§ 10.2. Green's Theorem

Let D be a closed, bounded region in \mathbb{R}^2 whose boundary $C = \partial D$ consists of finitely many simple closed curves that orient the curve C so that D is on the left. Let $F(x, y) = M(x, y)i + N(x, y)j$ be a C^1 vector field. Then

$$\oint_C M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy.$$

Ex. Let $F = xy \, i + y^2 \, j$, D bounded by $y = x^2$.

LHS = $\int_0^1 \left(x^3 \, dt + x^4 \, dt \right) + \int_0^1 \left(x^2 \, dt + x^2 \, dt \right) = \frac{1}{4} + 2 \frac{1}{6} - \frac{2}{3} = -\frac{1}{2}$

RHS = $\iint_D \left(0 - x \right) \, dx \, dy = \int_0^1 \left(x - y \right) \, dy = \int_0^1 \left(-\frac{x^2}{2} \right) \, dy = -\frac{1}{4} + \frac{1}{6} = -\frac{1}{12}$.

For $F = -y \, i + x \, j$, $\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 1 + 1 = 2$. Then

$$\oint_C M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy$$

$$= 2 \iint_D \, dx \, dy = 2 \text{ area of } D.$$
Ex. Find the area of the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)
\(x = a \cos t, \quad y = b \sin t, \quad 0 \leq t \leq 2\pi \)

Area = \(\frac{1}{2} \int_C y \, dl - x \, dy \)
\[= \frac{1}{2} \int_0^{2\pi} (-bsin(t)\,(-asint) + acost\,(bcost)) \, dt \]
\[= \frac{1}{2} \int_0^{2\pi} \, ab \, dt = ab \pi. \]

n = the outward unit normal vector.

Let \(D \) be a region bounded by \(C = \partial D \) s.t. Green's theorem applies. Let \(n \) be the outward unit normal vector at \(C = \partial D \), and \(F(x,y) = M(x,y)i + N(x,y)j \) be \(C \) vector field on \(D \). Then

\[F \cdot n = \text{particles crossing } C \text{ out} = \text{Flux} \]

\(\nabla \cdot F = \text{rate of particles leaving a point} \)

\[\oint_C (F \cdot n) \, ds = \iint_D \nabla \cdot F \, dA \quad \text{(divergence theorem)} \]

Total particles crossing \(C \text{ out} = \text{total particles left } D \).
when $C: x(t) = (x(t), y(t))$.
$T(t) = (x'(t), y'(t)) \perp \vec{N}(t) = (-y'(t), x'(t))$, $n(t) = \frac{\vec{N}(t)}{\|\vec{N}(t)\|}$.

§10.3 Path Independence.

A vector field \mathbf{F} is said to have a path-independence line integral if

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$$

for any simple, piecewise C' curves with the same initial and terminal points.

THEOREM: A vector field \mathbf{F} has a path-indep line integral if and only if

$$\oint_{C} \mathbf{F} \cdot d\mathbf{s} = 0$$

for any piecewise C' simple, closed curve.

Proof:

$$\oint_{C} \mathbf{F} \cdot d\mathbf{s} = \oint_{C_1} \mathbf{F} \cdot d\mathbf{s} - \oint_{C_2} \mathbf{F} \cdot d\mathbf{s} = 0.$$
THM. Let F be a continuous vector field on a connected open region D of \mathbb{R}^n. Then $F = \nabla f$ if and only if F has a path-independent line integral over curves in D. Moreover, if C is any piecewise C^1, oriented curve in D with initial point A and terminal point B, then

$$\int_C F \cdot ds = f(B) - f(A), \quad (F = \nabla f).$$

Proof: $C: x(\alpha), \quad A = x(a), \quad B = x(b)$

$$\int_C F \cdot ds = \int_a^b \alpha(\alpha) \cdot x'(t) \cdot dt = \int_a^b \frac{d}{dt} f(x(\alpha)) \cdot dt$$

$$= f(x(\alpha)) |_a^b = f(B) - f(A).$$

Ex. $F = M \hat{i} + N \hat{j} = x \hat{i} + y \hat{j}$. Note $\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$.

$$\int_C F \cdot ds = \int_M dx + N dy = \int(M(\alpha) + N(\alpha)) \cdot dt$$

1. $x = t, \quad y = t, \quad 0 \leq t \leq 1, \quad \int_C F \cdot ds = \int_0^1 (t + t) dt = 1$.
2. $x = t, \quad y = t^2, \quad 0 \leq t \leq 1, \quad \int_C F \cdot ds = \int_0^1 (t + 2t^2) dt = \frac{1}{2} + \frac{1}{4} = 1$.
3. $x = 0, \quad y = t, \quad 0 \leq t \leq 1, \quad \int_C F \cdot ds = \int_0^1 (0 + 0dt) + \int_0^1 (t dt + 0) = 1$.
4. $f = \frac{1}{2}(x^2 + y^2), \quad F = \nabla f = (f_x, f_y) = (x, y)$,

$$\int_C F \cdot ds = f(1, 1) - f(0, 0) = \frac{1}{2}(1+1) + 0 = 1.$$
When $F = \nabla f$, f is called a conservative vector field scalar potential.

