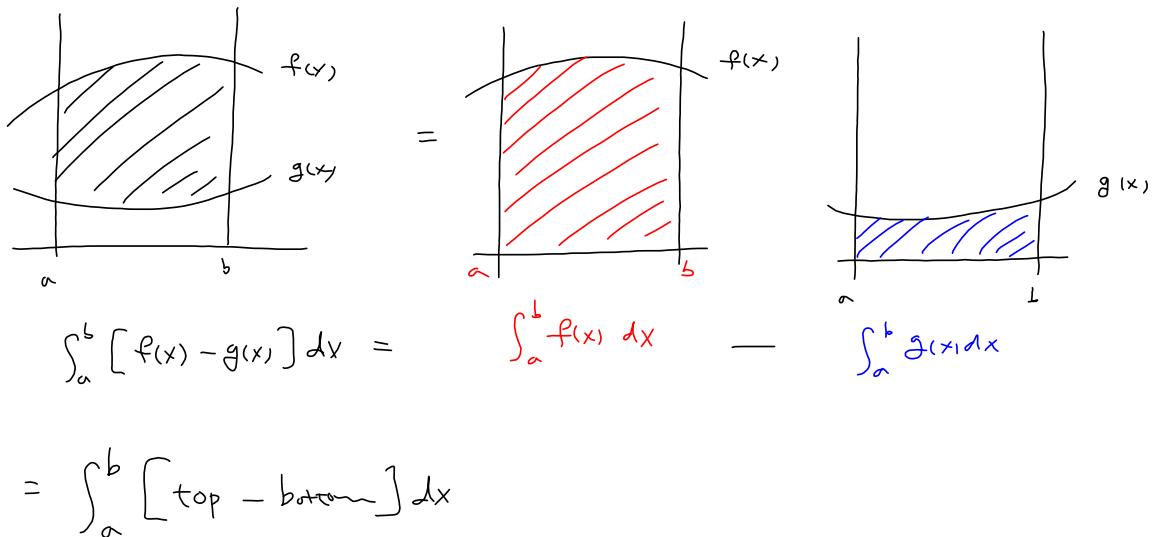


Section 6.6 Area Between Two Curves

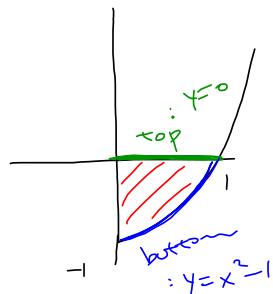
Area Between Two Curves

Let $y = f(x)$ and $y = g(x)$ be two continuous functions with $f(x) \geq g(x)$ on $[a, b]$. Then the area between the graphs of the two curves on $[a, b]$ is given by the definite integral

$$\int_a^b [f(x) - g(x)] \, dx$$



Ex.1) Find the area between $y = x^2 - 1$ and the x -axis on $[0, 1]$.

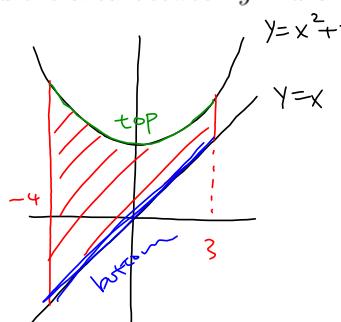


$$\begin{aligned} \text{Area} &= \int_0^1 (x^2 - 1) dx \\ &= -\left(\frac{2}{3}\right) = \frac{2}{3} \end{aligned}$$

or

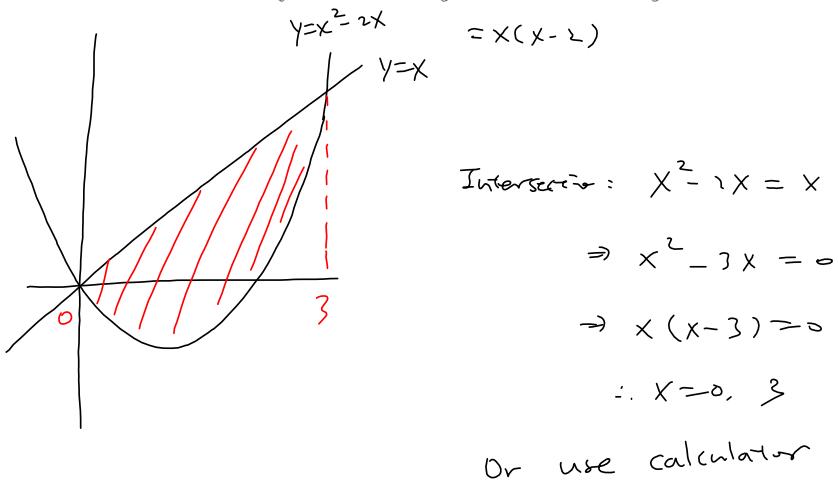
$$\begin{aligned} \text{Area} &= \int_0^1 [top - bottom] dx \\ &= \int_0^1 [0 - (x^2 - 1)] dx \\ &= \frac{2}{3} \end{aligned}$$

