

Law of exponents

If a and b are positive numbers and x and y are any real numbers, then

- (a) $a^x \cdot a^y = a^{x+y}$
- (b) $\frac{a^x}{a^y} = a^{x-y}$
- (c) $a^{-x} = \frac{1}{a^x}$
- (d) $a^0 = 1$ for $a \neq 0$
- (e) $(ab)^x = a^x \cdot b^x$
- (f) $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
- (g) $(a^x)^y = a^{xy}$
- (h) $a^x = a^y$ if and only if $x = y$
- (i) For $x \neq 0$, $a^x = b^x$ if and only if $a = b$

Compound Interest

If a principal P (present value) is invested at an annual rate r (expressed as a decimal) compounded m times a year, then the amount A (future value) in the account at the end of t years is given by

$$A = P\left(1 + \frac{r}{m}\right)^{mt}$$

Ex.22) If \$5,000 is invested in an account paying 2.5% compounded monthly, how much will be in the account at the end of 10 years?

$$A = 5000 \left(1 + \frac{0.025}{12}\right)^{12(10)}$$

$$\approx \$ 6,418.46$$

Continuously Compounded Interest

$$A = Pe^{rt}$$

where P is principal, r is the annual interest rate compounded continuously (as a decimal), t is time, and A is the accumulated amount at the end of t years.

- Ex.23) What amount will an account have after five years if \$1,000 is invested at an annual rate of 3.25% compounded continuously?

$$\begin{aligned} A &= P \cdot e^{rt} \\ &= 1000 \cdot e^{0.0325(5)} \\ &\approx \$ 1,176.45 \end{aligned}$$

Section 1.5 Logarithms

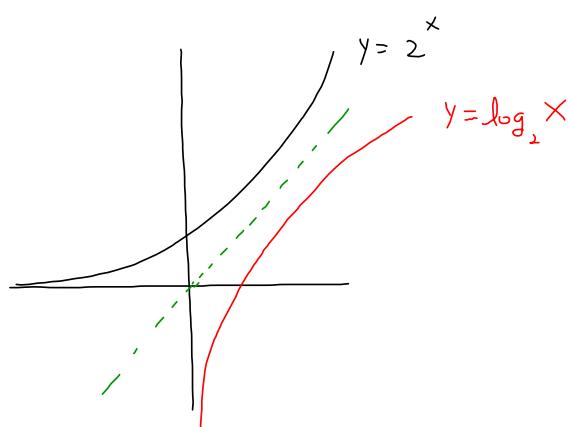
Every exponential function $f(x) = a^x$, with $a > 0$ and $a \neq 1$, is a one-to-one function and therefore has an inverse function. The inverse function f^{-1} is called the **Logarithmic function with base a** and is denoted \log_a .

Definition. Logarithmic function

Let a be a positive number with $a \neq 1$. The **Logarithmic function with base a** , denoted by \log_a , is defined by

$$y = \log_a x \iff a^y = x$$

ex> $\begin{matrix} \text{exp.} \\ (2) \\ \text{base} \end{matrix} = 16 \iff \log_2 16 = 4$



Common Logarithm

The logarithm with base 10 is called the **Common logarithm** and is denoted by omitting the base

$$\log x = \log_{10} x$$

Natural Logarithm

The logarithm with base e is called the **Natural logarithm** and is denoted by \ln

$$\ln x = \log_e x$$

The natural logarithm function $y = \ln x$ is the inverse function of the exponential function $y = e^x$ which is

$$\ln x = y \iff e^y = x$$

Properties of Logarithm

- (a) $\log_a 1 = 0 \iff a^0 = 1$
- (b) $\log_a a = 1 \iff a^1 = a$
- (c) $\log_a a^x = x$
- (d) $a^{\log_a x} = x$
- (e) $\log_a b^m = m \log_a b$
- (f) $\log_{a^n} b = \frac{1}{n} \log_a b$
- (g) $\log_a xy = \log_a x + \log_a y$
- (h) $\log_a \left(\frac{x}{y} \right) = \log_a x - \log_a y$
- (i) $\log_a b = \frac{\log_c b}{\log_c a}$ and $\log_a b = \frac{1}{\log_b a}$
- (j) $\log_a M = \log_a N \iff M = N$

Ex.26) Find the domain of each function

a) $f(x) = 2 + \log_5(x)$

$$x > 0$$

$$\therefore (0, \infty)$$

b) $g(x) = \log(x - 3)$

$$x - 3 > 0$$

$$\therefore x > 3$$

$$\therefore (3, \infty)$$

Ex.27) Solve the following for x :

a) $\log_b x = \frac{2}{3} \log_b 27 + 2 \log_b 2 - \log_b 3$

b) $\log x + \log(x - 3) = 1$

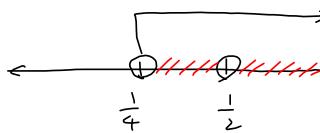
Ex.28) Find the domain of each function

a) $f(x) = \frac{\sqrt[3]{2x-9}}{\log_2(4x-1)}$.

