Markov Chains

Every Mother's Day, a certain individual sends her mother either roses or carnations. If she sends roses one year, 30% of the time she will send roses again the next year. If she sends carnations one year, 80% of the time she will send roses the next year. What is the probability that she sends roses in next year if there is a 50% chance she sends roses this year?

A Markov chain or process describes an experiment consisting of a finite number of stages.

- The outcomes and associated probabilities at each stage depend only on the outcomes of the preceding stage.
- The outcome at any stage of the experiment in a Markov chain is called the state of the experiment.

A transition matrix T is a matrix such that:

- The matrix is square
- All entries are nonnegative.
- The entries in each column sum to 1.
- The entries represent conditional probabilities

The initial state is stored as matrix X_0 . The matrix X_i represents the distribution after i stages.

$$X_n = T^n X_0$$

Every Mother's Day, a certain individual sends her mother either roses or carnations. If she sends roses one year, 30% of the time she will send roses again the next year. If she sends carnations one year, 80% of the time she will send roses the next year.

- a) Find the transition matrix.
- b) If there is a 40% chance of giving roses this year, what is the probability that she sends roses in ten years?
- c) Given she sent carnations this year, what is the probability that she will give carnations again 10 years from now?

The steady state (long term) distribution of is X_L and $TX_L = X_L$.

Example

What is the long term distribution for flowers on Mother's Day?

A study has shown that a family living in the state of Denial typically takes a vacation once per year. The vacations can be in-state, out-of-state or international. The transition matrix is

$$IS OS IT$$

$$IS \begin{bmatrix} 0.10 & 0.20 & 0.60 \\ 0.50 & 0.25 & 0.35 \\ IT & 0.40 & 0.55 & 0.05 \end{bmatrix}$$

What is the long term distribution of vacation destinations?

A company offers three different cars to its executives each year. Those who have a brand A car ask for a brand A car again 30% of the time, they ask for a brand B car 30% of the time and a brand C car 40% of the time. Those who are driving a brand B car ask for a brand A car 50% of the time and a brand C car 50% of the time. Those who are driving a brand C car ask for a brand C car all of the time.

a) Find the transition matrix for this Markov process.

b) What is the long term distribution of cars?

A transition matrix T is a *regular* Markov chain if the sequence T, T^2 , T^3 ,... approaches a steady state matrix with all positive entries.

An absorbing transition matrix has the following properties:

- 1. There is at least one absorbing state
- 2. It is possible to go from any non-absorbing state to an absorbing state in one or more stages.

An absorbing state is a unit column with the 1 on the main diagonal.

Example

Classify the following matrices as regular, absorbing, neither, or not a transition matrix.

$$\begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix}$$

$$\begin{bmatrix} 0.7 & 1 \\ 0.3 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0.5 \\ 0 & 0.5 \end{bmatrix}$$

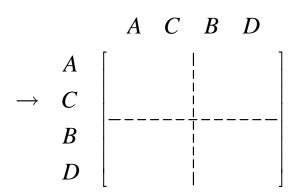
$$\begin{bmatrix} .3 & 0 & 0 & 0 \\ .1 & 1 & 0 & .5 \\ .4 & 0 & 1 & 0 \\ .2 & 0 & 0 & .5 \end{bmatrix}$$

$$\begin{bmatrix} .3 & .2 & 0 \\ .7 & .8 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Absorbing stochastic matrices can be rewritten as $\begin{bmatrix} I & S \\ 0 & R \end{bmatrix}$

The steady state solution is $\begin{bmatrix} I & S(I-R)^{-1} \\ 0 & 0 \end{bmatrix}$

	F	A B	C	D			\boldsymbol{A}	C	\boldsymbol{B}	D	
\boldsymbol{A}	[1	1/8	0	0		\boldsymbol{A}			 		
\boldsymbol{B}	0	5/8	0	0	\longrightarrow	\boldsymbol{C}			 		
\boldsymbol{C}	0	0	1	1/6		\boldsymbol{B}					-
D	0	1/4	0	5/6		D			 		



The matrix $F = (I - R)^{-1}$ is called the fundamental matrix and the entry f_{ij} gives the expected number of times the system will be in the i^{th} nonabsorbing if it is initially in the j^{th} nonabsorbing state.

The sum of the entries in the j^{th} column of F is the expected number of stages before absorption if the system was initially in the j^{th} nonabsorbing state.

A person plays a game in which the probability of winning \$1 is 0.50 and the probability of losing \$1 is 0.50. If she goes broke or reaches \$4, she quits. Find the long-term behavior if she starts with \$1, \$2, or \$3.