Considering a population of individuals developing from a single progenitor the initial
individual. The initial individual produces a random number of offsprings, each of them in turn
produces a random number of offsprings; and so the process continues as long as there are live
individuals in the population. An interesting question is to find the probability that the population
survives, (or, extincts).

The branching process was proposed by Galton [5], and the probability of extinction was first
obtained by Watson [16] by considering the probability generating function for the number of chil-
dren in the nth generation. This mathematical model was known as the Galton-Watson branching
process, and had been studied thoroughly in literature, for example, [15, 2, 6, 7, 10]. Some inter-
esting details on the early history of branching processes can be found in [9].

Another model for the branching processes was based on the interpretation of the random walk
Sp — n and the branching processes in terms of queuing theory, which is due to Kendall [8]. Here
S, = Z1+Zs+---+Z,, where Z;’s are independent random variables with the identical distribution
as the offsprings. In this model, the random family of a branching process is represented by a queue
with a single server, and the service time for each customer is a unit period. The queue starts with
one customer, corresponding to the initial individual in the branching process. Each individual in
the random family represents a different customer, who arrives and waits for service in the queue.
A customer j arrives during the service period of ¢ if j is a child of i. Let Y; be the number of

customers in the queue at the end of the ¢-th service period. Then Yy = 1, and

Yi=Yia+2Z—-1,  (i>1)
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where Z; are independent random variables with the offspring distribution. Note that the total
progeny is represented by the length of the first busy period of the server, i.e., smallest ¢ such that
Y; = 0. The process continues forever iff Y; > 0 for all <.

By the above correspondence, the probability of extinction given by the Galson-Watson model
and the random walk model are identical. Let Z be the offspring distribution. A basic fact about
branching processes states that when E[Z] = ¢ < 1, with probability 1 the process dies out; but
when E[Z] = ¢ > 1, there is a positive probability a that the process will continue forever [15, 4].
Let f(z) be the probability generating function for Z. In the case ¢ > 1, a can be computed
as 1 — s where s the probability of extinction, is the unique solution of s = f(s) in the interval
[0,1). In particular, if the offspring distribution is Poisson with mean 1 + €, then the probability
of survival is asymptotically 2e (c.f., [13]). An important condition in solving such probability in
Galton-Watson branching processes is that the possible values of the offspring distribution Z are
non-negative integers.

In this paper we consider a random walk with a similar algebraic setting as the ones correspond-
ing to branching processes. However, the step-size distribution can take negative values. Explicitly,
let Z be a probability distribution with non-negative integral values, and E[Z] = 1 — ¢, where

0 < € < 1. Define a random walk Y = Yp, Y7,... by the following formula

Yi=Y,1+1-27,

where 71,75... are independent random variables each with distribution Z. In particular, we
consider the case where 7 is distributed according to the Poisson law with mean 1 — ¢, denoted by
Po(1 —¢€). Let T be the least ¢ for which Y; < 0. If no such ¢ exists, we say that 7' = +oco. Since
the expected step-size F[1 — Z] = € > 0, with probability approaching 1, ¥;, > 0 when n — co. We
will compute the probability that Y, > 0 for all n, or equivalently, Pr[T = +oc], in which case we
say the random walk Y escapes. We also consider the asymptotics of Pr[T" > N]. Note that this
problem is essentially different from the one defined by branching processes, since the values of the
step-size random variable 1 — Z are mostly negative. Apparently all the methods used in literature
to solve for the survival probability (e.g., [4]) fail here .

In this paper we find the exact value of the escaping probability for the random walk Y. We
present two proofs. The first is a pure probabilistic one, based on the linearity of expectations.
The second is more analytic, using a theorem of Otter and Dwass in branching processes, which
is equivalent to the Lagrange inversion formula for formal power series. The second proof applies
to more general offspring distributions Z, provided that both the expected value and variance of
Z exist. It is also used to obtain asymptotics of Pr[T" > N|. With suitable assumptions on Z, we
prove that Pr[T = oco|T > N) is asymptotically 1 if N > ¢=2, when € — 07. We also give a formula
that generalizes the Otter-Dwass theorem, and use it to prove that if Z = Po(1 — €), the n > ¢2



is both necessary and sufficient for Pr[T = oco|T > N] ~ 1.