$$\begin{aligned} 4x-1 &> 0 \\ \Rightarrow 4x &> 1 \\ \therefore x &> \frac{1}{4} \end{aligned}$$

$$\begin{aligned} \log_2(4x-1) &= 0 \\ \Rightarrow 4x-1 &= 1 \\ \Rightarrow 4x &= 2 \\ \therefore x &\neq \frac{1}{2} \end{aligned}$$

$\log_a(1) = 0$



$$\therefore \left(\frac{1}{4}, \frac{1}{2} \right), \left(\frac{1}{2}, \infty \right)$$

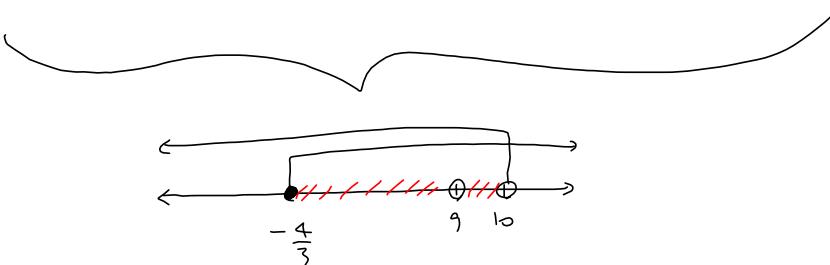
b) $f(x) = \frac{\sqrt[6]{3x+4} \geq 0}{\ln(10-x) > 0}$

$$\begin{aligned} 3x+4 &\geq 0 \\ \Rightarrow 3x &\geq -4 \\ \therefore x &\geq -\frac{4}{3} \end{aligned}$$

$$\begin{aligned} 10-x &> 0 \\ \therefore 10 &> x \\ \text{or } x &< 10 \end{aligned}$$

$$\begin{aligned} \ln(10-x) &= 0 \\ \Rightarrow 10-x &= 1 \\ \Rightarrow -x &= -9 \\ \therefore x &\neq 9 \end{aligned}$$

denominator $\neq 0$

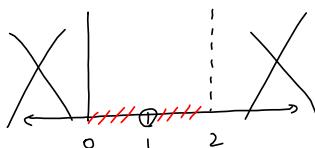


$$\therefore \left[-\frac{4}{3}, 9 \right), (9, 10)$$

Ex.29) Find the domain of the following function.

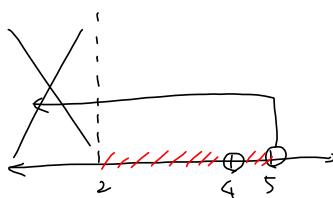
$$f(x) = \begin{cases} \sqrt[3]{x^2 + 4x - 1} & 0 \leq x < 2 \\ \frac{e^{12x-7}}{\log_2(5-x)} & x > 2 \end{cases}$$

$$\begin{aligned} 0 \leq x < 2 \\ \hline y = \frac{\sqrt[3]{x^2 + 4x - 1}}{x^2 - 1} \\ x^2 - 1 = 0 \\ \Rightarrow \sqrt{x^2} = \sqrt{1} \\ \therefore x \neq \pm 1 \end{aligned}$$



$$\therefore [0, 1), (1, 2)$$

$$\begin{aligned} x > 2 \\ \hline y = \frac{e^{12x-7}}{\log_2(5-x)} \\ 5-x > 0 \\ \therefore 5 > x \\ \text{or } x < 5 \\ \log_2(5-x) = 0 \\ 5-x = 1 \\ \Rightarrow -x = -4 \\ \therefore x \neq 4 \end{aligned}$$



$$\therefore (2, 4), (4, 5)$$

$$\therefore [0, 1), (1, 2), (2, 4), (4, 5)$$

Ex.32) Given $\log_b 3 = 0.6826$ and $\log_b 4 = 0.8614$, find the following

$$\text{a) } \log_b 48 = \log_b (3 \cdot 4^2) = \log_b 3 + \log_b 4^2$$

$$\begin{aligned} 48 & \\ 3 & \swarrow \quad \uparrow \quad \searrow \\ & 16 \\ & \swarrow \quad \uparrow \quad \searrow \\ & 4 \quad 4 \end{aligned}$$

$$\begin{aligned} &= \log_b 3 + 2 \cdot \log_b 4 \\ &= (0.6826) + 2 \cdot (0.8614) \\ &= 2.4054 \end{aligned}$$

$$\text{b) } \log_b \left(\frac{16}{b^2}\right) = \log_b 16 - \log_b b^2$$

$$\begin{aligned} &= \log_b 4^2 - \log_b b^2 \\ &= 2 \log_b 4 - 2 \log_b b = 1 \end{aligned}$$

$$= 2 \cdot (0.8614) - 2 = -0.2772$$

29

- Ex.33) How long will it take for the amount in an account to double if the money is compounded continuously at an interest rate of 2.5% per year?

