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Abstract
A generalized x-parking function associated to a positive integer vector of the form (a, b, b, ...,b)
is a sequence (a1, as, ..., a,) of positive integers whose non-decreasing rearrangement by < ba <

-+« < by, satisfies b; < a+ (i —1)b. The set of x-parking functions has the same cardinality as the
set of sequences of rooted b-forests on [n]. We construct a bijection between these two sets. We
show that the sum enumerator of complements of x-parking functions is identical to the inver-
sion enumerator of sequences of rooted b-forests by generating function analysis. Combinatorial
correspondences between the sequences of rooted forests and x-parking functions are also given
in terms of depth-first search and breadth-first search on multicolored graphs.

1 Introduction

The notion of parking function was introduced by Konheim and Weiss as a colorful way to study
a hashing problem. In the paper [9], they proved that the number of parking functions of length n
is (n + 1)"~1. Later the subject has attracted the interest of many mathematicians, in particular,
combinatorialists. A simple method of counting the number of parking functions was found by
Pollak (see Riordan, [14]), for which an equivalent description was given by Stanley [19, 21] in
group-theoretic terms. Knuth surveyed the early results on parking functions in his famous book,
The Art of Computer Programming, Sorting and Searching [7, Sec. 6.4]. His description of parking
functions was given in terms of a hashing algorithm, with an explicit “parking” description [7, Ex.
6.4.29-31].

A parking function of length n may be defined as a sequence (aq,as,...,a,) of positive integers
whose non-decreasing rearrangement by < by < ... < b, satisfies b; < i. Note that the number
of parking functions of length n, (n + 1)"!, is equal to the number of labeled rooted trees on
{0,1,2,...,n}, or equivalently, the number of acyclic functions on [n] = {1,2,...,n}. Several

bijections between the set of parking functions of length n and the set of labeled rooted forests on
[n] are known. The first published one was due to Schiitzenberger [15] in 1968. Pollak (see Riordan
[14, Sec. 3, 4], and Foata and Riordan ([1, Sec. 2]) constructed bijections in which a parking
function is associated with a code which, by Priifer’s correspondence, corresponds to a tree. In the
same paper ([1, Sec. 3]), Foata and Riordan also constructed another bijection using pairs (r, 7),



where r € N” is balanced, and 7 is a permutation that is compatible with r (cf. Sec. 2). Francon
[2] discussed the second construction of Foata and Riordan’s and showed that it can be generalized
to a much larger class of selection procedures. Kreweras [10] investigated the recurrence relations
satisfied by the generating functions of parking functions and labeled trees. This recurrence led to
a new bijection between these two objects, constructed via induction. Other bijections were also
found, for example, by Knuth [7], Moszkowski [12], and Gilbey and Kalikow [6].

Parking functions are also related to other combinatorial structures. Stanley [21] used the
set of ordinary parking functions to give an edge-labeling for maximal chains in the lattice of
non-crossing partitions. He also revealed the relations between parking functions and hyperplane
arrangements, interval orders, and plane partitions [19, 20]. Pitman & Stanley [13] discussed the
connection between parking functions and empirical distributions, plane trees, polytopes and the
associahedrons. They showed how to enumerate some generalized parking functions from results in
uniform order statistics and empirical distributions. Gilbey and Kalikow [6] constructed bijections
from the set of parking functions to allowable pairs of permutations of a priority queue. Parking
functions has also been of interest to statisticians and probabilists.

Following [13], the notion of parking function can be generalized. Let x = (z1,z2,...,2,) €
N". Define an x-parking function to be a sequence (a1, as, ...,a,) of positive integers whose non-
decreasing rearrangement by < by < --- < b, satisfies b; < x1 + - -+ + ;. Thus an ordinary parking
function corresponds to the case x = (1,1,...,1). Let P,(x) denote the number of x-parking
functions. Clearly that P, (x) =0 if 1 = 0.

In general, it is difficult to write explicit formulas for the number of generalized parking func-
tions. In [23] we found formulas for some special types of vectors x using easy combinatorial ar-
guments. In the present paper, we concentrate on x-parking functions for x = (a,b,b,...,b) € N".
In this case, the number P, (x) is known (see, for example, Pitman and Stanley [13]):

Theorem 1 For x = (a,b,b,...,b), P,(x) =a(a+nb)" L.

This formula can be proved by a simple combinatorial argument generalizing the proof of Pollak
for the ordinary parking functions [14, 1].

In Section 2, we generalize the relation between the set of ordinary parking functions and the
set of acyclic functions (or equivalently, the set of labeled rooted forests) to x-parking functions
for x = (a,b,...,b), which gives a bijective proof of Theorem 1. The proof is an extension of the
second bijection of Foata and Riordan [1, Sec. 3|. Explicitly, we introduced a set C,, which consists
of pairs (r,7) where r is a vector of length a + (n — 1)b that is balanced, 7 is a permutation of [n]
and is compatible with r. We construct one-to-one correspondences of the set C,, with both the set
of x-parking functions and the set of sequences of rooted b-forests on [n].

Next we study the sum enumerator pr(La,b) (q) of complements of x-parking functions. We prove

that this enumerator is identical to the enumerator I,(La’b) (q) of sequences of rooted b-forests by

the number of their inversions. In doing so, we find recurrence relations satisfied by P}ﬂ”’)(q) and

L(Ia’b) (¢), and introduce the concept of a multicolored (a,b)-graph whose excess edges and roots

are enumerated by a polynomial C’T(La’b)(q). We show that C’T(La’b) (q) satisfies the same recurrence

relations as both Pr(La’b)(l +¢q) and I,(la’b)(l + ¢), hence prove that Bl (q) = i (q).

Whenever a result is found by generating function analysis, a combinatorial explanation is
expected. In the last section, we establish combinatorial correspondences between sequences of
rooted forests, generalized parking functions, and labeled multicolored graphs. The techniques we



used are depth-first search and breadth-first search algorithms in labeled multicolored graphs. The
depth-first search on labeled connected graphs was first studied by Gessel and Wang [3], and further
explored by Gessel and Sagan [4]. It is extended naturally to labeled multicolored graphs. Gessel
and Sagan also analyzed a neighbors-first search algorithm, which is similar to the breadth-first
search we described. But our construction reveals the connection to the set of parking functions.
Our construction is inspired by the work on graph enumeration and random graph evolution of
Spencer [16].

The author would like to thank Professors I. Gessel, J. Kung, B. Sagan, J. Spencer and R.
Stanley for helpful comments and discussions.

2 Bijective proof for Theorem 1

It is well-known that the number of ordinary parking functions is (n + 1)"~!. The number of
labeled rooted forests on [n] is also (n + 1)" 1. In [1], Foata and Riordan constructed bijections
between these two objects. In this section, we generalize their result to the x-parking functions for
x = (a,b,...,b).