2 The escaping probability

Theorem 1 Fiz € > 0. For the random walk Y defined by the formula (1) with Z = Po(1 — ¢),
1—e

the escaping probability Pr[T = +o0] is e~ “e.
1. The probabilistic proof. Let p; = Pr[Z = i] for i > 0. Considering a new random walk Y’

defined by the same recurrence as (1) except that the beginning position is zero, ie,

Yy =0,
(2)
{ Y;/:Y;/—l_'_l*Zi?

where Zq,Z5 ... are independent random variables with the same distribution Z. Let T” be the
least ¢ > 0 for which Y/ < 0. If no such ¢ exists, we say that 77 = +oo. Denote by s’ the escaping
probability Pr[T” = +oo] of Y'. It is clear that if s is the escaping probability of the original
random walk Y, then s’ = pps and hence s = s'/po.

Let ¢ =1 — s’ be the probability of extinction for Y’. Let W,, be the indicator random variable
for the event Y, = 0, i.e.,

W, =

1, ifYy! =0,
0, otherwise,

and let W =322 W,,. Then W is the number of ¢ such that Y/ = 0. (It is possible that W = occ.
)

A crucial property for the random walk Y’ is that, in each step, Y’ can raise at most one unit.
Therefore, any random walk with W = k (k is an integer and k > 2) consists of k + 1 part (see
figure 1): The first k parts are random walks that begin at zero, drop to the z-axis, or drop below
z-axis and then move back to zero. The last part is a random walk that begins at 0, and remains
above the z-axis for all ¢ > 0. It is clear that the last part corresponds to a random walk defined
as Y’ with T’ = co. This happens with probability s’.

In Y, let T be the least ¢ such that ¢t > 0 and Y/ = 0. Hence

k
PrWw =k = > (J[Prl=t])s

t, ot >0 =1

= :_;’(Z:Pr[]~1 = t])k

>0
= §(Pr[T < ])*.

If T < oo, then T7 < co. Conversely, we claim that if 77 < oo, then with probability one 7' < oc.
To prove the claim, first note that 77 < oo but T' = oo implies that there exists N > 0 such that



tl t2 - tk
Figure 1:

for all n > N, Y} < 0. Let A,, n € N be the event that Y;) > 0. Y, has the distribution n — S,
where S, = Z1 + Zo + - -+ + Zy, and E[S,| = nE[Z] = n(1 — €). By Markov’s inequality,

E[Sy]

Pr[S, > n] < =1—-c

Hence Pr[A,] = Pr[Y, > 0] = Pr[S,, < n] > e. It follows that > °, Pr[A,] diverges. By Borel-
Cantelli Lemma, with probability one Y,, > 0 for infinite many n. This proves the claim. Therefore
Pr[T < o] = Pr[T’ < o0] = ¢’ and Pr[W = k] = ¢'*s’.

It follows that Pr[W > k] = ¢ ¥ Hence

> q 1—s
E[W]:ZPr[Wzk}zl_q: .
k=1

On the other hand, by the linearity of the expectation,
EW] =Y E[W,] =Y Pry; =0].
n=1 n=1

In our problem, Z is the Poisson distribution with mean 1 —e. Thus Y] = n—S,, where S,, has the

Poisson distribution with mean n(1 — ¢). Therefore

> X e~ (1= (n — ne)n > nn n
EW] =Y Pr[S,=n]=>_ r(u " > (1=ge 0N = te 'R(te ), (3)
n=1 n=1 ' n=1 "

where t = 1 — € and R(z) = (ze~%)<~> is the inverse function of y = ze~* [14][Chapter 5.3].
Let y = te™t. From R(te™!) = t, differentiating with respect to ¢, we have



that is,

Substitute into (3), we have

1-4 t 1—e¢

=EW|=——= .
W 1-t €

Therefore s’ = ¢ and s = €/py = e' ‘. o

REMARK. Theorem 1 asserts that the escaping probability s’ is € for the random walk Y’. Such
a clean answer deserves an easy explanation. The following is an intuitive one:
In the infinite random walk Y’, for any ¢ > 0, let W; be the number of ¢ such that Y} = i. For an

fixed i, almost surely the random walk will hit the line y = 4, i.e., Pr[WW; > 1] = 1. For any k > 1,

similar to the argument in the preceding proof, we have Pr[W; = k] = ¢’*~1s’, and Pr[W; > k] =

¢'*~1. Therefore E(W;] =1+¢ +¢?+--- =1/s, consequently E[W; + Wa + -+ + Wy = Ne/s'.
On the other hand,

E[Wy +Wa+ -+ Wy =Y Pr[1 <Y/ < Nel.
=0

where Y] has distribution j —Sj;, S; = Z14+Za+---+Z; ~ Po(j(1—¢)). For the Poisson distribution,
we have the following large deviation result, (e.g.,see [1], Appendix A.15),

Lemma 1.1 Let P have Poisson distribution with mean p. For § > 0,
P[P < p(1 =) <e "2,
Pr[P > p(140)] < [es]”.
where c5 = 65(1 =+ 5)_(“'5) < 1 is a constant depending only on 6.

