CHAPTER 14: APPORTIONMENT

14.1 The Apportionment Problem

Exact University needs to create a student government with 24 representatives from 6 groups of students. Here are the enrollment numbers:

	populations, p_i	quotas, q_i
U1	12,000	
U2	10,000	
U3	8,000	
U4	8,000	
U5	4,000	
U6	6,000	
TOTAL		

The total population, p, divided by the house size, h, is called the standard divisor, s.

$$s = \frac{p}{h}$$

A group's quota q_i is the group's population, p_i , divided by the standard divisor, s.

$$q_i = \frac{p_i}{s}$$

Messy University has 5 groups of students and needs to elect 12 representatives.

G1	32,000	
G2	2,000	
G3	5,000	
G4	6,000	
G5	4,000	
TOTAL		

s =

An *apportionment problem* is to round a set of fractions so their sum is maintained at its original value.

The rounding procedure used in an apportionment problem is called an *apportionment method*.

Notation

- Round q to the nearest integer is [q] and half-integers round up.
- Round q down is $\lfloor q \rfloor$
- Round q up is $\lceil q \rceil$

The U.S. constitution says the House of Representatives "shall be apportioned among the several states within this union according to their respective Numbers..."

Trivia question: What was the first bill in U.S. history to be vetoed?

14.2 Hamilton Method

- 1. Round each quota down. There can be a requirement to not round down to zero (House of Representatives) or even one (TAMU Faculty Senate has a minimum of 2 from each college).
- 2. Calculate the number of seats left to be assigned.
- 3. Assign the seats to those with the largest fractional parts.

Example

Apply Hamilton's method to Messy U's apportionment.

		q	$\lfloor q \rfloor$	Н. q
G1	32,000			
G2	2,000			
G3	5,000			
G4	6,000			
G5	4,000			
TOTAL				

<u>Example</u>

A school district received 46 computers to distribute to 5 high schools based on the number of AP statistics students at each school using Hamilton's plan.

School	#	q	$\lfloor q \rfloor$	Н. q
Alpha	39			
Beta	70			
Gamma	18			
Delta	222			
Epsilon	210			
TOTAL				

s =

The district has one more to distribute. Reapportion based on 47.

School	#	q	$\lfloor q \rfloor$	Нq
Alpha	39			
Beta	70			
Gamma	18			
Delta	222			
Epsilon	210			
TOTAL				

A *paradox* is a statement that is seemingly contradictory or opposed to common sense and yet is perhaps true.

The *Alabama paradox* occurs when a state loses a seat as the result of an increase in the house size.

The *population paradox* occurs when there is a fixed number of seats and a reapportionment causes a state to lose a seat to another state even though the percent increase in the population of the state that loses the seat is larger than the percent increase of the state that wins the seat.

Consider two numbers, A and B, where A > B.

The *absolute difference* between the two numbers is A - B

The *relative difference* between the two numbers is $\frac{A-B}{B} \times 100\%$

<u>Example</u>

Find the absolute and relative differences between the given numbers.

(a) 100 and 101

(b) 1000 and 1001

(c) 100 and 200

(d) 600 and 500

Example

100 new faculty members will be apportioned using the Hamilton plan to three colleges at a university according to their enrollment in 2000. This will be done again in 2005.

s =

College	Students	<i>q</i> 2000	$\lfloor q \rfloor$	Н. q
Ag	3,755			
Business	36,100			
Science	10,250			
TOTAL				

College	Students	<i>q</i> 2005	$\lfloor q \rfloor$	Hq	diff	pop chg %
Ag	3,800					
Business	36,150					
Science	10,350					
TOTAL						

The *new states paradox* occurs in a reapportionment in which an increase in the total number of seats causes a shift in the apportionment of existing states. This was discovered in 1907 when Oklahoma joined the union.

Example

A pre-school received 20 picnic tables to distribute to two age level groups, the three-year olds and the four-year olds.

s =

Age Group	p	q	$\lfloor q \rfloor$	Н. q
3's	71			
4's	119			
TOTAL				

Later a two-year old class was added that has 51 students and an additional 5 picnic tables are purchased.

Age Group	#	<i>q</i>	$\lfloor q \rfloor$	Н. q
2's	51			
3's	71			
4's	119			
TOTAL				

14.3 Divisor Method

The standard divisor, *s*, represents the average district population. Apportionment can be done by adjusting the average district population to be a specific value called the *adjusted divisor*, *d*.

A *divisor method* of apportionment determines each state's apportionment by dividing its population by a common divisor *d* and rounding the resulting quota. Different divisor methods use different rounding rules.