We will construct a bijective mapping between the sets A,, and B,, where A, is the set of
x-parking functions associated to x = (a,b,...,b), (a, b are positive integers). To describe B,,, we
need some notations. First, a rooted b-forest on [n] is a rooted forest on vertices [n] = {1,2,...,n}
with edges colored with the colors 0,1,...,b— 1. There is no further restriction on the possible
coloring of the edges. Let B,, be the set of all sequences (S1,S2,...,S5,) of length a such that (1)
each S; is a rooted b-forest, (2) S; and S; are disjoint if 7 # j, and (3) the union of the vertex sets
of Sl, Sg, . Sa is [’I’L]

Another set C,, is introduced and will be put in one-to-one correspondence with both A, and
B,,. First we say that a sequence r = (71,72, ..,744(n—1)) of @+ (n — 1)b non-negative integers is
balanced if

{ P re ey > i4+1, fori=0,1,...,n—2, 0

Ti+ T2t e (n—1)b n.

We also say that a permutation 7 of [n] is compatible with r if the terms in the inverse 77! of 7 is
increasing on every interval of the form {1 + Z§:1 i, 2 + Z?:l Tiyeno, Zf:ll ri} (if rg41 #0). The
set C), is defined as the set of all couples (r,7) with r € Net (=10 halanced and 7 a permutation
of [n] compatible with r.

2.1 The mapping from A, to C,

Throughout this paper, we fix x = (a,b,b,...,b) € N*. Let o = (ay,aq9,...,a,) be an x-
parking function of A,. The couple (r,,m,) of C, associated with « is defined as follows. First,
let ro = (71,72, Taq(n—1)) be the specification of a, i.e.,

ri=Card{ qj€a|aj=1}.

By the definition of x-parking function, r, € Net(»=Db is halanced.
The permutation m, = (74 (1), 74 (2),...,7Tq(n)) is defined by

7o (i) = Card{j € [n] | aj < a;, or aj =a; and j <i }. (2)



In other words, 7,(i) is the position of the term a; in the non-decreasing rearrangement of «.
Another description of 7, is: the numbers 1,2...,r; appear in the successive positions left to
right where a; = 1, (if r; # 0); in general, the numbers

k k k+1
1—|—ZT¢,2—}—ZTZ', ceey Z'f‘i
=1 =1 =1

appear in the successive positions left to right where a; = k+1, for k =0,1,2,...,a+ (n—1)b—1,
and rgy1 # 0. This is equivalent to say that

1, if 1< 7a (i) < i,
a; = i e (3)
T kL 1) <)) <Y o

i=1 =1

which implies 7, is compatible with r.

Example 1 Forn =3, x = (2,1,1), the specification v, = (r1,72,73,74) and permutations m, on
{1,2,3} are as follows.

o 111 | 112 | 121 | 211 | 113 | 131 | 311 | 114 | 141 | 411
r, || 3000 | 2100 | 2100 | 2100 | 2010 | 2010 | 2010 | 2001 | 2001 | 2001
T || 123 | 123 | 132 | 312 | 123 | 132 | 312 | 123 | 132 | 312

o 122 | 212 | 221 | 123 | 132 | 213 | 231 | 312 | 321 | 124
ro || 1200 | 1200 | 1200 | 1110 | 1110 | 1110 | 1110 | 1110 | 1110 | 1101
T || 123 | 213 | 231 | 123 | 132 | 213 | 231 | 312 | 321 | 123

o 142 | 214 | 241 | 412 | 421 | 133 | 313 | 331 | 134 | 143
ro || 1101 | 1101 | 1101 | 1101 | 1101 | 1020 | 1020 | 1020 | 1011 | 1011
T || 132 | 213 | 231 | 312 | 321 | 123 | 213 | 231 | 123 | 132

o 314 | 341 | 413 | 431 | 222 | 223 | 232 | 322 | 224 | 242
r, || 1011 | 1011 | 1011 | 1011 | 0300 | 0210 | 0210 | 0210 | 0201 | 0201
T || 213 | 231 | 312 | 321 | 123 | 123 | 132 | 312 | 123 | 132

« 422 | 233 | 323 | 332 | 234 | 243 | 324 | 342 | 423 | 432
ro || 0201 | 0120 | 0120 | 0120 | 0111 | O111 | 0111 | 0111 | 0111 | 0111
T || 312 | 123 | 213 | 231 | 123 | 132 | 213 | 231 | 312 | 321

We have just constructed a map a — (r,,7,) from A, to C,. Now assume a and § are two
distinct x-parking functions of A,. If r, # rg, obviously (rn,ma) # (rg,m3). If ro = rg, then
7o 7 7 by (3). Therefore the map oo — (rq, m,) is injective.

To show that this map is surjective and at the same time define its inverse, let (r,7) € C,,.

Define a sequence o = (a1, as,...,a,) by letting
1, if 1 < (i) <mrp,
o = k k+1 (4)
T k1, 14> r<w(i) <)
i=1 i=1

4



So r is the specification of «, i.e., r = r,. Asris balanced, « defined above is an x-parking function.
Furthermore, m and 7, are both compatible with r. By the formulas (3) and (4), 7 = m,. This
proves that the map o — (r, 7y) is surjective.

2.2 The mapping from B, to C,

Let s = (S1,S59,...,5,) € By. The couple in C,, associated with s is denoted by (rg, 05). First
we describe the permutation og. It is a natural generalization of the construction given in [1].

For any vertex z in a rooted b-forest on [n], there is a unique root y which is connected with
x. Define the height of x to be the number of edges connecting x and the root y. If z is a root,
then the height of x is zero. If a vertex z is the first vertex lying on the path from z to the root y,
we say that z is the predecessor of x, x is a child of z, and write as z = pre(z) and = € child(z).
Every non-rooted vertex z uniquely determines an edge zx, which is denoted by edge(z). Clearly
s = (51,92,...,5,) is fully determined by the sets of roots in S1,S9,...,S,, the function pre(x)
and the color of edge(z) for each vertex x which is not a root.

Fix a sequence of rooted b-forests s € B,,, we define a linear order <; on [n] by the following
rules.

1. If two vertices = and y are both roots, then
x <sy ifeither 2€5; yebS; andi <y,

or z,y € S;and z < y. (5)

2. If the height of x is less than the height of y, then = <; y.
3. If the height of x equals the height of y, and pre(x) <s pre(y), then z < y.
4. If pre(z) = pre(y), then

x <gy if either color of edge(z) < color of edge(y),

or color of edge(z) = color of edge(y) and = < y. (6)
The sequence formed by writing {1,2,...,n} in the increasing order with respect to <s is denoted
by o7t = (071(1),051(2),...,0;%(n)). And the permutation oy is the inverse of o !

Example 2 Take n =13, a =2 and b = 2. A sequence (S1,S2) of rooted b-forests on [n] is given
i Figure 1, where the numbers in italic indicate the coloring of the edges.