Using the lemma, for VN < j < N — Kv/N, (K > 1),

12(N—j)?

Pr[Yj/ > Ne] = PI"[SJ' <j-— Ne} <e 2709 <e

_1
2

PrY] <0] = Pr[S; —j > 0] < ()
where ¢, < 1 is a constant. Taking K = N/3,

N—N5/6
D Prl <Y] < Ne ~ N(1L+o0(1)).
j=vVN

While for j > N + Kv/N, K = N1/3,

Pr[l <Y/ < Ne| < Pr[Y] < Nel =Pr[S; —j(1 =€) > (j — N)¢ < (¢5)" 79



where § = (1;) J_TN From Lemma 1.1, ¢5 is decreasing as J increases, and c5 ~ e=/2 for § small.
So ,
o € N71/3
cs < Ce/(l—e)N_1/6 ~ e 201-e2
__&® n-1/3

Thus Pr[l <Y/ < Ne| < (e 2079 )7 and

/ o 2 N1/3

> Prl<Y]<Ne=0( T3 ) =0(1).

j=N+N5/6

Therefore E[W; + Wo + -+ + Wy = N(1 +0(1)) + O(NY2) + O(N*/%) + 0(1) = N(1 + o(1)).
Comparing the two expressions for E[W; +Wa+-- -4+ W], we have Ne/s' ~ N when N — occ.
That implies the escaping probability s’ equals e.

2. The analytic proof.

We compute the probability Pr[T" > N] directly, using the Otter-Dwass theorem in the theory
of branching processes. This proof applies to all integral distributions Z, provided that F(Z) and
var(Z) exist.

In a branching process with offspring distribution Z, let #Fj be the total progeny in the
process with k individuals to start with. The following theorem presents a remarkable formula for
the distribution of # F}, restricted to positive integers. This formula was discovered by Otter [11]
for k =1, and extended to all £ > 1 by Dwass [3].

Theorem. [Otter and Dwass] For all n,k = 1,2, ...

Pr[#F, =n] = %Pr[sn =n— k| (4)

where S, = Z1+ Zo+ -+ + Z,.

To prove Theorem 1, as in the first proof, we consider the random walk Y’ defined by
=0 Y/ =Y/ +1-2,

where Z; are independent with distribution Z, E(Z) =1—¢ > 0, and var(Z) = o. Again let T" be
the least t > 0 such that Y/ <0.

Lemma 1.2 For1 <k <n,
/ ! k
Pr[T" >n,Y, =k]= EPr[Sn =n—k|.

Proof of Lemma 1.2. For any walk {Y,Y/,Y5.... Y} satisfying Y] =0,Y/ > Ofori =1,2,...,n—1
and Y, = k, define the reversed walk X = {Xo, X1,...,X,} as follows: Xog =k, X; =Y .. Then
X, =Y . =Y . +1—-2,;,=X;41+1—Z,_;. That is, X satisfies the recurrence Xy = k,
Xi+1 = X; + Z; — 1 where Z; are independent random variables with the identical distribution Z.

In other words, { Xy, X1,...,X,} is a random walk corresponding to the Galton-Watson branching



process with the offspring distribution Z and k individuals at the zero generation. The conditions
Yy=0,Y/>0fori=1,2,...,n— 1 imply that X; >0 fori=1,2,...,n— 1, and X,, = 0. So this
corresponds to the case that the total progeny in the branching process is exactly n, which happens
with probability Pr[#F; = n]. Now the lemma follows immediately from Otter-Dwass theorem.

For the random walk Y’, 7" > n means Y{ = 1, (i.e., Z; = 0). Hence for the random walk Y,
poPr[T >n,Y,, = k| =Pr[T" > n+1,Y, | = k| where pg = Pr[Z = 0]. Therefore

1k
Pr|T Y,=Fk =— Pr|Sh+1 = 1— k.
r[T > n, k] P r[Spt1=n+ k] (5)
and
n+1
1 1
Pr[T > n] = — kPr[S, 1 —n+1— k. 6
R RSP IULICE AR )
We evaluate the sum in Eq. (6).
kEPr[Sp41=n+1—k|
n—i—lk_:1
1 n
= > (n+1—k)Pr[Spy = k]
n+1k=0