For given F,
1) How to know if F is conservative?
2) Assume F is conservative, how to find f s.t. $F = \nabla f$?

Def. A region D in \mathbb{R}^2 is simply connected if any simple closed curve in D can be shrunk to a point.

Yes: \begin{tabular}{c}
\end{tabular}

\begin{tabular}{c}
No: \end{tabular}

Thm. Let $F = M \mathbf{i} + N \mathbf{j}$ be a C^1 vector field in a simply connected region D in \mathbb{R}^2 or \mathbb{R}^3. Then $F = \nabla f$ for some f if and only if $\nabla \times \mathbf{F} = 0$ in D.

Remark. $\nabla \times \mathbf{F} = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & D \\ \end{vmatrix} = \frac{\partial N}{\partial z} i - \frac{\partial M}{\partial z} j + \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) k = 0$

$\Rightarrow N = N(x, y), M = M(x, y)$ and $\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$.

Ex. Let $F = x^2 y \mathbf{i} - 2xy \mathbf{j}$.

then $\frac{\partial N}{\partial x} = -2y + \frac{\partial M}{\partial y} = x^2 \Rightarrow$ not conservative.
Ex. \(F = (2xy + \cos 2y) \mathbf{i} + (x^2 - 2x \sin 2y) \mathbf{j} = M \mathbf{i} + N \mathbf{j} \)

calculate \(\frac{\partial M}{\partial y} = 2x - 25 \cos 2y = \frac{\partial N}{\partial x} = 2x - 25 \cos 2y \)

\(\Rightarrow F \) is conservative. How to find \(f \) s.t. \(F = \nabla f \)?

\(F = M \mathbf{i} + N \mathbf{j} = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \).

\(M = \frac{\partial f}{\partial x} \Rightarrow f = \int M \, dx + \alpha(y) = x^2y + x \cos 2y + \alpha(y) \)

\(N = \frac{\partial f}{\partial y} \Rightarrow f = \int N \, dy + \beta(x) = x^2y + x \cos 2y + \beta(x) \)

\(f = \int M \, dx = \alpha(y) = 0 \Rightarrow f = x^2y + x \cos 2y \).

THM. If \(D \) is simply connected domain, then

\(F = \nabla f \) in \(D \) if and only if \(\nabla \times F = 0 \)

Ex. \(F = (e^{x \sin y} - yz) \mathbf{i} + (e^{xy} - xz) \mathbf{j} + (z - xy) \mathbf{k} \)

check \(\nabla \times F = \left| \begin{array}{ccc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} & \frac{\partial}{\partial x} \\
i & j & k \\
e^{x \sin y} - yz & e^{xy} - xz & z - xy
\end{array} \right| = 0. \)

\(\Rightarrow F = M \mathbf{i} + N \mathbf{j} + PK = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right). \) To find \(f \).

\(f = \int M \, dx + \alpha(y,z) = \int (e^{x \sin y} - yz) \, dx + \alpha(y,z) = e^{x \sin y} - xyz + \alpha(y,z) \)

\(f = \int N \, dy + \beta(x,z) = \int (e^{xy} - xz) \, dy + \beta(x,z) = e^{xy} - xyz + \beta(x,z) \)

\(f = \int P \, dz + \gamma(x,y) = \int (z - xy) \, dz + \gamma(x,y) = z^2/2 - xyz + \gamma(x,y) \)

\(f = \int f = \alpha(y,z) = \beta(x,z) = \gamma(x,y) = e^{x \sin y} \)

\(\Rightarrow f = e^{x \sin y} - xyz + z^2/2 (\text{ const.}) \)
Next to compute $\int F \cdot dS$ along a curve from $(0,0,0)$ to $(1, \frac{\pi}{2}, 2)$, we have

$$\int F \cdot dS = f(1, \frac{\pi}{2}, 2) - f(0,0,0) = e - 1 - 1 \cdot \frac{\pi}{2} \cdot 2 + \frac{4}{2} = e - \pi + 2$$