We have
ot = (7 8 4 5 1 12 10 9 11 13 2 6 3)
o = (b 11 13 3 4 12 1 2 8 7 9 6 10)
Next we define the forest specification of s. Set rg = (11,79, ... ,ra+(n_1)b) as follows.
1. r; is the number of roots in S; for i =1,2...,a;

2. 7otk is the number of children of o (1) with edge color k — 1, for k = 1,2,...,b;
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Figure 1: A sequence of rooted 2-forests

3. In general, 74 (;_1)p4 is the number of children of o L(i) with edge color k — 1, for k =
1,2,...,band 1 =1,2,...,n — 1.

For instance, the forest specification ry in Example 2 is
rs = (2,2,1,1, 1,0, 1,0,2,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0),
—~—
78 4 5 1 12 10 9 11 13 2 6

where the number under the braces are the corresponding o, (7). (It is obvious that o, !(n) is a
leaf in the rooted forest. So there is no need to record the number of children for o !(n).)

From the above construction, it is clear that ri +ro+---+7, > 1, ri+ro+- + 741 (ne1)p = 1,
and o4 is compatible with rg. Furthermore, knowing r; and o5, we can recover the sequence of
rooted b-forests by the following algorithm.

Algorithm 1.

1. z is a root of S7 if 1 < og(x) < ry; x is a root of Sy if

k
1+ Tiﬁas(x)SZTi, k=23,...,a.
Jj=1 j=1
2. z is a child of o7 1(i) if

a+(i—1)b a+ib

1+ Z < og(x Szlrj.
=

3. After determined that pre(x) =i by Step 2, the color of edge(z) is k — 1 if

a+(i—1)b+k—1 a+(i—1)b+k
1+ Z r; < og(x) < Z T
j=1 3=1



Next we claim that given a sequence of rooted b-forest, ry is balanced. Note that from the above
algorithm, for a non-rooted vertex =,

a+(i—1)b a+ib
pre(x) = 05_1(2') iff 1+ Z r; < og(x) < Z ;.
j=1 j=1

The vertex oy (i) is less than any of its children in the linear order <, by the steps 1 and 2 of
Algorithm 1,

a+(i—1)b
os(o M) < Y T
j=1
that is,

a+(i—1)b
i< >
j=1

fori=1,2,...,n — 1. This proves that ry is balanced.

In conclusion, we have constructed a mapping § — (rs,0s) from B,, to C,. Let s and t be two
distinct sequences of rooted b-forests in B,,. If rg # ry, then (rg, 05) # (r¢,0¢). On the other hand,
if rs = r¢, then o5 # 0. Otherwise s = t by the Algorithm 1. Hence the mapping from B, to C),
is injective.

Conversely, given a couple (r,o) € C,, we can construct a sequence of rooted b-forests s =
(S1,52,...,5,) by Algorithm 1 in which o4 is replaced by o. From the preceding description, it is
easy to check that (r,o0) = (rs, 05). Therefore the mapping is surjective. In conclusion, the mapping
s — (rg,05) is a bijection from B,, to C),.

2.3 The mapping from A, to B,

Combining the results from the previous two subsections, we obtain an explicit mapping between
the set A,, of the x-parking functions for x = (a,b,...,b) and the set B, of sequences of rooted
b-forests.

First, given a sequence s = (S1,59,...,S5,) of rooted b-forests on [n], and let (r,7) = (rg,05).
Then a = (ai,as,...,a,) defined by (4) is an x-parking function, and the mapping s — « gives
the bijection from B, to A,. Explicitly, we have

a,=j<a if in 5, 7 is a root of S}, - (7)
a;=a+ (05(j) —1)b+k+1 ifins, pre(i) = j and the color of edge(i) is k,
where 0 < k < b.
Conversely, given o = (a1, a9, ..., a,), let (r,0) = (ry, 7o), we get a sequence of rooted b-forests
by the Algorithm 1. The explicit formula is
i is a root of S if a;=j<a,
j—a—1 8
pre() =ma (IL7972) +1) it a=j>a ®

and in the second case, the color of edge(i) is j —a — 1 (mod b).

REMARK.



1. The cardinality of the set B, is a(a + nb)" 1. This result can be obtained by using a simple
generalization of the Priifer code on rooted forests ([18], Chapter 5.3). As a corollary, we
again get that the number of x-parking functions for x = (a,b,...,b) is a(a + nb)" 1.

2. In the case of a = 1, there is a simple bijection between A,, and B,,, generalizing the first
bijection of Foata and Riordan [1]. Note that in this case B, is just the set of all rooted
b-forest on [n]. The bijection is defined as follows: for any parking function (a1, as,...,ay),

let C'= (c1,c¢,...,cn—1) beits code where ¢; = a; 41 —a;, (mod 1+nb). Clearly C' € Z’f;rlbb. It

"71b uniquely determines an x-parking function. On the

1+n,
other hand, vectors in ZZ—?—ib are the Priifer codes for rooted b-forest on [n] if one interprets

the (n — 1)-vectors by the usual definition of Priifer codes and the following rules,

can be shown that every code C' € Z

(a) x is a root if in the Priifer code, pre(z) = 0;

(b) « is child of y and the edge connecting xy is of color » — 1 if in the Priifer code, pre(z) =
(y—1)b+rand 1 <r <b.

3 Inversions of sequence of rooted forests and x-parking functions

Kreweras studied a polynomial which enumerates labeled rooted forests by the number of inver-
sions, as well as complements of the ordinary parking functions, which was named suites majeurs
by Kreweras [10]. Such a polynomial also relates to the labeled connected graphs. For any positive
integer b, there are known notions of b-parking functions and of labeled rooted b-forests, gener-
alizing the case studied by Kreweras. In [22] the author showed that the enumerator Pr(bb)(q) for
complements of b-parking functions by the sum of their terms is identical to the enumerator of
IT(Lb)(q) of rooted b-forests by the number of their inversions. In this section we generalize this

result further to the inversion enumerator L(la’b) (q) of sequences of rooted b-forests and the sum

enumerator P,(ﬁ’b)(q) of complements of x-parking functions for x = (a,b,b,...,b). Our method is

an extension of that of [22]: We find the recurrence relations satisfied by Ir(La’b)(q) and Pr(ba’b)(q), and
we introduce the concept of multicolored (a,b)-graph whose excess edges and roots are enumerated

by a polynomial denoted by Cy(f’b)(q). We show that Cy(la’b)(q) satisfies the same recurrence relations

as both I"? (1 + q) and P{"?(1 + q), proving that I{*? (q) = B{"(q).