1 R
= (n 4 1) Pr[S,11 <n] — 1 kZ_O kPr[S, 1 = k]

n+1
1

= Pr[Spy1 <n] -~ ) (E[Snt1] = Y kPr[Spy1 = k)

k>n

1
= 1-Pr[Spp1>n+1—(1—¢) + n—ngkPr[SnH = k]
1

= = PrlSpp ]+ — > kPr[Sni1 = k]

k>n

Note that E[S,+1] = (n 4+ 1)(1 —¢€), and var(S,+1) = (n+ 1)o. By Chebyshev’s inequality,

PriSpt1>n+1]=Pr[Spyi—(n+1)(1—¢€) > (n+1)¢ < ﬁ =0(1),
and
1
— > EPr[Spy1 =kl = Pr[Spp >n+1]+ - > Pr[Sps > K

k>n

IN




Hence
Pr(T = ) = nlLH()lo Pr(T > n) = ¢/po.
For the case that Z is the Poisson distribution with mean 1 — ¢, py = e~1=9), and hence
Pr[T = oc] = el ™. O

Let p; = Pr[Z = i]. In the random walk Y, for 1 < k < mn,

Pil >nY,=k= > f[pzi

(ZI’ZQV'WZ”) =1
where (z1,29,...,2,) are non-negative integers so that ¥; > 0 for i = 1,2,...,n — 1, and Y,, = k.

In terms of z;, these conditions are equivalent to

VAN
—

<1

IA
N

21 + 22

IA
~~

~
S~—

21+t 22+ + 2p-1

VAN
S
|
—_

|
3
+
—_
|
&

21tz + ...+ 2z

When Z has the Poisson distribution with mean p,

N i N,uzl,
Pr[T >n,Y, =k = Z He—uz_i!: Z e—unHZ_i!

(21,22,0052n) 1=1 (21,22,+-4,2n) =1
n+l—~k 1—
— e MUy < ntl-k ) (8)
(n+1fk)!(Zl22mZ) 21,22, .4y 20

where (z1, 22, ..., 2z,) satisfies the condition (7). By Eq. (5),

n+l-k
Pr(Sppy1=n+1—k] = e“Lef(”H)“ ((n+ D) 9)

Pr|T Y, =k =¢€
fr>mn, I=e n+1 (n+1—k)!

n+1

Combining (8) and (9), we get

1—k
> () ke (10)
21,225y %n

(21,2202

where (z1, 22, ..., 2,) satisfies condition (7).
The sum in the left-hand side of Eq. (10) has the following combinatorial interpretation. Put
balls By, B, ..., Byy1 i into n different boxes. The sum counts the number of ways one can do it

so that the number of balls in the first 7 boxes does not exceed i, for i = 1,2,...,n. Hence

Corollary 1 Let 1 < k < n. The number of ways to put n + 1 — k distinct balls into n distinct

boxes, so that the number of balls in the first i boxes does not exceed i, for all i = 1,2,...,n, is
k(n+1)"F.



3 The asymptotic formula

In this section we consider the asymptotics of the escaping probability of Y when ¢ — 0F.
Using the Otter-Dwass Theorem and Lemma 1.2, we estimate the escaping probability after a
finite number of steps. More precisely, let Z(¢) be a family of non-negative integral random variables
such that as e — 0%, Pr[Z(9) = 0] — py € (0,1), E[Z)] =1 — ce + o(e) for some positive constant
c. Further we assume a uniform bound M such that var(Z(9)) < M for all positive € in some

neighborhood of the origin. Under these conditions,

Theorem 2 Let the random walk Y(©) be defined by
RO ¥ v 12,

where ZZ.(G) are independent random variables with identical distribution Z9. Set Sﬁf) = Z{e) +
ZQ(E) +- 4 Zr(f), and T the least t such that Y;(E) = 0. then Pr[T(®) > N| ~ ce/po if N> 2.

Proof. From the analytic proof of Theorem 1, we have

; ; ; 1 ()
Pr[Z) = 0] Pr[T® > N =1— E[Z2¥)] + N1 > PrSih > k]

k>N+1
Let K = Ne?. If N > ¢ 2, then K — oo as € — 0. By Chebyshev’s inequality,

1 Z (N + Vwar(Z)

_ (©)
Z Pr(Syy = K] g
N+1 S N+l (N +1)(1 — E[Z©)]) +1)2
M Me

S NO—EZO)  Kle+o)) o(e)-

IN

Hence

€ “po+o(l)  po

Pr[T® > N] ¢+ o(1) e

O

REMARK. A typical example is given by Z(© = Po(1 — ¢), in which case Pr[Z(® = 0] =

e 5 e 1 EB[Z] =1 —¢ and var(Z\9) = 1 —€ < 1 for € € [0,1]. Taking, for example,
N = e 2?Inlne=! we have Pr[T(9) > N| ~ ee.