A *critical divisor* is a divisor that will produce a quota for each population that gives a correct total number of seats.

The Jefferson Method

- 1. Find the standard divisor, *s*. Then find $q_i = \left| \frac{p_i}{s} \right|$
- 2. If the total number of seats is not correct, find the new divisors

that correspond to giving each state one more seat. $d_i = \frac{p_i}{q_i + 1}$

- 3. Assign a seat to the state with the largest d_i . If the total number of seats is correct, stop. Otherwise repeat step 2.
- 4. The adjusted divisor d will be the exact value of the last divisor found in step 3.

<u>Example</u>

Age Group	p_i	q	$\lfloor q \rfloor$	d_i	N
2's	51				
3's	71				
4's	119				

Example

A company will hire 200 new workers to work at one of the four facilities around the state. The new workers will be apportioned using Jefferson's plan according to the current production levels at each facility. The location and production levels are given below.

d =

Abilene	12,520	
Beaumont	4,555	
Corpus C.	812	
Dallas	947	
TOTAL		

Abilene	12,520	
Beaumont	4,555	
Corpus C.	812	
Dallas	947	
TOTAL		

Quota Rule says that the number assigned to each represented unit must be the standard quota, q_i , rounded up or rounded down.

Balinski and Young found that no apportionment method that satisfies the quota rule is free of paradoxes.

The Adams Method

- 1. Find the standard divisor, s. Then find $N_i = \lceil q_i \rceil = \left| \frac{p_i}{s} \right|$
- 2. If the total number of seats is not correct, find the new divisors that correspond to giving each state one fewer seat. $d_i = \frac{p_i}{q_i 1}$
- 3. Remove a seat from the state with the smallest d_i . If the total number of seats is correct, stop. Otherwise repeat step 2.
- 4. The adjusted divisor *d* will be the exact value of the last divisor found in step 3.

Example

A school district received 47 computers to distribute to 5 high schools based on the number of AP statistics students at each school using Adams' plan.

School	p_i	q_i	$\lceil q_i \rceil$	$d_i = \frac{p_i}{\left\lceil q_i \right\rceil - 1}$
Alpha	39			
Beta	69			
Gamma	18			
Delta	222			
Epsilon	210			
TOTAL				

The Webster Method

- 1. Find the standard divisor, *s*. Then find $N_i = [q_i] = \left\lfloor \frac{p_i}{s} \right\rfloor$
- 2. If the total number of seats is correct, the process is done.
- 3. If the total number of seats is too few, use a critical divisor of d^+ and the state with the largest critical divisor gets a next seat $d_i^+ = \frac{p_i}{d_i^+}$

$$d_i^+ = \frac{1}{N_i + \frac{1}{2}}$$

4. If the total number of seats is too many, use a critical divisor of d^{-} and the state with the smallest critical divisor loses a seat

$$d_i^- = \frac{p_i}{N_i - \frac{1}{2}}$$

<u>Example</u>

A school district received 46 computers to distribute to 5 high schools based on the number of AP statistics students at each school using Webster's plan.

$$s = \frac{558}{46} = 12.152$$

School	p_i	q_i	$\left[q_{i} ight]$	
Alpha	39	3.209		
Beta	70	5.760		
Gamma	17	1.399		
Delta	223	18.351		
Epsilon	210	17.281		
TOTAL	559			

Page | 12

Geometric Mean

The arithmetic mean of two numbers a and b is given by

$$\overline{x} = \frac{a+b}{2}$$

The *geometric mean* of two numbers *a* and *b* is given by $G(a,b) = \sqrt{ab}$

<u>Example</u> Find the arithmetic and geometric means for the following numbers.

(a) 1 and 2.

(b) 2 and 3

(c) 10 and 11

(d) 50 and 51

The Hill-Huntington Method

- 1. Find the standard divisor, s. Then find $q_i = \frac{p_i}{r}$
- 2. Round each quota q_i up or down by comparing it to $q_i^* = \sqrt{|q_i| \times |q_i|}$
- 3. If the total number of seats is correct, the process is done.
- 4. If the total number of seats is too few, find the critical divisors

$$d_i^+ = \frac{p_i}{\sqrt{N \times (N+1)}}$$

and the state with the largest critical divisor gets the additional

seat. If the house is not yet full, repeat the process

5. If the total number of seats is too many, find the critical divisor

$$d_i^- = \frac{p_i}{\sqrt{N \times (N-1)}}$$

and the state with the smallest critical divisor loses a seat. If the house is still too full, repeat the process