Given a rooted forest F' on [n] for which every connected component is a rooted tree, an inversion
is a pair (4, k) for which j > k, and j lies on the unique path connecting k to ¢, where i is the root
of the tree to which k belongs. Let inv(F') denote the number of inversions of F'. The inversion
enumerator I,(q) for labeled rooted forests on [n] is the polynomial defined by

[n(q) — Zqinv(F)’
F

where F' ranges over all labeled rooted forests on [n]. If T" is a labeled tree on [n] U {0}, then define
inv(7) := inv(Fp) where Fp is the labeled rooted forest on [n] obtained from 7' by removing the
vertex 0, and letting each neighbor of 0 be a root. It follows that I,,(¢) = > 7 ¢™ @) where T
ranges over all labeled trees on [n] U {0}.

The notion of inversion enumerator can be generalized to the set B,, — the sequences of rooted
b-forests as follows: Let s = (S1,S52,...,5,) be a sequence of rooted b-forests on [n]. Denote the



color of an edge e by «(e). Define the (a, b)-inversion inv(*?) (s) by

inv(®®) (s) = inv(s —I—Z (i —1)|S;| + Z Z

z€[n] eeK(x)

where inv(s) is the number of inversions of S;U Sy ---U S, as an ordinary rooted forest, K () is the
set of edges lying between the vertex x and the root of the unique tree to which x belongs. Define

the (a,b)-inversion enumerator JA (q) by

a inv(@:?) (5
¢ (q) = 3 ™.

SEBn

For a =1, I,(La’b)(q) = (q) is the b-inversion enumerator studied in [22], and Ifll’l)(q) =I,(q) is
the ordinary inversion enumerator.

Theorem 2 The (a,b)-inversion enumerator SR (q) satisfies the recurrence relation

@) =1, 1"g)=1+q+¢++q¢ ",

n

a n i i a—1)(i i : a,
ISUOESY (z‘)(1+q+l+q2‘ g gD (1 gt ) IV (L) (). (9)
=0

Proof. For a sequence s = (S1,S9,...,S5,) of rooted b-forests on [n + 1], let T be the rooted tree
containing vertex 1. Assume 7' contains 7 vertices other than 1, and 7" € S for some 1 < j < a.
Then s \ T = (S1,...,5j-1,5; \ T, Sj41,...,5,) is a sequence of rooted b-forests on n — i vertices.
Let

jth position

and

inv(1,0)
Ki() =™ ™,

T
where T' ranges over all rooted b-trees on [i + 1]. Then
a = n a inv(@:b) (g = a i
1w =3 (5) 1 (e e) =3 (1) e (qu VD) Ki(g).  (10)
=0 s’ 1=0

The rooted b-tree T' on [i + 1] can be formed as follows: First assume the vertex 1 is the root.
Other ¢ vertices form a sequence t' = (11,15, ..., T}) of rooted b-forests with length b. Then merge
the vertex 1 and the forest t’ into the tree 7" by connecting 1 to the roots of T; with edges of color
j — 1. Note that in this case

b
iy () = iy O () + (7~ DITG] = imv (D).
7=1

9



If, instead of 1, k is the root of 7', (1 < k < i+ 1), then the number of inversion will increase by
k — 1. Therefore,

Ki(g) = (1 +q+-+ )" (g). (11)

Substitute (11) into (10), we get

a ~ (n i i a—1)(i iy (b, a,
180 =3 (1) (14 a7+ 0 4 e L g2 DI L o)

i=0
O
Next we define the enumerator P,E""b) (q) for the complements of x-parking functions for x =
(a,b,...,b). First, the enumerator P,(La’b) (q) for the x-parking functions is defined as

Pr(La’b)(Q) — Z gzt tan—n,

a=(a1 - n)

where a ranges over all x-parking functions of length n.

Given an x-parking function a = (a1, ag,--- ,ay), define its complement @ = (a + bn — ay,a +
bn—ag, -+ ,a+bn—ay). Clearly if ¢c; < ¢y <--- < ¢, is the monotonic rearrangement of the terms
of a, then bi <c¢; <a+bn—1forl<i<n.

Define the complement enumerator P,E"’b) (q) of x-parking functions to be the polynomial

Péa’b)(q) = Zq01+02+---+cnfb(";1)
a

LS e _ R pla 1/g)
a€By

For a = 1, Péa’b)(q) = Pr(bl’b)(q) is the generating function of complements of b-parking function
studied in [22].

Theorem 3 The complement enumerator P,Sa’b) (q) of x-parking functions satisfies the recurrence
P =1, PV =1+q++ - +q7

n

(a n n—j)b+a— -1\ pd, pla
Péﬁi)(q):Z(j><1+q+q2+---+q< D) (1 4 g4 oo g PID ()P (). (12)

j=0
Proof. The proof is based on the same idea as the proof of Theorem 7 in [22]. Let a =
(a1,as,...,an+1) be acomplement of an x-parking function of length n+1. Let a; = (a1, a9, ...,an,ap+1—
i) for 0 < i < a,41, and let 3 = a; if &; is a complement of an x-parking function, but &;; is not.
We call 3 the reduced complement of an x-parking function of length n+ 1. It is easy to see that
if 3 is reduced, then the last term of 3 must be a multiple of b. Let Bj be the set of all reduced

complements of x-parking functions of length n + 1 with the last term b(j + 1), for j =0,1,--- | n.
If we define
ﬁglaibfj(Q) = E qa1+a2+"-+an+1—b(”;2>’

(a1,a2,..,an41)€EB;

10



then
—(a,b n—q a— —(a,b
PUl(@) =3 (1+a+-+qm 1) B (g). (13)

To compute ?flafl),j(q), for any B € Bj, assume that 8 = (a1,a2,...,a,,b(j + 1)), and let

c1 < ¢ <--- < cpy1 be the monotonic rearrangement of the terms of 3. Because § is reduced, it
must satisfy the following conditions:

L ¢ =b(j+1);
2. i <¢i<bj+b—1forl1<i<j;and
3. bi<c¢<bn+1l)+a—1forj+2<i<n+1.

First consider (ci,ca,...,¢;). Every ¢; can be uniquely written as bg; + r; with 0 < r; < b.
Condition 2 listed above implies that (¢1,¢,...,¢;) = b(q1,q2,--.,qj) + (r1,72,...,7j) where ¢; <
g2 < --- < g; is the monotonic rearrangement of an ordinary parking function, and 0 <7; <b —1.
Therefore

J J J
D (i —bi)=b> (gi—i)+ > 7.
i=1 i=1 i=1
S el — (g gy Y PR,
(€1,€2,0.5¢5) (41,925--,95)
The terms cq,...,c; will contribute a factor
b—1\j p(L1) (b

+ag+-+a )P ()

to the enumerator Pr(z(ili), ().
Next consider the terms cjy2,...,c,41 in &. By Condition 3, these terms can be expressed as
the sum of the vector (j+ 1)b-1 and a complement of x’-parking function, where 1 = (1,1,...,1),

x' = (a,b,...,b), and both of them are of length n — j. These terms contribute a factor of plad) (q)

n—j
— 7b
to P4 (q).

