Higher Derivatives (Section 3.8)

The second derivative of the function \(y = f(x) \) is

\[
y'' = f''(x) = \frac{d}{dx} \left(f'(x) \right) = \frac{d}{dx} \left(\frac{d}{dx} f(x) \right) = \frac{d^2 y}{dx^2} = D^2 f(x) = D_x^2 f(x)
\]

The third derivative of the function \(y = f(x) \) is

\[
y''' = f'''(x) = \frac{d}{dx} \left(f''(x) \right) = \frac{d^3 y}{dx^3} = D^3 f(x) = D_x^3 f(x)
\]

The \(n \)th derivative of the function \(y = f(x) \) is

\[
y^{(n)} = f^{(n)}(x) = \frac{d}{dx} \left(f^{(n-1)}(x) \right) = \frac{d^n y}{dx^n} = D^n f(x) = D_x^n f(x)
\]

EXAMPLE 1
Find the second derivative of the following functions

\[
g(u) = \frac{1}{\sqrt{1-u}}
\]

\[
g(x) = x^2 \cos x
\]

EXAMPLE 2
Find a formula for \(f^{(n)}(x) \) when \(f(x) = \frac{1}{(1-x)^2} \)

\[
D^{99} \sin 3x =
\]

The instantaneous rate of change of the velocity is the acceleration. So if \(s(t) \) is the position of an object at time \(t \), the acceleration is \(a(t) = v'(t) = s''(t) \)

EXAMPLE 3
Given the position in meters at time \(t \) in seconds of an object is given by \(s = 2t^3 - 9t^2 \), find the times when the acceleration is zero. At the times when the acceleration is zero, where is the object and what is the object’s velocity?
EXAMPLE 5
(a) Sketch the curve traced by the given vector equation
(b) Find $r'(t)$ and $r''(t)$
(c) Sketch the position vector $r(t)$, the tangent vector $r'(t)$ and $r''(t)$
for the given value of t.

$$r(t) = \langle 2\cos t, 3\sin t \rangle, \quad t = \pi/3$$

$$r(t) = t^3 i + t^2 j, \quad t = 1$$
EXAMPLE 6
Find \(f''(x) \) if \(f(x) = g(x^3) + (g(x))^3 \).

EXAMPLE 7
Find \(y'' \) by implicit differentiation for \(\sqrt{x} + \sqrt{y} = 1 \).

EXAMPLE 8
Find \(f' \) and \(f'' \). Sketch \(f, f' \) and \(f'' \) and determine their domains.
\[f(x) = |x^2 - x| \]