Example

Apportion based on 46 computers. s =

School	р	q	q*
Alpha	39	3.215	
Beta	69	5.771	
Gamma	18	1.484	
Delta	222	18.301	
Epsilon	210	17.312	
TOTAL			

Page | 14

Example

A town has 3 districts. The North district has a population of 98,000, the East district has a population of 26,000, and the West district has a population of 6,000. The total population is 130,000. Apportion 10 representatives using the following methods:

	•	0
(a) Hamilton	(b) Jefferson	(c) Adams
(d) Webster	(e) HH	

(a)	quota	Ν
North	98,000/13,000 = 7.538	7
East	26,000/13,000 = 2	2
South	6000/13,000 = 0.461	0

(b)	quota	Ν
North	7.538	7
East	2	2
South	0.461	0

(c)	quota	Ν
North	7.538	8
East	2	2
South	0.461	1

(d)	quota	N	(e)
North	7.538		
East	2		
South	0.461		

Apportionment Timeline

- **1787** Constitution drafted by the Constitutional Convention
- 1790 First Census
- **1791** After much debate, Congress approved a bill for a 120 member House and Hamilton's method to apportion seats among the states. Hamilton's method won out over Jefferson's method. Hamilton's method was supported by the Federalists while Jefferson's method was supported by the Republicans.
- **1791** President Washington vetoes the above bill (first veto in US history!).
- **1791** The House, unable to override the veto, passed a new bill for a 105 member House and Jefferson's method to apportion seats among the states.(This method was used until 1840.)
- **1822** Rep. William Lowndes (SC) proposed an apportionment method now known as the Lowndes method. It never passed.
- **1832** John Quincy Adams (former President and, at this time, a representative from Massachusetts) proposes the Adam's method for apportionment. It fails.
- 1832 Senator Daniel Webster (Mass) proposes Webster's method. It fails.
- **1832** Congress passes a bill that retains Jefferson's method but changes the size of the House to 240.
- **1842** Webster's method is adopted and the size of the House is reduced to 223.
- **1852** Rep. Samuel Vinton (Ohio) proposed a bill adopting Hamilton's method with a House size of 233. Congress passes this bill with a change to a House size of 234, a size for which Hamilton's and Webster's methods give the same apportionment.
- **1872** A very confusing year! First the House size was chosen to be 283 so that Hamilton's and Webster's methods would again agree. After much political infighting, 9 more seats were added and the final apportionment did not agree with either method.
- **1876** Rutherford B. Hayes became President based on the botched apportionment of 1872. The electoral college vote was 185 for Hayes and 184 for Tilden. Tilden would have won if the correct apportionment as required by law had been used.
- **1880** The Alabama Paradox surfaced as a major flaw of Hamilton's method.

- **1882** Concerns continued over the flaws in Hamilton's method. Congress passed a bill that kept Hamilton's method but changed the House size to 325 so that Hamilton's method gave the same apportionment as Webster's.
- **1901** The Census Bureau gave Congress tables showing apportionments based on Hamilton's method for all House sizes between 350 and 400.
- **1901** For all House sizes in this range (except for 357) Colorado would get 3 seats. For 357, Colorado would get 2 seats. Rep. Albert Hopkins (IL), chm of the House Committee on Apportionment, submitted a bill using a House size of 357--causing an uproar.
- **1901** Congress defeated Hopkin's bill and instead adopted Webster's method with a House size of 386.
- **1907** Oklahoma joined the union and the New States Paradox was discovered as a result.
- **1911** Webster's method was readopted with a House size of 433. A provision was made to give Arizona and New Mexico each 1 seat if they were admitted to the union.
- **1911** Joseph Hill (chief statistician of the Census Bureau) proposed the Huntington-Hill method.
- **1921** No reapportionment was done after the 1920 census IN DIRECT VIOLATION OF THE CONSTITUTION!
- **1931** Webster's method was adopted with a House size of 435.
- **1941** The Huntington-Hill method was adopted with a House size of 435
- **1990** The U.S. Census Bureau, for only the second time since 1900, allocated Defense Department overseas employees for apportionment purposes. This resulted in Massachusetts losing a seat to Washington. Massachusetts filed suit.
- **1992** Overruling a U. S. district court decision, the U. S. Supreme Court ruled against Massachusetts on technical grounds involving "the separation of powers and the unique constitutional position of the President." (The President is charged with calculating and transmitting the apportionment to Congress.)
- **1992** Montana challenged the constitutionality of the Huntington-Hill method (Montana v. US Dept. of Commerce). The Supreme Court upheld the method. Montana was upset because it lost a seat to Washington based on the results of the 1990 census.