Ex.2) Find the area between $y = x$ and $y = x^2 + 2$ on $[-4, 3]$.



$$\begin{aligned} \text{Area} &= \int_{-4}^3 [top - bottom] dx \\ &= \int_{-4}^3 [(x^2 + 2) - x] dx \\ &= 47.83 \end{aligned}$$

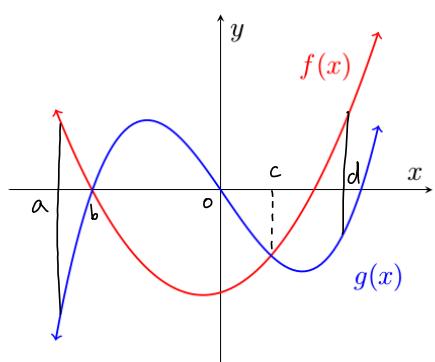
Ex.3) Find the area bounded by the curves $y = x^2 - 2x$ and $y = x$.



$$\text{Area} = \int_0^3 [x - (x^2 - 2x)] dx$$

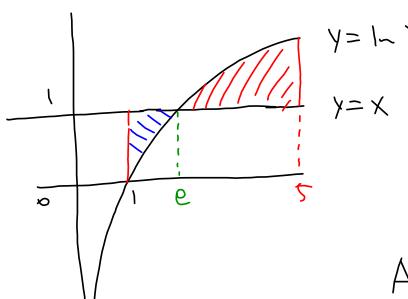
$$= 4.5$$

Ex.4) Given the graph below write definite integrals to represent the total area bounded by $f(x)$ and $g(x)$ on $[a, d]$.



$$\begin{aligned} \text{Area} &= \int_a^b [f(x) - g(x)] dx \\ &+ \int_b^c [g(x) - f(x)] dx \\ &+ \int_c^d [f(x) - g(x)] dx \end{aligned}$$

Ex.5) Find the area bounded by $y = \ln x$ and $y = 1$ on $[1, 5]$.

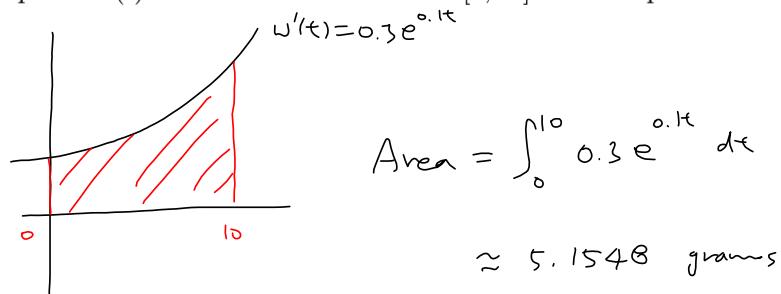


$$\text{Intersection: } \ln x = 1$$

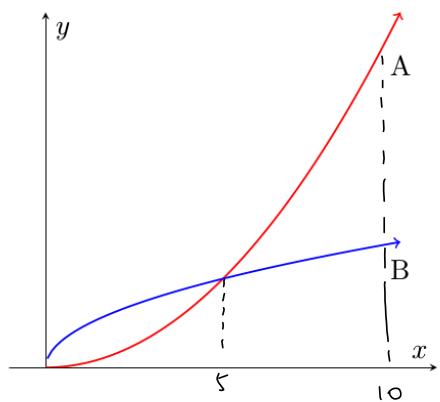
$$\therefore x = e$$

$$\begin{aligned} \text{Area} &= \int_1^e [1 - \ln x] dx + \int_e^5 [\ln x - 1] dx \\ &= 1.484 \end{aligned}$$

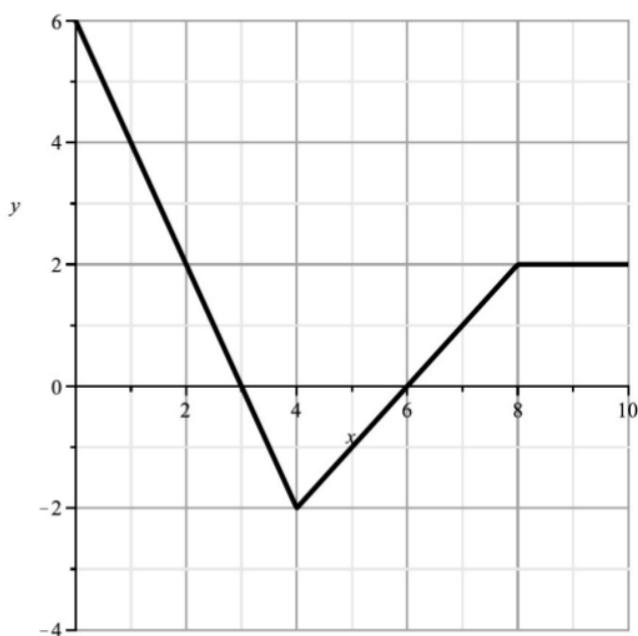
Ex.6) A yeast culture is growing at a rate of $w'(t) = 0.3e^{0.1t}$ grams per hour. Find the area between the graph of $w'(t)$ and t -axis on the interval $[0, 10]$ and interpret the results.