$$A = P \cdot e^{rt}$$

$$2P = P \cdot e^{0.025t}$$

$$\Rightarrow 2 = e^{0.025t}$$

take \ln on both sides

$$\Rightarrow \ln 2 = \ln e^{0.025t}$$

$$\Rightarrow \ln 2 = 0.025t \cdot \ln e = 1$$

$$\Rightarrow \ln 2 = 0.025t$$

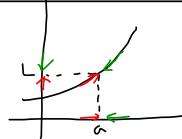
$$\therefore t = \frac{\ln 2}{0.025} \approx 27.7259 \text{ years}$$

Section 3.1 Limits

Definitions

We write

$$\lim_{x \rightarrow a} f(x) = L$$



and say “the limit of $f(x)$, as x approaches a , equals L ” if we can make the values of $f(x)$ arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a but not equal to a .

This says that the value of $f(x)$ get closer and closer to the number L as x gets closer and closer to the number a (from either side of a), but $x \neq a$.

Left-Hand Limit: We write $\lim_{\substack{x \rightarrow a^- \\ x < a}} f(x) = L$ if $f(x)$ is close to L whenever x is close to, but to the left of a .

$$\begin{array}{c} x \rightarrow a^- \\ x < a \end{array}$$

Right-Hand Limit: We write $\lim_{\substack{x \rightarrow a^+ \\ x > a}} f(x) = L$ if $f(x)$ is close to L whenever x is close to, but to the right of a .

$$\begin{array}{c} x \rightarrow a^+ \\ x > a \end{array}$$

Existence of a Limit

If the function $f(x)$ is defined near $x = a$ but not necessarily at $x = a$, then

$$\lim_{x \rightarrow a} f(x) = L$$

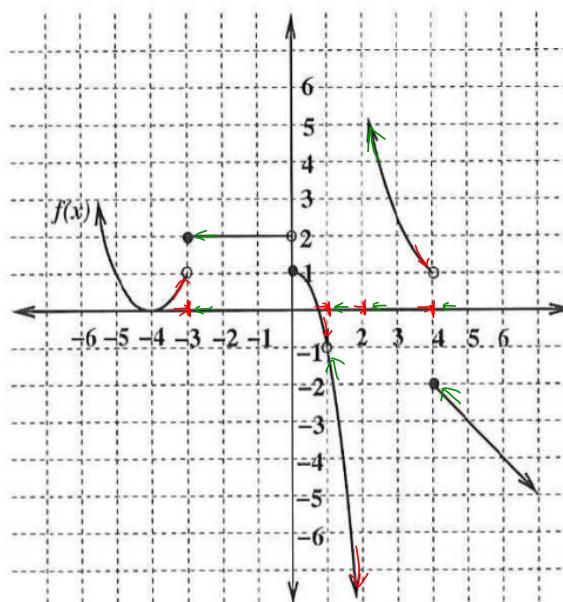
if and only if both the limits

$$\lim_{x \rightarrow a^-} f(x) \quad \text{and} \quad \lim_{x \rightarrow a^+} f(x)$$

exist and are equal to the same number L .

$$\begin{aligned} \lim_{x \rightarrow a^-} f(x) &= \lim_{x \rightarrow a^+} f(x) \\ \therefore \lim_{x \rightarrow a} f(x) &\text{ exists} \end{aligned}$$

Ex.1) Use the graph below to find the following limits:



a) $\lim_{x \rightarrow -3^-} f(x) =$ 1

b) $\lim_{x \rightarrow -3^+} f(x) =$ 2

c) $\lim_{x \rightarrow -3} f(x) =$ DNE

d) $\lim_{x \rightarrow 1^-} f(x) =$ -1

e) $\lim_{x \rightarrow 1^+} f(x) =$ -1

f) $\lim_{x \rightarrow 1} f(x) =$ -1

g) $\lim_{x \rightarrow 4^-} f(x) =$ 1

h) $\lim_{x \rightarrow 4^+} f(x) =$ -2

i) $\lim_{x \rightarrow 4} f(x) =$ DNE

j) $\lim_{x \rightarrow 2^-} f(x) =$ $-\infty$

k) $\lim_{x \rightarrow 2^+} f(x) =$ $+\infty$

l) $\lim_{x \rightarrow 2} f(x) =$ DNE