

MATH 142 BUSINESS CALCULUS

Fall 2019, WEEK 4

JoungDong Kim

Week 4 Section 4.1, 4.2 Simple Derivative Rules and Marginal Analysis, Product and Quotient Rules

Chapter 4 Rules for the Derivative

Section 4.1 Derivatives of Powers, Exponents, and Sums

Differentiation Formulas

1. **Constant rule:** If $f(x) = c$ where c is any constant then

$$f'(x) = 0$$

2. **Power Rule:** If $f(x) = x^n$, where n is a real number, then

$$f'(x) = nx^{n-1}$$

3. **Constant times a function rule:**

$$(cf(x))' = cf'(x)$$

4. **Sum/Difference rule:** If $f(x) = g(x) \pm h(x)$, then

$$f'(x) = g'(x) \pm h'(x)$$

Ex.1) Differentiate the following functions:

a) $f(x) = 5$

b) $f(x) = \pi$

c) $f(x) = e\sqrt{2}$

d) $f(x) = x^7$

e) $f(x) = x^{\frac{1}{2}}$

f) $f(x) = \sqrt[3]{x^5}$

g) $f(x) = \frac{5}{x^2}$

h) $y = 2x^3 + 5x - 9$

i) $g(t) = \sqrt{3}t - t^{\frac{1}{2}} + e$

j) $h(x) = \frac{x^3 + 2x^2 - 2x + 3}{x}$

k) $y = \frac{x^4 + 4x^2}{3\sqrt{x}}$

Ex.2) If JD drop the ball from a building 400 feet tall, its height above the ground (in feet) after t seconds is given by $s(t) = 400 - 16t^2$

a) Compute $s'(t)$

b) Compute $s(2)$ and $s'(2)$

Ex.3) If $f(x) = 3x^4 - 2x^2$, where does the graph of the function have a horizontal tangent line?

Ex.4) Suppose the total cost (in dollars) of producing x books is given by

$$C(x) = 0.5x^2 - 12x + 100$$

a) Find $C(15) - C(14)$

b) Find $C'(14)$

Marginal Business Functions

Approximate change in the dependent variable (cost, revenue, profit) when the independent variable (the number of items produced/sold) is changed by a single unit.

- **Marginal Cost Function**

$$MC(x) = C'(x)$$

- **Marginal Revenue Function**

$$MR(x) = R'(x)$$

- **Marginal Profit Function**

$$MP(x) = P'(x)$$

NOTE. The marginal functions approximate the Cost/Revenue/Profit of the next item.

Ex.5) The total profit (in dollars) of producing x ski jackets is given by

$$P(x) = -0.2x^2 + 176x - 21900$$

- a) Find the exact profit realized from the sale of the 201st ski jacket.

- b) Use the marginal profit function to approximate the profit realized from the sale of the 201st ski jacket.

Derivatives of Exponential and Logarithmic Functions

(a) If $f(x) = e^x$ then

$$f'(x) = e^x$$

(b) If $f(x) = \ln x$ then

$$f'(x) = \frac{1}{x}$$

(c) If $f(x) = b^x$ then

$$f'(x) = b^x \cdot \ln b$$

(d) If $f(x) = \log_b x$ then

$$f'(x) = \frac{1}{x \ln b}$$

Ex.6) Find the derivative of each of the following functions:

a) $f(x) = 7e^x$

b) $f(x) = 2(3)^x$

c) $f(x) = \ln x + 3$

d) $f(x) = 4x^2 - \sqrt[3]{x} + \log_7 x^3 - 5^x$

e) $y = \ln(x^7) + 3(2)^x$

Ex.7) Find the equation of the line tangent to the graph of $f(x) = e^x + \ln x$ at $x = 1$.

Section 4.2 Derivatives of Products and Quotients

Product Rule

If $h(x) = f(x) \cdot g(x)$ and if $f'(x)$ and $g'(x)$ exist, then

$$h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Quotient Rule

If $h(x) = \frac{f(x)}{g(x)}$ and if $f'(x)$ and $g'(x)$ exist, then

$$h'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$$

Ex.8) Find the derivative of the following functions:

a) $h(x) = x^2(x^2 + 4x)$

b) $h(x) = (x^2 + 3)(\sqrt[4]{x} + \sqrt[8]{x^3})$

c)
$$h(x) = \frac{x^2 + 5}{3x}$$

d)
$$h(x) = \frac{3\sqrt{x} + 7x}{x^2 - 4x + \frac{1}{x}}$$

e)
$$f(x) = 5x^4 e^x$$

f)
$$g(x) = \frac{x^2 e^x + 5}{7 - e^x}$$

g)
$$h(x) = \frac{2^x + 5x^2}{\log_2 x^4 - \ln x}$$

Ex.9) Find the equation of the tangent line to $f(x) = \frac{x^2 + 1}{3x^3 - 4x^2 + 2}$ at $x = 2$.

Ex.10) Suppose that $f(2) = -1$, $g(2) = 3$, $f'(2) = -4$, and $g'(2) = 6$. Find $h'(2)$ for each of the following:

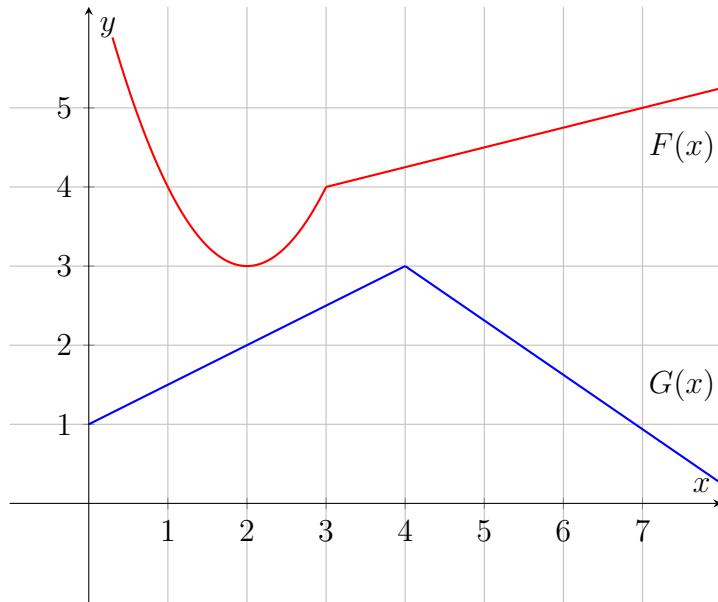
a) $h(x) = 2f(x) - 3g(x)$

b) $h(x) = f(x)g(x)$

c) $h(x) = \frac{f(x)}{g(x)}$

d) $h(x) = \frac{f(x)}{1 + g(x)}$

Ex.11) Let $P(x) = F(x)G(x)$ and $Q(x) = \frac{F(x)}{G(x)}$, where F and G are the functions whose graphs are shown below.



a) Find $P'(2)$

b) Find $Q'(7)$