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Markov Chains

Every Mother’s Day, a certain individual sends her mother either roses or
carnations. If she sends roses one year, 30% of the time she will send
roses again the next year. If she sends carnations one year, 80% of the
time she will send roses the next year. What is the probability that she
sends roses @ next year if there is a 50% chance she sends roses this year?
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A Markov chain or process describes an experiment consisting of a finite
number of stages.

e The outcomes and associated probabilities at each stage depend only
on the outcomes of the preceding stage.

e The outcome at any stage of the experiment in a Markov chain 1is
called the state of the experiment.

A transition matrix 7'1s a matrix such that:
e The matrix 1s square
All entries are nonnegative.
The entries 1n each column sum to 1.
The entries represent conditional probabilities

The 1nitial state is stored as matrix X;. The matrix X; represents the

distribution after i stages.
X, =T"X,
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Example
Every Mother’s Day, a certain individual sends her mother either roses or
carnations. If she sends roses one year, 30% of the time she will send

roses again the next year. If she sends carnations one year, 80% of the
time she will send roses the next year.

a) Find the transition matrix.

b) If there 1s a 40% chance of giving roses this year, what is the
probability that she sends roses in ten years?

¢) Given she sent carnations this year, what is the probability that she will
give carnations again 10 years from now?
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The steady state (long term) distribution of 1s X, and |TX, =X . v

Example
What is the long term distribution for flowers on Mother’s Day?

X= [ﬂ Th=X, = Bgm_ Bc] = 3::2 ;

15 - "'l% :D g

X=X '6_ O_—_{;-'q .90“,4,03/'5

.Whﬂa—g =D S =89 1= ot |Us
oy | 00| o

The (g dom gt v 4o soad voses 35t o 1R, fimo ond canm.
1 of e fimg

(c) Janice L. Epstein



13c_Notes_M166H_ChM.notebook November 24, 2013

Example
A study has shown that a family living in the state of Denial typically

takes a vacation once per year. The vacations can be in-state, out-of-state
or international. The transition matrix is
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What 1s the long term distribution of vacation destinations?
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Example

A company offers three different cars to its executives each year. Those
who have a brand A car ask for a brand A car again 30% of the time, they
ask for a brand B car 30% of the time and a brand C car 40% of the time.
Those who are driving a brand B car ask for a brand A car 50% of the time
and a brand C car 50% of the time. Those who are driving a brand C car
ask for a brand C car all of the time.

a) Find the transition matrix for this Markov process.
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b) What is the long term distribution of cars?
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A transition matrix 7 is a regular Markov chain if the sequence 7, 7%,
T°,... approaches a steady state matrix with all positive entries.

An absorbing transition matrix has the following properties:
1. There 1s at least one absorbing state

2. Itis possible to go from any non-absorbing state to an absorbing
state in one or more stages.

An absorbing state is a unit column with the 1 on the main diagonal.

Example
Classify the following matrices as regular, absorbing, neither, or not a
transition matrix.
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Absorbing stochastic matrices can be rewritten as {- -}- } ,

The steady state solution is {

b
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The matrix F =(I - R)_l is called the fundamental matrix and the entry

Ji gives the expected number of times the system will be in the it
nonabsorbing if it is initially in the /™ nonabsorbing state.

The sum of the entries in the ;” column of F is the expected number of
stages before absorption if the system was initially in the ;”

bsorbing state.
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Example
A person plays a game in which the probability of winning $1 is 0.50
and the probability of losing $1 is 0.50. If she goes broke or reaches $4,
she quits. Find the long-term behavior if she starts with $1, $2, or $3.
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