Combining the above results, we have
a,b n —1\j (1,1 =(a,b
P = (1) 1+ a1 R )

And the formula (12) follows immediately. O

Our goal is to prove that the inversion enumerator of sequences of rooted b-forests is identical
to the sum enumerator of complements of x-parking functions. We do this by introducing certain
graphs on [n] which relate to both the sequences of rooted b-forests and the complements of x-
parking functions. To wit, define a multicolored (a,b)-graph on [n] to be a graph G on the vertex
set [n] such that

11



1. The edges of G are colored with colors 0,1,...,b—

2. There are no loops or multiple edges in G. But G may have edges with the same endpoints
but different colors, and

3. every vertex r is assigned with a subset f(r) of [a] = {1,2,...,a}. We say that r is a root of
G if f(r) #0.

4. For any subgraph H of G, define R(H) = ) .y |f(r)| to be the number of roots in H,
counting multiplicity. Every connected component G’ of G has at least one root, i.e., R(G') >
0.

Denote by F(G) the number of edges of G, and by R(G) = ), |f(r)| the number of roots of G.
Also denote by V(G) the number of vertices of G, Let

c@D) (g Zq G)+R(G)-V(G Zq G)+R(G)-n.

where G ranges over all multicolored (a,b)-graphs on [n]. Set C(()a"b) (9 =1forall a,beN.
The following result for a = 1 is proved in [22].

Theorem 4 (Yan)
L1 +q) = PYY (1 +q) = CH(g).

Note that there is a trivial bijection between multicolored (1,1)-graphs on[n| and the connected
graphs on [n] U {0}: a vertex in a connected graph on [n] U {0} is adjacent to the vertex 0 if and
only if it is a root in the multicolored (1,1)-graph in [n]. Therefore we have the following lemma.

Lemma 1
1,1) q) — ZqE(G)fn’
G

where G ranges over all connected graphs on [n] U{0}.
Theorem 5 (a) We have
[V (14q) = CP(g) = Y gP OO

where G ranges over all multicolored (a,b)-graphs on [n].
(b) We have

P01+ q)) = O (q) = 3 PR

where G ranges over all multicolored (a,b)-graphs on [n].
(¢) 1t follows that

B{Y(q) = 1%Y(qg),

n

qb(g)-l-(a—l)n[r(La,b)(l/q) — PT(La,b) (q) — Z qa1+a2+...+an,n‘
a€An,

12



Proof. (a) It is easy to check that
G @) = I+ =1 (@) = (1 +a)* - 1)/a = [ (1+a).

To show O (q) = Iéa’b)(l + q), it suffices to show that cled (q) satisfies the same recurrence as
L(Ia’b)(l +¢q). That is, (by Equation (9)),

. n n\ (g +1 a(i+1) _ 1 7 a
GHIOEDY () e @) (@). (14)

=0 q

Once the recurrence (14) is proved, Theorem 4 implies that C;Ib’b)(q) = IT(Lb’b)(l + ¢) for all n. This
in turn implies that C*” (q) = L(la’b)(l + ¢) by the recurrence (14).

Let G be a multicolored (a, b)-graph on [n+1], and let G be the connected component containing
the vertex 1. Assume Gy has ¢ + 1 vertices. Then G; = G \ Gy is a multicolored (a, b)-graph on
n — i vertices. Thus

Cr(fl-li)( ) = Z qP(Go)+R(Go)=V (Go) , ¢ B(G1)+R(G1)=V(G1)
(Go,G1)
n n . i
— Z <i>CT(L_J;) (q) Z P (GO)+R(Go)—(i+1), (15)
i=0 Go:|Gol|=i+1

The edges of Gy can be formed as follows. Take a multicolored (b,b)-graph H on Go \ {1}. We
merge the vertex 1 and the graph H to get edges of GGy: First any edge in H is unchanged in Gy;
second, if r is a root in H whose assigned subset is fg(r) C {1,2,...,b}, then we connected r with
1 by edges of colors k — 1, for all k € fr(r), and view r as an ordinary vertex.

Next we compute

TG0 = 3 gFrey 0
Go Go

A vertex r of Gy may be assigned with any subset f(r) of
multicolored (a, b)-graph, the only case prohibited is f(r) =

Z qE(G0)+R(G0 (i+1) —1 Z qE(Go Z Gg) —lci(b,b) (q)((l + q)a, o 1)
Go

Go:|Go|=1i+1 Go

[a] = {1,2,...,a}. By the definition of

] pu—
() for all r € Gy. Therefore

Substituting this into Equation (15), we obtain the recurrence (14).

(b) To show P,(f"b)(l +4q)) = clm? (q), it suffices to show that they satisfy the same recurrence
relation. By Equation (12), we need to show

e () — Z": (?) ((1 4 g)(n—ibta _ 1) ((1 +q) — 1j)0](1,1)((1 19— 1)) (16)

= q q

Given a multicolored (a,b)-graph G on [n+ 1] = {1,2,...,n + 1}, take away the vertex 1 and
all the edges connected to 1. Assume that Fy, Fs, ..., F; are the connected components of G \ {1},

13



where F1, Fy, ..., F, (r <t) are those which do not have any root, i.e., R(F;) =0 for 1 <i <r. Let
K be the induced subgraph containing Fy U Fo U--- U F,. U {1}, and let L be G\ K. Furthermore
assume the number of vertices of K is j + 1. We have

Cfﬂ’ﬁ)(q) _ ZqE(G)+R(G)7(n+1)

— ZqE(K)+R —(+D) | gE@+R(L)=(n—j) . 4UG) (17)
KUL

where G ranges over all multicolored (a,b)-graphs on [n + 1], and where d(G) is the number of
edges between vertex 1 and the subgraph L.

There are (?) ways to choose K. Once the vertices of K are fixed, since Fi, Fb, ..., F,. do not
contain any roots, they must connected to the vertex 1. So K is a connected (a,b)-graph on j + 1
vertices with at most one non-empty root-set at vertex 1. By Lemma 1,

Mg Zq (18)

where P ranges over all connected j + 1 graphs. Apply Equation (18) to K, and note that in K,
instead of a single edge between a pair of vertices, there may exist multiple edges with colors from
the set M, where ) # M C {0,1,...,b— 1}. Hence

E(K)
T FEGH — G Y (f: (’;) qi>
K G

i=1

) J
= q_(JH)CJ(-l) ((1 +q)" - 1> : ((1 +q)° - 1)
b J
_ 1o b (1+4¢"—1
= q C; 14+4q)° -1 <7 . 19
(1) (G (19)
It is obvious that L is a multicolored (a,b)-graph on n — j vertices. Hence

Zq S = ™).

To count d(G), the number of edges between vertex 1 and the subgraph L, we need to distinguish
two cases.