Ex.7) The figure below shows the rate of growth of two trees. If the two trees are the same height at time $t = 0$, which tree is taller after 5 years? After 10 years?



Ex.8) If $g(x) = \int_0^x f(t)dt$, where the graph of $f(t)$ is given below, where $0 \leq x \leq 10$, evaluate $g(0)$, $g(3)$, $g(6)$ and $g(10)$.

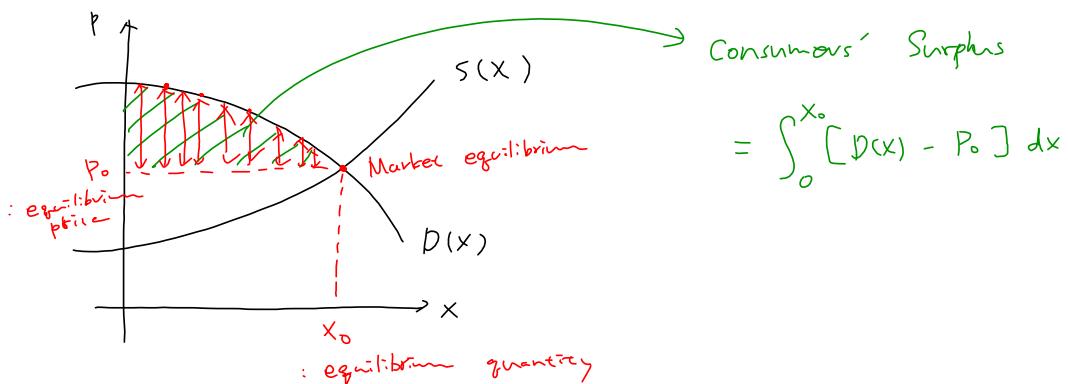


Section 6.7 Additional Applications of the Integral

Consumers' Surplus

Definition. If $p = D(x)$ is the demand equation, p_0 is the equilibrium price of the commodity, and x_0 is the equilibrium demand, then the **consumers' surplus** is given by

$$\int_0^{x_0} [D(x) - p_0] dx$$

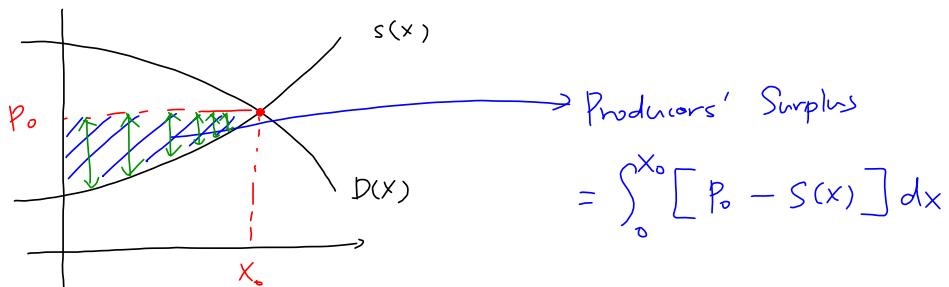


The **consumers' surplus** represents the total savings to consumers who are willing to pay more than p_0 for the product but are still able to buy the product for p_0 .

