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Ex.6) Estimate the area under the graph of f(z) =2 — 2Inz on [1, 5]
n=\
(a) using four approximating rectangles of equal width and right endpoints.
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(b) using eight approximating rectangles of equal width and right endpoints.
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Definition. The area of the region that lies under the graph of the continuous and positive
function f is the limit of the sum of the areas of approximating rectangles.
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/
Section 6.4 The Definite Integral L/_/‘
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Definition. The Definite Integral

If f is a function defined for a < z < b, we divide the interval [a, b] into n subintervals of equal
width Az = (b —a)/n. We let g = a,z, = b, and x}, x5, -+, x5 be any sample points in these
subintervals, so z} lies in the ith subinterval [z;_;,2;]. Then the definite integral of f from a

to bis b n
f f(z) dz = lim Zf(-’ff':)Ai

provided that this limit exists. If it does exist, we say that f is integrable on [a, b].

We refer to a as the lower limit of integration and to b as the upper limit of integration and the
interval [a, b] as the interval of integration.

In the event f(z) is positive on the interval [a, b], then the definite integral is the same as the area
bounded by f(x), the z-axis, z = a and z = b. If f(z) is not always positive on the interval [a, b], then
the definite integral is the net area.

The sum > f(27)Axz is called Riemann sum.
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Ex.1) Compute the following definite integrals using the graph given below.

(A
- C b\
1S
-¢6<)
.S
S 7
A c -\ kVO B
(a)ﬁ flx)ydr = —\o (b)ﬁ f(z) dx (C)L flz)dr = 1o
(d) ﬂ (@) da (o) L @) de = o

= —|0 410 — (S 44O

- 1§



math142week12.notebook

November 07, 2019

z
L= =x-2 . (e,1)])
; n=b
Ex.2) Approximate (22* — x —2) dx by using the Riemann sum with 6 equal subintervals, taking the
0
sample points to be th@f each subinterval.

e

015 oaY

1
T

i

NS S e s
! \ Y

.
el = S\ (QX —X"L> J\y

T

~ |

o 'we(o,w> + 1 £ (ea%) )

cd. ()« 1 LG+ 1.£ (@)
3

= 33T

€S€ZM—\UA VSV S ’ﬁQX), EG/ Sj



math142week12.notebook November 07, 2019

Ex.3) Use Geometry to evaluate the following integrals.
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(a) / 8 dx
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Order Properties of Definite Integrals

b
(a) If f(x) >0, then / f(z) dz > 0.

Assume that all the integrals given below exist and that a < b. Then

(b) If f(x) < g(z) for a < x < b, then /b f(z) dz < fb g(x) dx.

(¢) It m < f(z) < M for a <z <b, then

m(b—a) < /b f(z) de < M(b—a)
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Section 6.5 The Fundamental Theorem of Calculus

Properties of Definite Integrals

If f and g are continuous functions on [a, b],

b <

(a) /a cdr=c(b—a) /////1 = <( 59’0\)
a U v

(b) f f(x) dz =0 b~

(c) jj f(z) dz :@fbﬂ f(x) dx
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4 4 5
1
Ex.5) Given / x de="17.5, / z? dx = 21, and / 2?2 dr = % calculate the following
1 1 4 [

) ‘
(a) /11(4x2—9:1:)da? = axTAx = jl(qqx%,(/(

— 4 (20) —a(35) = 6.S
(b) f)(—ﬂl:r:?) dr = — 4 IV = dAx
= —c@,: S,(FXL’M* y X JXJ
:—C&El(ﬁ-é’_}\] = ~é%€
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Fundamental Theorem of Calculus, Part 2 L L
"g(%) AxX = = £3)
If f is continuous on [a,b], then M o o
b
/ f(z) de = F(b) — F(a), =FW -Fte)
where F' is an antiderivative of f, that is F’ = f.

2
Ex.6) Evaluate the following Stz X+ ¥

3 3
(a) /2(—:r:2+-—‘l) dr = — %X + 4x
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Estimating Definite Integrals on the Calculator. You can estimate the value of the

b
definite integral f f(z) dz by using the following command from your homescreen.
a

< MATH > +9 : fnlnt

fInt(f(z),z, a,b)

Ex.7) A honeybee populatioristarts with 100 bees And increases at a rate of n'(t) bees per week. What

15
does@+ / n'(t) dt represent?
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Ex.8) A forest fire covers 2000 acres at time ¢ = 0. The fire is growing at a rate of 8y/¢ acres per hour,
where ¢ is in hours. How many acres are covered 24 hours later?
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