1. f(1) = 0. In this case, 1 < d(G) < b(n — 7).

2. f(1) # 0. In this case, 0 < d(G) < b(n — j). Also note that the set f(1) assigned to the root
1 can be any non-empty subset of [a].

14



Therefore we have

C(a,b) (q) = qE(L)+R(L)*("*j)

E(K)—(j+1) | JR(K)+d(G)
n+1 q

q
UL

_ Z (j)c“ b (7“ ro 1)j ) (149 1)

b(n—j)

(1+qr— <n'j )Qif"z” ((nim)qi
=1

=

0
B Z (;z) <(1 + Z)" - 1>j ((1 + Q)("qj frte — 1) eV (149" = 1) ().

J=0

Q

This finishes the proof.

(c) It is follows immediately from the above results. O
The following corollary follows from Stanley [20], Theorem 3.3.

Corollary 5.1 The generating function identity holds:

" S an+b( )a}_'
> 1T = ZZMO phE (20)

Proof. The proof is a straightforward extension of Stanley’s ([20], Theorem 3.3, (b)). Let
L) =2 ¢

where G ranges over all connected graphs on [n] with b-colors, with no loops and with no multiple
edges of the same color. (We do not assign any root-set to vertices.) Without the condition that

G is connected, the corresponding generating function is (1 + q)b(g). Hence by the exponential
formula, (e.g., [18], Chapter 5), we have

) )z b(3) &
FO@) = Y TV (q) 7 =log | Y- (1+0) (2) —
TL>1 nZl

We can get a multicolored (a,b)-graph on [n| by choosing a partition 7 = {B1,..., B;} of the set

[n], placing a graph enumerated by TT(Lb)(q) on each block B;, and assign a set f(r) C [a] of roots
to each vertex 7 of B; such that |J,.p f(r) # (. Hence

@) = Y @) T @+ ™ = 1] (14 ) — 1.
m={Bi,...,Bj}

15



where 7 ranges over all partitions on [n], and b; = #B;. Again by the exponential formula we get

S @)L = e (FO((1 + o) - FO)

n>0

= eXp<10gZ 1+4q)° ()(1+Q)an o logz 1+ q)¥ >

n>0 n>0
Ym0l + @) ) 2y
Yool + )G e

Now substitute ¢ — 1 for ¢ and use Theorem 5 to get the desired formula. O

4 Depth-first and breadth-first searches

In Section 3 we proved an identity between the inversion enumerator of sequences of rooted
b-forests, and the sum enumerator of complements of x-parking functions for x = (a,b,...,b) by
analyzing the recurrences satisfied by the corresponding generating functions. It is natural to ask for
combinatorial correspondences between sequences of rooted forests, generalized parking functions,
and labeled multicolored (a,b)-graphs. In this section we establish such correspondences using
depth-first search and breadth-first search algorithms.

4.1 Depth-first search on multicolored graphs

Let @ = b = 1. Then I,(q) = iy (g) is the ordinary inversion enumerator of labeled rooted
forests, and C),(q) = C’,(Zl’l)(q) is the excess edge and root enumerator of multicolored (1, 1)-graphs.
In each rooted structure described above, adjoining a vertex 0 and replacing a root ¢ with an edge
connecting i and 0, we obtain a labeled tree or a connected graph on [n]U{0}. As proved implicitly
by Mallows and Riordan [11], and more explicitly by Kreweras [10],

I,(1+q) Z ¢P e, (21)

where G' ranges over all connected graphs on [n] U {0}, and I,,(¢) = >.1¢™ @) enumerates the
inversions of labeled trees on [n] U {0}.

In [3] Gessel and Wang established a connection between labeled connected graphs and in-
versions of trees by a depth-first search (DFS) algorithm. This algorithm leads to an elegant
combinatorial proof of the identity (21), which can be easily extended to an algorithm on the
multicolored (a, b)-graphs.

To describe the DF'S on multicolored graphs, we recall the construction on connected graphs
by Gessel and Wang. Let G be a connected graph on [n] U {0}. The DFS algorithm applies to G
and return a certain spanning tree 7 (G) by the following procedure: We start at vertex 0, and at
each step we go to the greatest adjacent unvisited vertex if there is one, otherwise, we backtrack.
For example, from the graph in Figure. 2, we get the spanning tree in Figure. 3.

16



3 1 2

Figure 2: A connected graph on [6] U {0}

Figure 3: Spanning tree of Figure 2 found by DFS

Fix alabeled tree T'on [n] U {0}. Let G(T") be the set of connected graphs G for which 7(G) = T.
Define a set £(T) of edges not in 7" whose elements are in one-to-one correspondence with the
inversions of T: To every inversion (j,k), (j > k > 0), associate the edge between k and the
predecessor of j. For the above tree, the edge £(T") are indicated by dotted lines.

Figure 4: The set £(T) of edges associated to inversions

Gessel and Wang characterized the set of connected graphs in G(T').

Theorem 6 (Gessel & Wang) G(T') consists of those graphs obtained from T by adjoining some
edges in E(T).

An immediate consequence of Theorem 6 is
Z qE(G)fn — (1 + q)inv(T).
Geg(T)

Adding over all trees 7" in [n] U {0} yields

Culg) =Y _q" D=3 """ = 1,(1+¢).
G T
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Now we extend the DFS to the set of multicolored (a,b)-graphs. Given a multicolored (a,b)-
graph G on [n], first replace the root-sets by colored edges as follows. Adjoin the vertex 0. For
each vertex r € [n] with assigned root-set f(r) C [a], replace f(r) by edges connecting r and 0
with colors {k — 1|k € f(r)}. The resulted graph on [n] U {0} has multicolored edges with no roots.
Denote it by G’. Apply the DFS to the set of multicolored graphs G’. The algorithm starts at
vertex 0. At each step, we go to the unvisited vertex for which the incident edge is of the greatest
color. If there are more than one unvisited vertices with the same greatest edge color, we go to the
largest one. If there is no such vertex, we backtrack. For example, for the multicolored graph G’
in Figure. 5 with a = b = 2, the DFS algorithm gives the multicolored spanning tree in Figure. 6.

0
0
0
3
2 4
1 0
1 0 5

Figure 5: A multicolored graph G’ on [5] U {0}. Edge colors are in italics.

Figure 6: Spanning tree found by DFS for the multicolored graph in Figure 5

The output of the DFS algorithm is a spanning tree 77 = 7T (G’) on vertices [n] U {0}, where the
edges of 1" are colored by 0,1, ...,b — 1, and the edges connecting to 0 are colored by 0,1,...,a — 1.
Call 77 a multicolored tree on [n] U {0}. There is a trivial bijection between such structures and the
sequences (51,59, -+ ,S,) of rooted b-forests on [n] by replacing edges incident to 0 with root-sets.
Given a multicolored tree T” on [n] U {0}, let G'(T") be the set of multicolored graphs G’ for which
T(G") =T'. As in the case of connected graphs, we define a set £'(T") of edges not in 7" whose
elements are in one-to-one correspondence with the (a,b)-inversion of 7".