Producers' Surplus

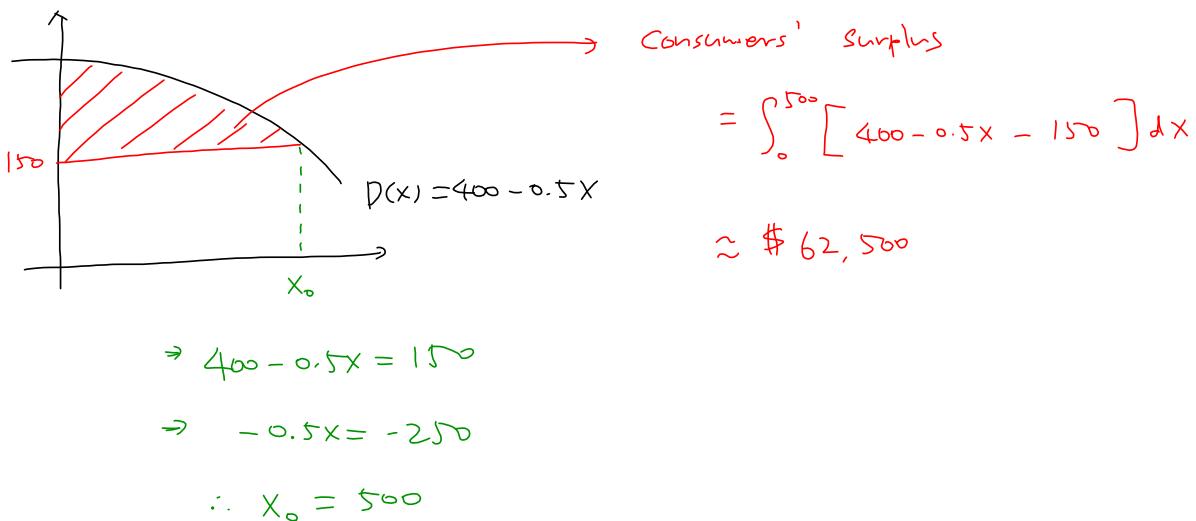
Definition. If $p = S(x)$ is the supply equation, p_0 is the equilibrium price of the commodity, and x_0 is the equilibrium demand, then the **producers' surplus** is given by

$$\int_0^{x_0} [p_0 - S(x)] dx$$

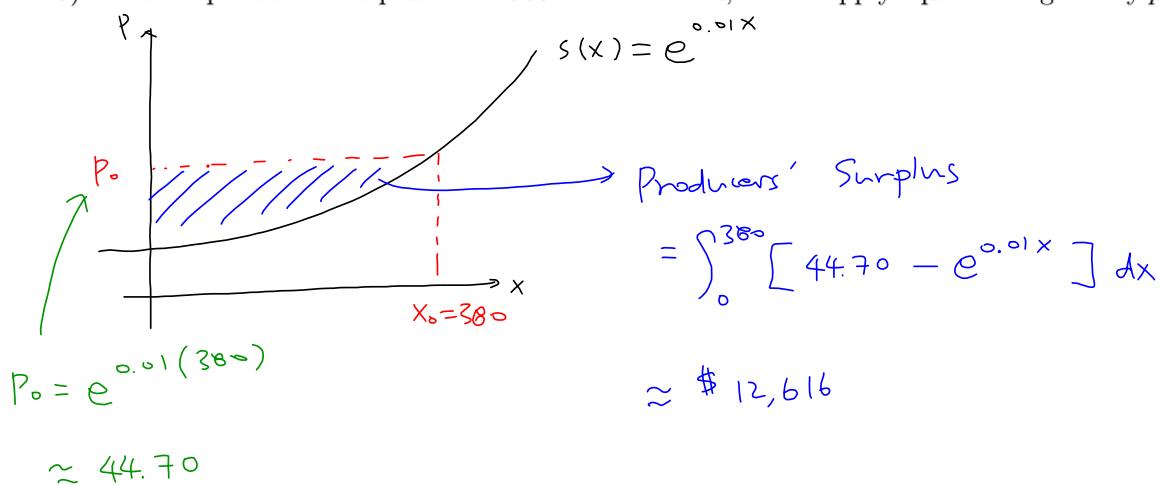


The **producers' surplus** represents the total gain to producers who are willing to supply units at a lower price than p_0 but are still able to supply units at p_0 .

Ex.9) Find the consumers' surplus at a price level of \$150 for the price-demand equation $p = 400 - 0.5x$.

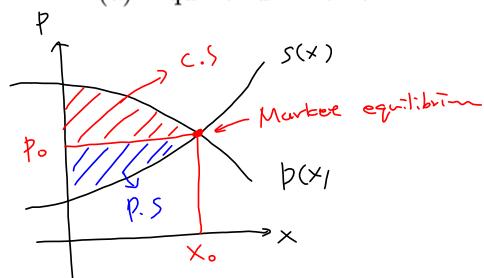


Ex.10) Find the producers' surplus when 380 items are sold, if the supply equation is given by $p = e^{0.01x}$.



Ex.11) If $p = D(x) = 80e^{-0.001x}$ and $p = S(x) = 30e^{0.001x}$, find the following:

(a) Equilibrium Point



$$\text{Intersection: } (D(x) = S(x))$$

$$80 \cdot e^{-0.001x} = 30 \cdot e^{0.001x}$$

$$x_0 = 490, \quad P_0 = 48.99$$

(b) Consumers' surplus at the equilibrium price level.

$$C.S. = \int_0^{490} [80e^{-0.001x} - 48.99] dx$$

$$\approx \$6,984$$

(c) Producers' surplus at the equilibrium price level.

$$P.S. = \int_0^{490} [48.99 - 30 \cdot e^{0.001x}] dx$$

$$\approx \$5,035$$