As an extension to the Otter-Dwass theorem, we have the following formula for the random

walk Y.

Theorem 3 In the random walk Y with any offspring distribution Z,

1
Pr[T =n,Y, =0 = =Pr[S, =n+1].



Proof. Note that

Pr[T =n,Y, =0] = Z ﬁpzia
=1

(21,22,0y2n) &

where z; are non-negative integers such that ¥; > 1 fori=1,2,...,n—1, and Y,, = 0. Equivalently,

z; satisfies the condition

21 < 1
z21+2 <2,
< (11)
21tztt2zr < on—1,
Z214+z2++2z, = n+l.

Also note

(21 7Z27"'7Z7l) i=1

where z; are non-negative integers with z; +---+ 2z, = n+ 1. Hence it is sufficient to show that for
any sequence of non-negative integers o = (ai,as,...,a,) with a; +as +---+a, =n+ 1, there is
exactly one cyclic shift o; = (a;, ai41,...,an,a1,...,a;—1) satisfying Condition (11). The proof is
contained in the following two claims.

Claim 1. For any sequence «, there is at most one cyclic shift of « satisfying Condition (11).
Prove by contradiction. Assume both a = (ay,a9,...,a,) and o; = (a;, @jy1,---,Qn, A1, ..., 0i—1)
satisfy Condition (11), where i is an index between 2 and n. Then a1 +ag +---+a;—1 <i—1, and
a;+---+a, <n—i. Hence a1 +as+---+a, < n, contradicting the fact that a1 +as+---+a, = n+1.
Note that Claim 1 also implies that all the conjugate of « are distinct.

Claim 2. For any sequence a = (a1, as,...,a,) of non-negative integers, there exists a cyclic
shift a; satisfying Condition (11).

Let x; =i— (a1 +ag+---+a;) fori=1,2,...,n— 1. If all x; > 0, then « satisfies Condition (11).
Otherwise, let x = min{z;,7 = 1,2,...,n — 1}. Then = < 0. Find the smallest index i such that
x; = x. We prove that the cyclic shift a;11 = (ajt1,...,apn,a1,...,a;) satisfies (11). Denote a1

by (b17b27' . 7bn)

1. For1<k<n—1—4b+bx+---+bx =041+ aiy2+ -+ agy;. Since
(k+1i) — (a1 +azg+ -+ apyi) = Tpi = 2 =1 — (a1 +az + - +ai),
b1 +bo+ -+ b < k.
2. For k =n —1,
by +bo+- - +by = ajr1+ai0+-+a, = (n+1)—(a;+as+---+a;) =n+1—(i—z) =< n—i.

as ¢ < 0.

10



3. Forn—i<k<n,
bitbot-+by=aip1+ - +apntart-+ap_y=n+1-(i—z)+ar+ - +ap_(n_s.
Since
k—(n—1i)—(a1+-+ap—(n-i)) =2 +1,
bi+bo+--+bpg<n+l—itax+k—(n—i)— (z+1)=k.
This finishes the proof. O
Remark. In the above proof we didn’t use the condition that Z; are non-negative. Hence
Theorem 3 holds for any integral distribution Z. On the other hand, Otter and Dwass Theorem
doesn’t have such generality.
Using Theorem 3, we have the following result for Z = Po(1 — ¢).
Theorem 4 In the random walk Y with Z = Po(1 — €),
Pr[T > N] ~ ee iff N> 2
Or equivalently,
Pr[T = oo|T > N] ~ 1 iff N>

Proof. The sufficient part is proved in Theorem 2. For the necessary part, we need to show
o0
If > Pr(T=i)=o0(e), then N>e2

where the summation does not contain the term Pr[T" = +oc]. We show this by finding a lower
bounds for "2 Pr[T"=i]. When Z = Po(1 —¢), Sy has distribution Po(N(1 — ¢)).
e tNgNFINN t (te)N
(N +1)! V2r (N +1)3/2
where t = 1 — . Note that te¢ ~ 1 — ¢ 2/2. Soif N = Ce ? for a constant C, then
o (te)’

0o . "
Z.Z:\]Pr[T:z] > \/—ZE;V(Z+13/2

1
Pr[T'=N] > Pr[T'=N,Yy = 0] :NPT[SNZN—Q—l]:

v

S0

)
2N (te)i
(z+1)3/2

z:

2N

(te€)2N 1) -3/2
— > G
i=N

That is, if N = Ce™2, then
Z Pr[T =1 > C - ¢,

for a constant C. This proves that for Z;’iN Pr(T = i) = o(e), it is necessary that N > ¢ 2. O

11
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