Recall for a labeled multicolored tree 7" on [n] U {0}, the (a,b)-inversion inv(®*?)(T') is defined
by

inv( @) (T") = inv(T") + + Z Z k(e),

z€[n] eeK(x)

where inv(7”) is the number of inversions of 7" as an ordinary labeled tree on [n] U {0}, K(z) is
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the set of edges lying between x and 0, and x(e) is the color of the edge e. The set £'(T") is formed
by the following rules, (see Figure 7).

1. For every ordinary inversion (j, k) where j > k > 0 and j lies on the unique path from 0 to
k, we associate an edge between k£ and ¢, where ¢ is the predecessor of j. The color of this
edge is k(ij).

2. For every pair (p,m) where p > 0 lies on the unique path from 0 to m, let n be the vertex on
the path right after p. If the edge pn is of color k, we associate k edges connecting vertices p
and m with colors 0,1...,k — 1.

(In the following figure, the dotted lines indicate the edges in E'(T”). )

(i >k)
Figure 7: The edge set £'(T")

For the multicolored tree in Figure 6, the edges of £'(1”) are 02, 31, 01, 34 with color 1 by Rule
1; and 03, 02, 05, 01, 04, 32, 35, 31, 34 with color 0 by Rule 2.
Similar to the Theorem of Gessel and Wang’s, we have

Theorem 7 For a multicolored tree T' on [n] U {0}, the set G'(T") consists of those multicolored
graphs G’ obtained from T' by adjoining some edges in E'(T").

Proof. Let S’ be a subset of £&'(T') and let G’ = S’UT". 1f we perform the DFS on the multicolored
graph G’, the spanning tree 7 (G’) will be precisely 7" because

1. The first vertex to be visited is the same, namely, 0.

2. If v1,v9, ..., vk, the first k vertices visited by the DFS, and the edges connecting them used
in the DFS, coincide with those of T”, then vy, 1, the (k+1)™ vertex, and the color of vy 1,
will still be the same as those of 7”. The reason is, vy is connected by an edge in £'(T”) to a
vertex j only if k(vgj) < K(vpvkt1), or kK(vgj) = K(vRVE+1) but § < vgpr. In DFS, we follow
the edge with greatest color, and go to the largest vertex first. Thus we will follow exactly
the same search order as in 7.

Conversely, if vy,vs,...,v, are the first k vertices visited in a multicolored graph G’ with
T(G") = T’, then in order to go to vgy1 along the edge vgvgr1 € T” in the next step, vy must
not connect to any unvisited vertex j such that x(vyj) > K(vkvgs1), or K(vgj) = K(vgviky1) but
j > vgy1. This completes the proof. O
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Corollary 7.1

Z qE(G)fn — (1 + q)inv(“*b)(T’)‘
G'eg'(1")

Adding over all multicolored trees T" on [n] U {0} yields

Cr(ba,b) (q) _ Z qE(G)+R(G)—n _ Z(l + q)inv(a‘b)(T') _ I7(La,b)(1 + Q)-

G multicolored T’
(a, b)-graphs on [n]

4.2 Breadth-first search on multicolored graphs

Another algorithm which gives a spanning tree in a connected graph is the breadth-first search
(BFS) algorithm. It was used by J. Spencer [16] to develop an exact formula for the number of
labeled connected graphs on [n] with n— 1+ k edges (k fixed) in terms of appropriate expectations.
Moving to asymptotics, Spencer showed that the expectations can be expressed in terms of a certain
restricted Brownian motion. In this section, we will use the BFS to establish a combinatorial
correspondence between labeled connected graphs and ordinary parking functions, and extend this
correspondence to multicolored (a,b)-graphs and x-parking functions for x = (a,b,...,b).

First we state the BFS algorithm in the case a = b = 1, i.e., in connected graphs on [n] U {0}. It
can be described as a queue @ that starts at vertex 0. (We follow the description of [16]). At each
stage we take the vertex x at the head of the queue, remove x from the queue, and add all unvisited
neighbors of x to the queue, in the numerical order. We will call that operation “processing z”.
For the connected graph in Figure 2, the BFS given the spanning tree

0

2 6
Figure 8: Spanning tree of Figure 2 found by BFS

The queue @ at each stage t is

t 0 1 2 3 1 5 6 7
Q 0 3 1 1 5 2 6 0
4 1 5 6
Tt 2 1 1 0 2 0 0
@ 1 2 2 2 1 2 1 0

Let z; be the number of vertices found by the ¥ vertex processed (not vertex number t), which
in our example, are (z1,z2,...,27) = (2,1,1,0,2,0,0). Note that x,+1 = 0 always. Let ¢ be the
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size of the queue after the ¢t vertex is processed. Then ¢y = 1 and ¢ = g;—1 + = — 1, which, in our

example, are 1, 2, 2, 2, 1, 2, 1, 0. For a connected graph G, the necessary and sufficient conditions
on the sequence ¢; are

Gn+1 =0, and g >0 fori <n, (22)
which are equivalent to
1+ ---x; >ifori <m, 1+t =N

Also note that the queue uniquely determines a permutation of n, namely, the order that the
vertices are processed in the queue. In our example, it is (341526).

For a labeled tree T' with root 0, denote by o(7") the permutation described above, and let
z(T) be the vector (z1,z2,...,z,). Clearly in the permutation o(7) = ajas---a,, the term a;’s
are increasing on every interval of the form {1+ 3% 2,2+ 3% 2 . S¥1e That is, the
permutation o~ (T) is compatible with the vector z(T) (cf. Section 2, Page 3). In [1], Foata and
Riordan gave an explicit bijection between the set of pairs (z(7),0~1(T")) and the set of ordinary
parking functions. (Also see Section 2.1 with a = b = 1). The parking function «(T") = (b1, ..., b,)
correspondents to (z(T),o~1(T)) is the sequence whose terms are 171,272 ... n®* and whose order
is given by o (7). Precisely,

o (T)(i) = Card{j € [n] | bj < b;, or b; = b; and j < i},
or equivalently,

b — 1, iflga’l(T)jgml,
T i e <o T < Yy e

In the example, o~ 1(T) = (351246), so the corresponding parking function is (251135) whose terms
written in specification is 122'3'4%9526°. The sum of the terms in the parking function o(T) is

25 bi =200 .

Let G1(T') be the set of connected graphs for which the spanning tree found by the BFS is T.
A crucial observation is made by Spencer [16]: An edge (7, 7) can be added to T' without changing
the spanning tree under the BFS if and only if in the queue, when the first of the two vertices was
processed, the other was currently in the queue. In our example, 34, 41, 15, 26 could be added to
T. Let £ (T') be the set of all such edges. It follows that

Theorem 8 (Spencer) G (T) consists of these graphs obtained from T by adjoining some edges
m 51 (T)

Thus
Z qE(G‘)—n =(1+ q)lgl(T)\'
GeG(T)

Now we compute |£1(T")|. From the queue @, we have

n n n

‘51(T)|:Z(Qi_l):Z('x1+"'+xi_i):Z(n—i-l—i)xi— <n—2kl)

=1 1=1 i=1
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Since Y i ; x; = n, the above number equals

(n+1)§;x—ém— (”;1> - (”;1> —sz

Comparing with the parking function «(7"), we have |&1(T)| = ("—ZH) — Y b if o(T) =
(b1,ba,...,b,). Adding over all trees T on {0} U [n] yields

Culg)= Y ¢POm= 3 )RR = PG ),

G connected (b1,....bn)Epark(n)

where park(n) is the set of all ordinary parking functions of length n.

To extend the BF'S to multicolored (a,b)-graphs, we need some modifications on the algorithm.
Given a multicolored (a,b)-graph G1, as in the DFS, we replace the root-sets with colored edges by
adjoining vertex 0, and for each vertex r with assigned root-set f(r) C [a], replacing the root-set
be edges connecting 0 and 7 with colors {k — 1|k € f(r)}. The BFS is applied to the resulted
multicolored graph G on [n] U{0}.

The BFS on G again is described as a queue @ that starts at vertex 0. So Qo = (0), and
go = 1, where ¢; is the size of the queue at time t. For t = 1,...,a — 1, form Q; from Q;—1 by
adding all unvisited vertices which are connected to 0 with edges of color ¢ — 1. The vertices are
always added in numerical order. For ¢ = a, remove vertex 0 from the queue, and add all unvisited
vertices which are connected to 0 with edges of color a — 1. We say the vertex 0 is processed during
time 0 to a — 1. It is the first vertex to be processed.

In general, for t = a+ib+7r, (1 <r < b-—1), let x be the head of the queue at time ¢t — 1. Form
Q: from Q;_1 by adding all unvisited vertices which are connected to x with edges of color r» — 1.
For t = a + (i + 1)b, form @Q; from Q:—; by removing z from the queue and adding all unvisited
vertices which are connected to = with edges of color b — 1. We say that the vertex z is processed
during time a + ib to a + (i + 1)b — 1. For the multicolored graph in Figure 5 with a = b = 2, the
BF'S gives the multicolored spanning tree 7"

Figure 9: Spanning tree found by BFS for the multicolored graph in Figure 5

The queue for the BFS on the multicolored graph in Figure 5 is illustrated in the following
table.
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t 10111234567 10 | 11 | 12
Q000|223 |3 44115 |50
2133 4111
3 5195
Tt 2/0/0(0(1(2]010(0]) 01010
g |1]13]2|2]1 3131212110

In the above table x; is the number of vertices that join the queue at time t. Note that we
always have x4, 1)p4, = 0 for 7 = 1,...,b, since the last vertex in the queue has no unvisited
neighbors in the multicolored graph G. The relation between the sequence x; and ¢; are

q =1, ¢ = g1+, (1<i<a—1), da = Ga—1 + o — 1. (23)
And in general,

Gt = qr—1+ 4 for t=a+ib+r, 1<r<b—1,
@ =q—1+x—1, for t=a+ (i+1)b.

A sequence ¢ is the sizes of Q; for a connected multicolored graph G if and only if
Qatnp = 0, and q; > 0 for i < a + nb,
which are equivalent to

T1+ X2+ + Tatip > 1+1, 1=0,1,...,n—2
1+ T2+t Top(n-1)p = T

(Compare with Formula (1) in Sec. 2.) Also note that the queue @ uniquely determine a
permutation of n, namely, the order that the vertices are processed (except 0). In the exam-
ple, it is (23415). Denote by o(7”) this permutation. Then the terms of o(7”) are increasing
on every interval of the form {1 + Zle ;2 + Zle T, .. .,Zfill x;}. That is, the permuta-
tion o~ 1(7”) is compatible with the vector z(1") = (x1,...,Zq4(m-1))- In Section 2.1 we con-
struct a bijection between the set of pairs (x(T"),o~1(T")) and the set of x-parking functions for
x = (a,b,...,b). The explicit formula is given in (4) where we substitute o=!(7") for 7. De-
note by a(T’) = (by,b3...,b,) the x-parking function corresponding to (z(T"),c=1(T")). In our
example, o(1") = (23415), so o~ }(1") = (41235). Then (1) = (6,1,1,5,6) whose terms writ-
ten in specification is (i%) = 12203%4951627°809910°11°12°. The sum of the terms in a(T") is
2.ibi= Z?;(n_l)b ;.

Fixed a multicolored tree 7" on [n]U{0}. An edge (m,n) with color k can be added to 7"
without changing the spanning tree under the breadth-first search if and only if in the queue, when
the first of the two vertices, say m, is being processed, the other vertex, n, was currently in the
queue, and the edge connecting m and n in 17 is of a color k' < k, (if there is such an edge).
Another way to state this is, when m is processed during time ¢t = a+1ib to t = a(i + 1)b—1,nis in
the queue at the time ¢t = a + ib + k. Fix m, there are q,4+r — 1 many such pairs (m,n). In our
example, the following edges can be added to 7" without changing the result of the BFS: 23 (¢ = 2),
A1, 45(t = 6), 15(¢ = 8) with color 0; 02, 03 (¢t = 1), 23(t = 3), 34 (t = 5), 41, 45(t = 7), 15(t = 9)
with color 1. Let &1 (T”) be the set of all such edges, and let G| (7”) be the set of multicolored graphs
for which the spanning tree found by the BFS is 7”. The above argument shows
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Theorem 9 G (1") consists of those graphs obtained from T" by adjoining some edges in E;(T").

Finally we compute |£'(T")|. From the structure of the queue @, we have

a+nb—1 (a—i—nb—l

&1 = (i —1) = Z qi> —(a+nb—1)
i i=1
a+nb—1
(a+nbi)$ib<g) +(a—1)—(a+bn—1)

=1

a+nb—1 a+nb—1 n+1
= (a+nb) ; T — Z zxib( 5 >

i=1

n a+nb—1
= an—l—b(2> Z 1T;.

=1

Comparing with the x-parking function a(T"), we have |E{(T")| = an+b(5) — >, b; if (T") =
(b1,ba,...,b,). Adding over all trees T on [n] U {0} yields

Corollary 9.1

e = 3 9= 3 RN PV g),
G’l multicolor on (b1,---5bn)
mju{o} x-parking functions

Combining with the results of depth-first search in Section 4.1, one has

IT(La,b)(l + q) _ Z qE(G)+R(G)—n _ pT(La,b)(l + q)'

G multicolored
(a, b)-graph on [n]
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